
644 IEEE TRANSACHONS ON SOFlWARE ENGINEERING. VOL. 20. NO. 8. AUGUST 1994

Measuring Functional Cohesion _
James M. Bieman, Senior Member, IEEE, and Linda M. Ott

Abstract-We examine the functional cohesion of procedures
using a data slice abstraction. Our analysis identifies the data
tokens that lie on more than one slice as the ‘glue” that binds
separate components together. Cohesion is measured in terms
of the relative number of glue tokens, tokens that lie on more
than one data slice, and super-glue tokens, tokens that lie on all
data slices in a procedure, and the adhesiveness of the tokens.
The intuition and measurement scale factors are demonstrated
through a set of abstract transformations.

Zndex Terms- Software measurement, cohesion, program
slices, measurement theory.

I. INTRODUCTION

C OHESION is an attribute of a software unit or module
that refers to the “relatedness” of module components. A

highly cohesive software module is a module that has one basic
function and is indivisible-it is difficult to split a cohesive
module into separate components.

Virtually every software engineering text describes cohesion
as an important factor of design quality. If, cohesion is an
important attribute of software design quality, we should be
able to recognize when a module exhibits cohesion, and,
ideally, we should be able to quantify the amount of cohesion
in a module. Such cohesion measures can help developers
design modules with greater cohesion.

Module cohesion can be classified using an ordinal scale
that includes coincidental, logical, temporal, procedural, com-
municational, sequential, and functional cohesion [39, ch. 71.
Using this model, a module exhibits one of these seven co-
hesion categories. The cohesion categories vary in desirability
ranging from the most desirable (functional cohesion) to the
least desirable (coincidental cohesion). All of these cohesion
categories indicate the extent of the “functional strength” of a
module, the contribution of module parts towards performing
one task [lo, pp. 199-2001.

Our aim is to develop quantitative measures of functional
cohesion, the most desirable of these functional strength
cohesion categories. According to Yourdon and Constantine,
every element in a module exhibiting functional cohesion “is
an integral part of, and is essential to, the performance of
a single function” [39, p. 1271. In their model, a module

Manuscript received June 30, 1993; revised April, 1994. Recommended
for acceptance by B. Littlewood. This work was supported in part by a
Faculty Development Grant from Michigan Technological University, and
by NASA Langley Research Center, Colorado Advanced Software Institute
(CASI), Colorado Advanced Technology Institute (CATI), Computer Technol-
ogy Associates, Inc. (CTA), and Storage Technology Inc.

J. Bieman is with the Department of Computer Science, Colorado State
University, Fort Collins, CO 80523, USA; e-mail: bieman@cs.colostate.edu.

L. Ott is with the Department of Computer Science, Michigan Technological
University, Houghton, MI 49931 USA; e-mail: l inda@cs.mtu.edu.

IEEE Log Number 9403567.

is either functionally cohesive or not. In contrast, we are
developing techniques that indicate the extent to which a
module approaches the ideal of functional cohesion.

Note that one can also evaluate cohesion from the perspec-
tive of data abstraction [23, pp. 169-1711. Fenton describes
this abstract or data cohesion as a different notion of cohesion
with a different set of measurement attributes [lo, p. 2001.
In this paper, we address functional cohesion; we defer the
treatment of abstract or data cohesion to future work.

Measurement techniques used in the physical sciences guide
us in our development of functional cohesion measures. As-
pects of functional cohesion are internal product attributes
related to properties of programs [111. Our objectives include
the development of 1) a good model of functional cohesion,
and 2) measures that use the model to quantify functional
cohesion.

For cohesion measures to provide meaningful measure-
ments, they must be rigorously defined, accurately reflect well
understood software attributes, and be based on models that
capture these attributes [I]. The measures should be specified
independently from the measurement tools, and such tools
should be based on the models. For example, QUALMS [38]
is based on the flow graph model, and the test coverage
measurement tools of Bieman and Schultz [4], [5] are based
on the standard representation model [2]. We use a slice
abstraction of a program based on data slices to model
cohesion [26].

A program slice is the portion of program text that affects a
specified program variable [35]. A variation on program slices
can model and measure functional cohesion [28]. Procedure
cohesion measures must indicate the cohesion that is expressed
in the program text. We cannot measure semantic relations
between program components that cannot be identified from
the program text alone. Note that functional cohesion is
actually an attribute of individual procedures or functions,
rather than an attribute of a separately compilable program unit
or module (depending on the‘programming language, modules
may include several procedures and declarations). We will use
the term “procedure” to refer to both procedures and functions.

We develop cohesion measures in terms of the slice model,
and validate the measures by demonstrating that they are
consistent with expected cohesion mode1 orderings and deter-
mining their scale properties. Thus, we appeal to the represen-
tation condition of measurement theory [10, pp. 25-261, [1 I],
which requires that our intuition about the relative quantity of
functional cohesion is preserved by a cohesion measure. To
be measurable on an ordinal scale, an attribute of cohesion
must impart an ordering on the model. That is, the model of
a procedure with “more” of one cohesion attribute must be

009%5589/94$04.00 0 1994 IEEE

BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 645

ranked (according to the attribute ordering) higher than the
model of a procedure with “less” of the attribute [24].

A measure is specif ied as a mapping from the model to a
quantitative value. Such a measure must be consistent with the
cohesion ordering. One way to demonstrate that a measure is
consistent with the ordering is to evaluate the effect of code
modifications to the model and the measures. W e focus on the
direction of the changes to cohesion measurements resulting
from relatively simple code modifications. The direction of
measurement changes provides a ranking of relative levels of
cohesion before and after a code change. Our analysis also
demonstrates the scale propert ies and the arithmetic operat ions
that can be appl ied to the measurement values [41, ch. 41.

The role of experimentat ion in software measurement re-
search is to map structural measures back to process goals such
as fewer defects, increased maintainability, etc. But, before we
can conduct effective empirical research, we must first have
sound measures [11. Thus, our goal here is to develop measures
that accurately reflect the concept of cohesion.

The paper has the following organization. In Section II, we
define the abstractions used to model functional cohesions. In
Section III, we examine the cohesion attributes and measures,
and Section IV evaluates the scale propert ies of the measures.
In Section V, we provide some examples of procedures,
cohesion orderings, and cohesion measures. Section VI is a
review of related work. Our conclusions are given in Section
VII.

II. COHESION ABSTRACTIONS

In our analysis, functional cohesion is based on proce-
dure outputs. Each output “object” (output parameter, mod-
ified global variable, or file), represents one component of
a procedure’s functionality. W e identify the components of
a procedure that contribute to particular outputs. Al though a
procedure may perform computat ion that does not produce
outputs, outputs of some kinds are general ly the externally
visible manifestation of functionality. W e do not address the
cases where activities that do not produce outputs are the real
functionality, for example modules whose main functionality
is to produce a time delay. In the case of procedures with
multiple outputs, we see how closely the program parts that
contribute to different outputs are bound. Using this approach,
procedures with only one output exhibit maximum functional
cohesion.

A. Program Slices

Slicing is a method of program reduct ion introduced by
Weiser [35]-[37]. A slice of a procedure at statement s
with respect to variable w is the sequence of all statements
and predicates that might affect the value of r~ at s. Slices
were proposed as potential debugging tools and program
understanding aids. They have since been used in a broader
class of applications (e.g., debugging parallel programs [7],
maintenance [13], [15], [25], and testing [171, [181, [22], [29]).

Weiser’s algorithm for comput ing slices is based on data
flow analysis. It is suggested in [27] that a program depen-
dence graph representat ion can be used to compute slices more

efficiently and precisely. An algorithm for comput ing slices
using a program dependence graph representat ion is presented
by Horwitz, et al., [16], [31]. A slice is obtained by walking
backwards over the program dependence graph to obtain all
nodes which have an effect on the value of the variable of
interest. Similarly, a fonvard slice [16] can be obtained by
walking forward over the program dependence graph to obtain
all nodes which are affected by the value of a variable. The
algorithm based on the program dependence graph is more
restricted than Weiser’s in the sense that it will only compute
a slice for variable v at statement s if 21 is def ined or used in
statement s. Both intraprocedural slices and interprocedural
slices can be computed.

W e derive cohesion measures directly from slices rather than
dependence graphs. Slices promote a more intuitive analysis
since they are based on program text. Our measurement theory
approach requires that a measure be consistent with intuition,
and including program text in our abstraction eases intuitive
analysis.

B. Data Slices

In [37], Weiser def ined several slice based measures. Long-
worth [21] first studied their use as indicators of cohesion. In
[30] and [33], Thuss eliminates certain inconsistencies noted
by Longworth through the use of metric slices. A metric slice
takes into account both lcses and used by data relationships;
that is, they are the union of Horwitz et al.‘s backward and
forward slices.

In order to analyze the effects of changes on slice measures,
we modify this concept of metric slices to use data tokens (i.e.,
variable and constant definitions and references) rather than
statements as the basic unit. W e call these slices data slices.

Using data tokens as the basis of the slices ensures that all
changes of interest will cause a change in at least one slice
of a procedure. W e consider a change of interest to be any
change which could have an effect on the cohesiveness of
a procedure. An example of a change that is not of interest
is changing some operator to a different operator. Examples
of changes of interest include adding code, deleting code, or
changing the variable used in a given context. Each of these
changes would result in a change to at least one data slice.
(This is in contrast to a metric slice, where if a statement
is modified, the actual statements in the slice might not
change.)

Informally, we view a data slice for a data token, 21, as the
sequence of all data tokens in the statements that comprise the
“backward” and “forward” slices of u. W e use intraprocedural
slicing since we are interested in examining the cohesiveness
of each procedure as a separate entity.

W e compute a data slice for each output of a procedure.
An “output” is any single value explicitly output to a file
(or user output), an output parameter, or an assignment to
a global variable. An output tuple with multiple components
is considered to be multiple outputs. Since we are interested in
the cohesion of the whole procedure, we use a concept similar
to that of end-sl ices [191. The “backward” slices are computed

646 IEEE TRANSACTIONS O N SORWARE ENGINEERING. VOL. 20. NO. 8. AUGUST 1994

procedure SumAndProduct

ml: integer;

var 1 SumN], ProdN : integer);
var

/T-J: integer;
begin

fKGTq::=@
ProdN := 1;
for m := q to q do begin

(q::=ISumNIt0;
ProdN := ProdN * I

end
end;

Fig. 1. Data slice for SumN. Items included in the slice are contained within
boxes.

from the end of the procedure’ and the “forward” slices are
computed from the “top”s of the backward slices.

Fig. 1 displays an example of a data slice embedded in a
program. The slice for SumN in Fig. 1 is a sequence of data
tokens:

NI .SumNl. II .SumNz .Ol.Iz. 12. N2 .SurnNs .SurnNd. Is.

where each T; indicates the i’th data token for T in the
procedure. Note that in the slice for SumN, the subscript in
“la” indicates that the token is the second occurrence of data
token “1” in the procedure. We can also compute the slice for
ProdN:

N1 .ProdNl .I1 .ProdN2.11. Ia.12. Nz .ProdN3.Prod4N4.14.

We can profile the data slices in a procedure to give a
sense of the relationships among data slices. Fig. 2 shows an
example of a data slice profile. We indicate, in the column for
a slice variable, the number of data tokens in that line that are
included in the slice. This profile was derived from an earlier
method developed for visualizing slices [25], [28], [33].

C. Slice Abstractions

Our analysis of functional cohesion is developed using an
abstract model of procedures based on data slices. The Slice
Abstraction models each procedure as a set of data slices, and
a data slice as a sequence of data tokens. Essentially, we strip
away all of the non-data tokens from a procedure and include
only the data tokens in the abstraction.

The slice abstraction for the SumAndProduct procedure of
Fig. 1 and Fig. 2 is:

SA(SumAndProduct) =
{Nl’ SumNl . II . SumNz .OI.I~. 12 s N2
* SumN3 . SumN, ’ 13, N1 e ProdNl e II . ProdN2 .11 ’ I2
’ 12 . N2 . ProdN3 . ProdN4 . 14).

’ We use the FinalCIise nodes of [161 as the end of a procedure.

SumN ProdN Statement

procedure SumAndProduct
1 1 (N : integer;
1 1 var SumN, ProdN : integer);

var
1 1 I : integer;

begin
2 SumN := 0;

2 ProdN := 1;
3 3 for I := 1 to N do begin
3 SumN := SumN •l- I;

3 ProdN := ProdN * I
end

end; .

Fig. 2. Data slice profile for SumAndProduct. The number of data tokens
included in the data slice for SumN and ProdN is indicated in columns I and
2, respectively.

Fig. 3(a) provides another view of a slice abstraction of the
SumAndProduct procedure. The names of the data tokens are
listed in the first column of Fig. 3(a). A ‘*I” in the second and
third column indicates that the indicated data token is part of
the data slice for the named output.

We find an uncluttered view of slice abstractions without
labels useful for visualizing important attributes of functional
cohesion in slice abstractions. Fig. 3(b) is an unlabeled view of
the slice abstraction of the SumAndProduct procedure. When
analyzing functional cohesion, it is important to know when
one token is in more than one data slice, but the actual names
of the tokens are not important. The slice abstractions from two
completely different procedures can have the same cohesion
properties, and look identical when viewed in the unlabeled
form.

D. Glue, Super-Glue, and Stickiness

As Fig. 3(a) and Fig. 3(b) show, several of the data
tokens are common to more than one data slice. Data tokens
N1, I,, 12,12, and Nz are-in the data slice for SumN and the
data slice for ProdN. Such tokens, common to more than one
data slice in a slice abstraction, are the connections between
the slices. We say that these tokens are the “glue” that binds
the slices. Thus, we define the glue in a slice abstraction of
a procedure P, G(SA(P)), as the set of data tokens that lie
on more than one data slice in SA(P). A glue token is a
token that lies on more than one data slice. We also consider
all of the tokens in an abstraction with only one slice to be
glue tokens. Fig. 3(c) shows SA(SumAndProduct) with the glue
tokens enclosed in boxes. Although there are two “I” symbols
on each row of glue tokens in Fig. 3(c), there is actually only
one token for each row.

It is useful to identify the data tokens that are common to
every data slice in a procedure. These tokens are the super-

BIEMAN ANDOTT:MEASURING FUNCTIONALCOHESION 647

Data Token

NI
SumNl
ProdNi

11
SumNs

01
ProdNz

11
12
12

N2

SumNa
SumN4

I3
ProdN3
ProdN4

I4

SumN ProdN

I ’

I

I

I
I
I I

(a)

I

/ I
I I

I

I
1 I

(b)
Fig. 3. Three Views of SA(SumAndProducr) (a) SA(SumAndProduct) ; (b) Unlabeled View; (c) Glue tokens highlighted.

s,s2.&
Super-glue: 1 (I

I

Super-glue: 1 I)

Glue: I l
Glue: I I

Glue: I I

Fig. 4. A Three-sl ice SA with glue and super-glue.

glue tokens, and SG(SA(P)) denotes the set of data tokens
that lie on all data slices in SA(P). The notion of super-glue
tokens is especially useful in slice abstractions with more than
two data slices. Note that SG(SA(P)) C G(SA(P))-all
super-glue tokens are also glue tokens. If ISA(P) 1 2 2 then
SG(SA(P)) = G(SA(P)). Note that all of the data tokens in
a procedure’with only one slice are super-glue tokens.

Fig. 4 shows a three-slice abstraction with glue and super-
glue tokens. This abstraction has two super-glue tokens and
five glue tokens (super-glue is still glue). One of the tokens
glues S1 to Ss, one glues Sa to S’s, and one glues S1 to Ss.
The super-glue tokens bind all three slices together. Six of the
tokens lie on only one data slice and are not glue tokens.

The distribution of glue and super-glue tokens indicates
how tightly bound the individual slices are, since the effect
of glue tokens is to bind slices. Individual glue tokens can
have a varying effect on cohesion based on the number of
slices that they bind. Thus, we can descr ibe the relative

I u I I / ’
Cc)

stickiness or adhesiveness of a glue token. The notion of token
adhesiveness can characterize the .adhesiveness property of
an entire procedure or slice abstraction. W e use the concepts
of glue, super-glue, and adhesiveness to develop functional
cohesion measures.

III. FUNCTIONAL COHESION ATTRIBUTES AND MEASURES

A. Definition of Measures

W e define functional cohesion attributes and measures in
terms of slice abstractions, data tokens, glue and super-glue.
W e also use the set of data tokens in a slice abstraction a,
denoted tokens(a), and the set of data tokens in procedure p,
denoted tokens(p). In general, tokens(p) = tokens(SA(p)).
However, if a value is computed that does not contribute to
any output (usually a program anomaly), then there may be
data tokens that do not lie on any slice and tokens(SA(p)) c
tokens(p). Note that each appearance of a data token in a
program is counted as a different token, and each token can
be in more than one data shce.

Metrics based on the relative number of glue and super-
glue tokens are intuitive and can easily be def ined in terms of
slice abstractions. According to Yourdon and Constant ine [39,
pp. 127-1301, a procedure with functional cohesion is one in
which all parts are cohesive. This view recognizes only the
strongest functional cohesion and is consistent with the use
of the super-glue tokens as the basis for defining cohesion
attributes and measures. Thus, we define strong functional
cohesion (WC) as the ratio of super-glue tokens to the total
number of data tokens in a procedure p:

SFC(p) = ISG(SA(P)) I
(tokens(p) 1 ’ (1)

648 IEEE TRANSACTIONS ON SOITWARE ENGINEERING, VOL. 20. NO. 8, AUGUST 1994

The SFC is a measure of the minimal functional cohesion
in a procedure. SFC is very similar to the Tightness measure
def ined by Ott and Thuss [30]. However Tightness is def ined
in terms of statements shared by slices rather than data tokens.

W e can also measure cohesion in terms of the glue tokens in
a slice abstraction. Such a measure can be more sensitive than a
measure based on only the super-glue tokens-it can indicate
that adding something may “glue” together previously non-
cohesive elements even if the token does not “glue” together
all of the slices. Such functional cohesion indicates a “weaker”
type of cohesion than indicated by the super-glue tokens. Thus
we define weak functional cohesion (WFC) as the ratio of
glue tokens to the total number of tokens in a procedure. For
procedure p:

(2)

Another way to measure cohesion is in terms of the adhe-
s iveness of glue tokens. The adhesiveness is related to the
relative number of slices that each token “glues” together.
Thus, a token that “glues” together four slices in a five slice
procedure is more adhesive than a token that “glues” together
two or three slices. W e can define the adhesiveness, N, of
token t in procedure p as follows:

4hP) =

C #slices in p containing t
IS‘~(P)I if t E G(SA(p)).

0 otherwise
(3)

The overall adhesiveness, A, of an SA is the average adhe-
s iveness of the data tokens in a procedure:

tEtokens(p)
A(p) = Itokens(p)l

Equivalently, overall adhesiveness can be computed as a
ratio of the amount of adhesiveness to the total possible
adhesiveness. That is, for procedure p:

slices containing t

A(P) =
tEG(SAb))

Itokens(p)l. ISA(p)l
(5)

In the examples in the following subsection, we compute A
using equat ion (5), s ince equat ion (5) is easier to apply.

Adhesiveness should indicate the relative strength of the
glue in a procedure. Adhesiveness is most closely related
to the coverage measure of Ott and Thuss [30]. It should
be particularly sensitive to the cohesion resulting from glue
tokens that lie on more than two slices, but do not lie on all
slices.

All of these cohesion measures (strong functional cohesion,
weak functional cohesion, and adhesiveness) range in value
from zero to one. They have a value of zero when a procedure
has more than one output and exhibits none of the cohesion
attribute indicated by a particular measure. A procedure with
no super-glue tokens, no tokens that are common to all data

slices, has zero strong functional cohesion-there are no data
tokens that contribute to all outputs. A procedure with no glue
tokens, that is no tokens common to more than one da& slice
(in procedures with more than one data slice), exhibits zero
weak functional cohesion and zero adhesiveness- there are no
data tokens that contribute to more than one output. The strong
functional cohesion and adhesiveness are at a maximum value
of one for procedures in which all of the data tokens are
super-glue tokens-all data tokens affect all outputs. Weak
functional cohesion of a procedure is one if all data tokens
are glue tokens-all data tokens affect more than one output
in procedures with more than one slice.

3. Examples

The cohesion measures can be appl ied to the SumAndProd-
uct procedure. SA(SumAndProduct) has two slices with 17
tokens and 5 glue tokens. Each glue token is a super-glue token
since SA(SumAndProduct) has only two data slices. Thus,

WFC(SA (SumAndProduct)) =

SFC(SA(SurnAndProduct)) = & = .294.

Adhesiveness is calculated as follows:

A(SA(SumAndProduct)) = E = .294,

because there are five glue tokens and each glue token lies on
two slices. The denominator is the total number of tokens times
the number of slices. W e see that in this two slice example
procedure all three cohesion measures give the same value.
This is not surprising since the WFC and A measures gain
sensitivity on multi-slice procedures-al l glue tokens are also
super-glue tokens on a one or two slice procedure.

The WFC and SFC of the 3-slice abstraction in Fig. 4 will
differ since some of the glue tokens are not super-glue. Out
of a total of 11 tokens, this abstraction has five glue tokens of
which two are super-glue. Thus,

WFC(SA(Fig. 4)) = 5/11 = ,455,

SFC(SA(Fig. 4)) = 2/11 = .182.

Because there are two tokeni’on three slices and three tokens
on two slices, adhesiveness is calculated as follows:

A(SA(Fig. 4)) = 2 y1+. z 2 = g = .36.

Adhesiveness and the strong and weak cohesion measures
are based solely on the number of slices and data tokens in a
procedure, and the number of glue and super-glue tokens.

C. Relationships Between the Measures
By examining the definitions, we can determine relation-

ships among the three proposed measures. Since SG(SA(P))
& G(SA(P)), it follows that ISG(SA(P))J I JG(SA(P))I.

BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 649

Thus, using (1) and (2) we can see that for a given procedure p:

(6)

W e see that:

SFC(P) 5: A(P), (7)

by noticing that a(t, p) = 1 using Definition (3) for all
t E SG(SA(p)) and therefore, the numerator in (4) is at least
as large as the numerator in (I). Similarly, since ~y(t: p) 5 1
for all t E G(SA(P)), using (2) and (4), we see that:

A(P) I WFC(?-‘). (8)

Thus, we have:

SFC(p) 5 4~) I WFC(p). (9)

Finally, we see that A(p) is more “sensitive” than either
WFC(p) or SFC(p) to dif ferences in the amount of program
cohesion. If we fix the size of programs considered, that is,
jfokens(p)l, and we fix the number of slices considered, that
is, ISA(p)(, we see that WFC(p) and SFC(p) can assume at
most I t&ens(p)1 values. A(p), on the other hand, can assume
Ifokens(y)) . (JSA(p)J - 1) values.

IV. DISCUSSION OF SCALE PROPERTIES

Fenton defines the term “validation” as “the process of en-
suring that the measure is a proper numerical characterization
of the claimed attribute” [lo, p. 821. This kind of validation
is very difficult when the attribute to be measured is loosely
understood. W e need to rely on human intuition to determine
the relative levels of our cohesion properties, to see if they are
consistent with the measurement values. Zuse shows how to
determine what type of scale software measures assume [41,
ch. 41, [42], [6]. In this paper, we combine the methods of
Fenton and Zuse to validate the cohesion measures in terms
of intuitive notions of cohesion and to determine the scale
propert ies of the measures. First, we show that the measures
assume an ordinal scale that matches our intuition concerning
the cohesion attributes that are measured. Then, we evaluate
the measures in terms of the requirements of a ratio scale.

A. Cohesion Measures and the Ordinal Scale

For a real-valued ordinal scale measure of cohesion at-
tributes to exist, our intuition about these attributes, called
“empirical relations” or “viewpoints”, must satisfy three ax-
ioms: reflexivity, transitivity, and completeness [40], [41, p.
471, [42], [6]. These are the requirements of a weak order.
From [40], we defme a cohesion viewpoint as binary relations,
*>, *=, and *> on programs ‘P where:

P,*> P2 PI is more “cohesive” than Pz:

P,*z P2 PI and Pz are equally “cohesive”,

p1*> p2 PI*> P2 or PI*% P2,

called an elementary viewpoint. An elementary viewpoint is
def ined in terms of a finite set of transformations on a program
representation. A complete set of elementary transformations
can be used to generate every possible instance of a program
representat ion from a base representation. To show that a
measure is on an ordinal scale, we need to show that it is
consistent with a complete set of elementary transformations,
since the set represents the cohesion viewpoint. Thus, we
evaluate the “functional cohesion orderings” of procedures in
terms of intuitively obvious effects of program modifications
on functional cohesion. W e model the changes in terms of
an ordering of slice abstractions. In this analysis, we assume
that it is the “shape” of slice abstractions that is critical,
so two completely different procedures can have the same
functional cohesion attributes. W e use unlabeled views of
slice abstractions as depicted in Fig. 3(b) to demonstrate the
necessary attributes and transformations.

Slice Abstraction Transform&ions: Functional cohesion
orderings can be developed in terms of a set of elementary
transformations of slice abstractions. W e seek a set of
transformations that can generate the set of all slice
abstractions, and provide an ordering. The transformations
are developed inductively.

Base case: A one slice procedure:

A one slice procedure is entirely cohesive, and should have
the highest possible SFC! WFC! and A. All three of our
measures satisfy intuition here. SFC, WFC and A give their
maximum value of I for a one slice procedure.

Transformations:
1) Add one slice. There are two ways to add a slice:

x **

The new output is not on any of the previous
slices. Thus at least one new non-glue token is
added.

b) Output existing functionality. This can be accom-
pl ished by changing a non-output token into an
output token. The following change to C-like
pseudo-code is an example of such a transforma-
tion:

y = x * printf (y = 3;)

for PI, P2 E P.
lt is not possible to give a general definition of cohesion

We use “” to indicate a token added to a slice that is not new to the
proce&,re, we use Li**l’ to indicate when an added token is new to the

viewpoints. Rather we can use a subset of the above relations program; it is a token that is not on any other slice.

650 IEEE TRANSACTIONS O N SOFTWARE ENGINEERING, VOL. 20, NO. 8. AUGUST 1994

A simple change to the parameters in a Pascal
program can also cause existing functionality to
become a new output:

2 : integer * var x : integer

With such transformations, a new slice
created without adding any new tokens.

can be

2) Extend n slices by adding one token to them. This added
token may be a token that is either

4 not in any of the slices in the slice abstraction
(i.e., a new token):

I I
I I I I

II- Ij

I . **
b) a token already in one or more of the other slices

in the slice abstraction, but not in all of the other
slices:

I I

I /
I I

===+ I I*

’ / ’ /
cl or, a token already in all of the other slices:

i I

A token can be added to a slice without adding
new code by moving the token within a procedure
to a location that puts it in the scope of the slice.

This set of transformations is complete-we can build all
slice abstractions using the base case and repetitions of the two
transformations. Removing and shortening slices are inverse
operations to the add and extend operations.

Effect of Transformations on the Metrics: We summarize
the effects of the transformations introduced above on the
cohesion measures that we have defined. See the appendix for
the detailed arguments. For consistency with the appendix,
we will refer to the initial abstraction as a and the abstraction
after a transformation as a’.

Strong Functional Cohesion: When adding a new slice to
a, SFC(a’) 5 SFC(a). Th’ 1s is consistent with our intuition
that adding functionality tends to decrease the cohesiveness of
a procedure. When extending slices, we find that SFC(a’) >
SFC(a) only when the number of super-glue tokens has
increased. Thus, the effects of the transformations match
our intuition that the strong functional cohesion components
include only elements that contribute to all the functionality
computed by the procedure.

Weak Functional Cohesion: When we add functionality to
a procedure by adding a new output, we increase cohesion
only when the net effect is to “glue” previously non coliesive
parts creating a higher percentage of glue tokens. When
we output existing functionality without adding new tokens,
WFC(u’) 2 WFC(u). When extending a slice, WFC can
remain unchanged, increase or decrease, depending on whether
the new token is already “glue”, is new “glue” or is not “glue”,
respectively.

Adhesiveness: When we add functionality to a procedure
by adding a new output, A can increase or decrease. If we add
only non-glue tokens, then A will decrease. If we add at least
some glue tokens, the effect on A depends upon the amount
of “glue” added, the size of the procedure and the size of the
slice being added. When we extend a slice of a multiple slice
procedure, A will increase if we add a super-glue token and
will decrease if we add a non-glue token. If we add a glue
token (which is not also superglue), the effect on A depends
upon the ratio of the number of slices that the new token
lies on, and the total number of slices in the abstraction. If we
extend a slice without adding any tokens, then normally A will
increase. A remains unchanged only if we extend a slice by
rearranging code to include token(s) that were not previously
in any slice.

Evaluation of Orderings and Cohesion Metrics: To vali-
date that the three measures, SFC, WFC, and A, assume
an ordinal scale we need to demonstrate that the orderings
imposed by the measures are consistent with the elementary
viewpoints of the associated cohesion attributes. Such a
conclusion relies heavily on intuition, since elementary
viewpoints are defined in terms of subjective views of
cohesion. Our main goal here is to demonstrate that the
measures are consistent with intuition. At the very least, we
are convinced that the orderings imposed by the measures
are not counterintuitive. The measures are on an ordinal scale
to the extent that the orderings imposed by the measures
match the users (of the measures) intuition concerning the
elementary viewpoints of cohesion.

B. Cohesion Measures and the Ratio Scale

To perform multiplication and division on measurement
values, the measures must assume a ratio scale. Thus we
evaluate our functional cohesion measures in terms of the
requirements for ratio scale measurement.

On way to demonstrate that a measure is on the ratio
scale involves adding a program composition operator “0 ”
to the relational system used in an ordinal scale evaluation. A
composition operator takes two slice abstractions and com-
bines them to create a new slice abstraction. Adding o to
the cohesion viewpoint of Section IV-A, gives us a relational
system (P, *>, 0). Zuse [41, p. 49-501 shows that a measure
is on a ratio scale if the measure is a real valued function m,
is on an ordinal scale, and the following axioms hold:

PI *> P2 ++ ,Il(P,) > TrL(P2)
m(P1 0 P2) = 7n(Pl) + 7n(P2).

BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 651

The first axiom requires that m be consistent with the intuitive
ordering of the procedures imposed by the attribute being
measured. The second axiom requires that m be additive.

Meaningful composit ion operators are necessary to use
Zuse’s method of verifying that a measure assumes a ratio
scale. In the extended version of this paper [3], we define
two composit ion operators. One operator ties the output of the
slices in one abstraction to the inputs of another abstraction.
The second operator assumes no interactions between the two
merged abstractions.

The requirement that m(Pl o P’) = m(Pl)+m(&) is not
satisfied using either of the two composit ion operators. This is
because the size attribute / tokens (p)l, the number of tokens in
the procedure, is in the denominator of the calculation for all
three of the cohesion measures (SFC, WFC, and A). Under
the two composit ion operators, the measures are not additive,
and, thus, do not assume a ratio scale.

Gustafson, Tan, and Weaver argue that composit ion opera-
tors for the complex models (such as slice abstractions) used
to define structural measures do “not make sense” because
programmers rarely merge programs [141. As an alternative to
the analysis based on composit ion operators, we can use an in-
tuitive argument that the functional cohesion measures do not
assume a ratio scale. Multiplication makes sense for ratio scale
measures. Thus, if the functional cohesion measures are on a
ratio scale, we should be able to argue that one procedure (or
slice abstraction) is twice as cohesive as another. W e can find
slice abstractions sl and 32, where SFC(s1) = 2SFC(s2),
WFC(s1) = 2WFC(s2), or A(2) = 2A(2). However, we
find no justification (other than the measures themselves) for
claiming that any sl is twice as cohesive as ~2. The notion of
doubl ing cohesion is not intuitive, and multiplying cohesion
values does not seem to be meaningful. Thus, we find no
evidence that the functional cohesion measures assume a ratio
scale.

V. EXAMPLES

In this section, we examine a few small code segments to
illustrate the dif ferences among the three proposed cohesion
measures. The figures in this section use slice profiles (as in
Fig. 2) showing the entire procedure text rather than slice
abstractions showing only data tokens to make it easier to
visualize the connect ion between program text and slices. As
descr ibed in Section II-B, the slices in the examples are the
union of the backward and forward slices based on the output
variables.

The first example uses a procedure that transforms a value
in one of two ways depending on the initial value. A flag
that indicates which of the two transformations was used is
also returned. Fig. 5 contains a slice profile and cohesion
measurements for this Decode procedure. In this case the three
measures give equivalent values. The cohesion measurements
are always equivalent for two slice procedures since in such
cases G(SA(p)) = SG(SA(p)). The .53 measurement values
indicate that approximately half of the tokens lie on both slices.

The three cohesion measurements are lowered when the
procedure is modif ied by adding an output variable that is not

value small
1 1 procedure Decode(var value: integer;
1 1 var small: boolean);

begin
2 2 if value < 5000 then begin
4 value := value * 8 mod 10;
2 2 small := true

end
else begin

3 value:=value mod 10;
2 2 small := false

end;
end;

WFC(Decode) = $ = .53

8*2
A(Decode) = - = .53 15*2

SFC(Decode] e= $ = .53

Fig. 5. A slice profile and cohesion measurements for a simple procedure.

value small count
1 1 procedure Decode2(var value: integer;
1 1 var small: boolean;

1 var count: integer);
begin

2 2 if value < 5000 then begin
4 value := value * 8 mod 10;
2 2 small := true

end
else begin

3 value:=value mod 10;
2 2 small := false

end;
3 count := count $1;

end;

WFC(Decode2) = i = .42

A(Decode2) = s = .25

SFC(Decode2) = - 0 = 0.0
19

Fig. 6. A slice profile and cohesion measurements for a noncohesive
procedure.

connected to the slices of itie original outputs. The modif ied
procedure, Decode2, is in Fig. 6. Decode2 was created by
adding a variable count to the original procedure Decode. It
is a global variable that may indicate the number of t imes
that Decode2 is called. SFC(Decode2) is zero, and clearly
indicates the existence of some noncohesive components in
the procedure- the slice for output variable count does not
include any tokens that lie on the slices for the other outputs.
WFC(Decode2) has dropped to .42 and A(Decode2) has
dropped further down to .28. Of WFC and A, A is more
dramatically affected by adding the noncohesive component .

Figs. 7, 8, and 9 demonstrate how the measures behave
when functionality is combined. Procedure Lookup in Fig.
7 is a table lookup routine which returns a password and

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

3uccess passwd address
3 3 3 procedure LookUp(A: Table; Size: integer; key: keytype;
1 1 1 var success: boolean;
1 1 var passwd: integer;
1 1 var address: string);

begin
2 2 2 i := 1;
2 2 2 success:= false;
3 3 3 while not success and i <= Size do
3 3 3 if A.name[i] = key then

begin
2 2 2 success := true;
3 3 passwd := A.value[i];
3 3 address := A.add[i];

end
else

3 3 3 i := i + 1;
end;

WFC(LookUp) = ; = 1.0

A(LookUp) =
8*2+ 19*3

27*3
= .90

SFC(LookUp) = ; = .70

Fig. 7. A table lookup procedure.

address associated with a key, and a boolean flag which
indicates a successful search. As can be seen in Fig. 7, the
three cohesion measures give relatively high values for this
procedure, WFC(LookUp) = 1.0, A(LookUp) = .90, and
SFC(LookUp) = .70. Most of the data tokens affect or are
affected by the three outputs.

In Fig. 8, we combine procedure LookUp with procedure
Decode from Fig. 5 to create procedure LookCJp2. The pro-
cedures are combined such that Decode operates on the same
data used by Lookup. The cohesion measurement values for
this procedure are WFC (LookUp2) = .83, A (LookUp2)
= .69, and SFC(LookUp2) = .43. The original procedure
Decode is intuitively less cohesive than procedure Lookup. In
this combined case, WFC and A fall between their values
for the two original procedures, while SFC has a value that
is below the value of either of the original procedures. SFC
tends to drop dramatically, when non-cohesive components
are added.

Procedure Lookup and Decode are again combined in Fig.
9 creating procedure LookUp3. This time we combine the
procedures such that Decode operates on data that is distinct
from the data used by Lookup. For this combined procedure,
WFC (LookUp3) = .83, A (LookUp3) = .43, and SFC
(LookUp) = 0.0. SFC clearly indicates with a value of
zero that there are no data tokens that are common to all of
the slices. WFC does not distinguish between LookUp2 and
LookUp3-according to WFC the two procedure are equally
cohesive. A does indicate that LookUp3 is less cohesive than
LookUp2, however, unlike SFC, A also indicates that there
are some cohesive components.

These two examples show that A rather than WFC more
accurately matches our intuition concerning the cohesiveness

of a procedure which contains several functional components.
This is true, in general. For a more detailed analysis of the
sensitivity of the cohesion measures, see the extended version
of this paper [3].

VI. RELATED WORK

Our current efforts are based on earlier work using slice
based measures as indicators of cohesion [21], [33], [28], [30].
Longworth [21] and Thuss [33], [28] examined the potential of
measures proposed by Weiser [35] as indicators of cohesion.
Ott and Thuss first noted the visual relationship that existed
between the slices of a module and its cohesion as depicted
in a slice profile [28]. The insights gained from this earlier
work were instrumental in developing the data slice model of
cohesion and cohesion measures presented here.

Other researchers have also examined the problem of mea-
suring cohesion including Emerson [8], [9], Lakhotia [20],
Troy and Zweben [34], and Selby and Basili [32].

A. Emerson’s Work
Emerson bases his cohesion measure on a control flow graph

representation of a module [8], [9]. The graph contains a node
for each statement in the module that contains a variable.
After construction of the graph, a reference set is constructed
for each variable in the module which indicates the nodes in
the control flow graph that reference that variable. A flow
subgraph, (R), is computed for each references set, R, as the
minimal subgraph of F which contains every complete path in
F that passes through an element of R. This is equivalent to
generating the set of vertices which are either reachable from
an element of R or from which an element of R is reachable. A
cohesion value is computed for each reference set as the ratio

BIEMAN AND OTT: MEASURING FUNCTIONAL COHESION 653

success passwd address
3 3 3 procedure LookUp2(A: Table; Size: integer; key: keytype;
1 1 1 var success: boolean;
1 1 var passwd: integer;
1 1 var address: string);

begin
2 2 2 i := 1;
2 2 2 success:= false;
3 3 3 while not success and i <= Size do
3 3 3 if A.name[i] = key then

begin
3 3 passwd := A.value[i];
2 2 success := true;
3 3 address := A.add[i];

end;
else

3 3 3 i:=i+ 1;
2 2 if passwd < 5000 then begin

4 paaswd := passwd * 8 mod 10;
2 2 success := true.

end
else b&gin

3 passwd := passwd mod 10;
2 2 success := false;

end
end;

WFC(LooklJp2) = E = .83

A(LookUp2) 16 * 2 + 17 * 3 = = .69
40 * 3

SFC(LookUp2) = z = 0.43

Fig. 8. A table lookup procedure combined with a decode procedure such that both use of same data.

of the cyclomatic complexity of (R) times the size of R to the
cyclomatic complexity of F times the size of F. The cohesion
of a module is then computed as the mean of the cohesion
values of the reference sets for each variable in the module.
The values for Emerson’s complexity measure range from 0
to 1. Discrimination levels are suggested to map these values
to three levels of cohesion: data cohesion, control cohesion,
and superficial cohesion.

Emerson indicates that his flow graph and reference set
constructs are related to slicing [9]. Emerson computes flow
subgraphs based on generat ing all vertices which are either
reachable from an element of R or from which an element
of R is reachable. Thus, these flow graphs are more closely
related to metric slicing than Weiser’s original definition
of slicing [35]. Weiser only used “backwards slices” while
Emerson’s subf lowgraph is clearly related to both forwards
and backwards slicing.

The measure def ined by Emerson is somewhat analogous to
the coverage measure def ined in [28]. (coverage is the average
of the ratios of the lengths of each slice to the module length.)
Emerson’s measure is the average of the ratios of the size of
each reference set (weighted by the cyclomatic complexity of
the subgraph generated from the reference set) to the size of the
flow graph (weighted by the cyclomatic complexity of the flow
graph). Emerson computes reference sets and subgraphs for

each variable while coverage is based only on slices for output
variables. Although there is an apparent relation between these
two measures, the precise meaning of Emerson’s measure is
unclear. In particular, the effect of multiplying the reference
set by the cyclomatic complexity is to mask the view of
cohesion. Cyclomatic complexity is a control flow measure,
and combining the measures of different attributes weakens
the discriminating power of a measure [24]. In contrast, our
slice based cohesion measures are based on intuitively sound
abstractions that are designed to isolate functional cohesion
attributes from other factors..

B. Lakhot ia’s Work
Lakhot ia developed a method for comput ing cohesion based

on an analysis of the variable dependence graphs of a module
[20]. Pairs of outputs are examined to identify any data or
control dependences that exist between the two outputs. Rules
are provided for determining the cohesion of the pairs. For
example, “two variables have sequential cohesion if one has
data dependence on the other.” the cohesion of a module
is then def ined to be “functional if it has only one output
variable; it is undef ined if it has no output variables; else
it is the lowest cohesion of all pairs of the output vari-
ables of the module.” Through examples Lakhot ia argues
that this method closely matches the original classifications

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

success passwd address value small
3 3 3 procedure LookUp3(A: Table; Size: integer; key: keytype;
1 1 1 var success: boolean;
1 1 var passwd: integer;
1 1 var address: string;

1 1 var value: integer;
1 1 var small: boolean);

begin
2 2 2 i := 1;
2 2 2 success:= false;
3 3 3 while not success and i <= Size do
3 3 3 if A.name[i] = key then

begin
3 3 passwd := A.value[i];
2 2 success := true;
3 3 3 address := A.add[i];

end;
else

3 3 3 i := i+ 1;
2 2 if value < 5000 then begin
4 value := value * 8 mod 10;
2 2 small := true; end

else
3 value := value mod 10;
2 2 small := false; end

end;

WFC(LookUp3) = z = .83

A(LookUp3) 15 * 2 + 20 * 3 = = .43
42 * 5

SFC(LookUp3) = ; = 0.0

Fig. 9. A table lookup procedure combined with a decode procedure such that both use distinct data.

(coincidental, logical, temporal, procedural, communicational,
sequential, and functional) of cohesion [39, pp. 1081. Rather
than develop an algorithmic mechanism to determine the
original levels of cohesion, our objective is to quantify the
amount of functional cohesion. Thus, in certain situations we
will obtain differing results. For example, our measures will
indicate that a significant part of a module is highly cohesive.
In contrast, Lakhotia’s method will indicate the lowest type of
cohesion demonstrated by the module. Only a module with a
single output exhibits functional cohesion in Lakhotia’s model.
This is equivalent to identifying functional cohesion only in
the cases when SFG(P) = 1. We are able to generate relative
levels of functional cohesion using our measures.

C. Other Work Related to Cohesion

Two other studies examine cohesion indicators rather than
attempting to measure cohesion directly. Troy and Zweben
examined the quality of structured designs using in part, some
design cohesion indicators [34]. They used

1) The number of effects listed in the design document;
2) The number of effects other than I/O errors;
3) The maximum fan-in to any one box in the structure

chart, that is, the number of lines emanating upward
from that box;

4) The average fan-in in the structure chart; and
5) The number of possible return values

as indicators of cohesion. They did not find evidence of a clear
relationship between these measures and the “quality” of the
software. Quality is measured here by the number of source
code modifications. These negative results may mean that
cohesion is not related to number of source code modifications
or that these measures are not indicative of cohesion. Troy and
Zweben did not attempt to show a relationship between these
measures and cohesion.

Selby and Basili examined a measure based on data in-
teractions, called data bindings, as a basis for computing the
cohesion and coupling of the components of a system [32].
Routines are placed into clusters based on the data bindings
and the coupling of a cluster with other clusters is determined.
A ratio of the cluster coupling factor to the internal strength of
a cluster is computed. An experiment indicated that clusters
with a high ratio had the most errors and the highest error
correction efforts. Selby and Basili also did not attempt to
show a relationship between their measure and cohesion.

VII. CONCLUSION

Using principles from measurement theory, we derive a
set of three functional cohesion measures. First, we develop
an abstraction of procedures to isolate intuitive attributes of

BlEMAN ANDOTT:MEASURING F'UNCTIONALCOHESION

functional cohesion. This abstraction is based on data slices
of procedures. Using the data slice abstraction, we define the
concept of glue and super-glue data tokens. We also introduce
the concept of data token adhesiveness. Using the slice abstrac-
tion and the concept of glue, super-glue and adhesiveness, we
derive the measures. Strong functional cohesion (SFC) is based
on the relative number of super-glue tokens in a procedure.
SFC is the measure most closely related to the original
definition of functional cohesion of Yourdon and Constantine
[39, ch. 71. Weak functional cohesion (WFC) is based on the
relative number of glue tokens in a procedure and includes
some notion of Yourdon and Constantine’s weaker categories
of cohesion. Adhesiveness is based on the relative “stickiness”
of the glue tokens in a procedure, and is the measure that is
most sensitive to minor program modifications.

We show that the measures satisfy the requirements of an
ordinal scale to the extent that the orderings imposed by a
set of simple transformations match our intuition concerning
functional cohesion. We are not able to demonstrate that the
measures are on a ratio scale. The measures are not additive
under two possible composition operations, and the multipli-
cation of cohesion values is not intuitive. As a result, one can
use ordinal scale computations when analyzing measurement
values, but ratio scale computations are not justified. Thus,
analyses requiring a median value are meaningful, but a
statistical analysis that requires a mean may not be valid.

We show analytically that, for a given procedure p, SFC(p)
5 A(p) 2 WFC(p). We also show, through a series of
examples, that Adhesiveness appears to be the most sensitive
and potentially most useful of the proposed measures.

We do not show that our functional cohesion measures
can predict software process attributes such as reliability or
maintainability. Rather, we have derived ordinal measures of
an important attribute of programs-functional cohesion. A
well-defined measure is a prerequisite to empirical studies that
relate one attribute to another.

Tools to automate the measurement of the functional co-
hesion are more difficult to develop than tools to measure
control flow structure. However, such automated measurement
tools are feasible-they can make use of the kind of data flow
analysis often performed by compilers. We are now developing
functional cohesion measurement tools for empirical studies.
One empirical study that we plan to conduct involves relating
the traditional cohesion classes: co-incidental, logical, tempo-
ral, procedural, communicational, sequential, and functional
cohesion to our functional cohesion measures. In a sense, these
cohesion classes are different levels of functional cohesion.
We would expect a module with only coincidental cohesion to
measure near zero for our three proposed measures. However,
we do not know how our measures will evaluate modules that
fall into the other cohesion classes. Such a study could help
demonstrate whether or not the traditional cohesion classes
are actually on an ordinal scale.

APPENDIX

Application of Transformations

We follow the transformations described in Section IV-A,
Slice Abstraction Transformations, to evaluate the orderings

implied by the three functional cohesion measures. In the
following discussion, we assume that slice abstraction a is
modified to create a’,

Strong Functional Cohesion (SFC) Orderings

1) Add a slice to a creating a’..
Adding a new output to a. (This requires adding at
least one token to the procedure.) With this trans-
formation, SFC(a’) < SFC(a). Adding an output
always reduces SFC because a new functionality
is added. Adding a slice can never increase the
super-glue tokens, but it is likely to increase the
non-super-glue if a new token is added. Our intuition
about SFC is that fewer functionalities, in terms of
output data, is always more cohesive.
Output existing functionality without adding any
tokens. In this case, SFC(a’) 5 SFC(a). Adding a
slice still cannot increase the number of super-glue
tokens, while the number of non-super-glue tokens
might not change.

2) Extend one or more slices in a creating a’. We have two
cases here:

Case 1: /a(= 1
SFC(a’) = SFC(a) since u’ is still a one slice
abstraction.

Case 2: JuJ > 1

Case 2(a): Extend a slice by adding a new data token.

i) SFC(a’) < SFC(u) if the added token
is new and is added to only one slice. No
new super-glue tokens are created but the
total number of tokens (non-super-glue
tokens) has increased.

ii) SFC(u’) > SFC(u) if the added token
is new and is added to all of the slices.
One new super-glne token is created.

Case 2(b): SFC(u’) = SFC(u) if the added token is
not new but is not in all of the other slices in
a then no new super-glue or non-super-glue
is created.

Case 2(c): SFC(u’) > SFC(u) if the added token is
not new and is in all of the other slices in
a. This transformation turns a non-super-glue
token into super-glue.

To summarize, when an incremental change increases the
number of super-glue tokens in a procedure with more than
one slice, SFC(u’) > SFC(u).

Weak Functional Cohesion (WFC) Orderings
1) Add a slice to a creating a’.

a) Add functionality by adding a new output to the
program. Here, WFC(u’) > WFC(u) if and only
if the net effect is to “glue” previously non-cohesive
parts creating a higher percentage of glue tokens.
If g = G(u’) - G(u), the set of new glue to-
kens created by the added functionality, and t =

IEEE TRANSACfIONS ON SOFrWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994 656

b)

tokens - tokens(a), the sets of added tokens,
then WFC(a’) > WFC(a) if and only if w >
WFC(a). The potential for increasing weak func-
tional cohesion depends on the amount of glue in the
original slice abstraction, a. If there is a significant
number of non-glue tokens in a, then there is a lot
of potential to increase the weak functional cohesion
in a by adding a slice.
Output existing functionality without adding new
data tokens, then WFC(a’) 2 WFC(u). We are
creating a new slice, and some tokens that lie on
one slice in a may lie on the new slice in a’ as
well. New glue tokens can be created in this manner,
but the total number of tokens does not change.
It is possible that all of the tokens on the new
slice do not lie on any other slices. In this case,
WFC(a’) = WFC(a). This can only happen if
there are values produced that are never referenced
by any of the slices for all of the output tokens in a.

2) Extend one or more slices in a creating a’. Again, we
have two cases here:

Case 1: [al = 1
WFC(u’) = WFC(a) since a’ is still a one slice
abstraction.

Case 2: JuJ > 1

Case 2(a): Add a new token. If it extends only one
slice, then there is no new glue added and
WFC(u’) < WFC(u). If new glue is
added, then WFC(a’) > WFC(u).

Case 2(b): WFC(u’) > WFC(a) when the added
token is not new but is not in all of the
other slices in a. New glue is created if the
token added to the slice is in just one of the
other slices and WFC(u’) > WFC(a). If
the added token is already a glue token, then
no new glue is created and WFC(u’) =
WFC(u).

Case 2(c): WFC(a’) = WFC(u) when the added
token is not new and is in all of the other
slices. The added token is already a glue
token and thus the WFC value does not
change.

Adhesiveness (A) Orderings
1) Add a slice to a creating a’.

a) Add functionality by adding a new output. If we add
only non-glue tokens, then A(a’) < A(u). We have
increased Jtokens(a)l . Ial without adding any glue
tokens.
If we add both glue and non-glue tokens, then we can
determine the increase or decrease of adhesiveness
in terms of the number of new glue tokens, y, created
by the added functionality, the number of new tokens
added, n, the number of tokens, Itokens I, and
number of slices, Ia/, in the original slice abstrac-
tion, a. Using algebraic transformations, we find
that if g/()tokens(a)l + n + 71 Ial) > A(u), then

A(a’) > A(a), if g/(lzokens(u)I + TL + TL . Ial) =
A(a), thenA = A(a), ifg/(ltokens(u)l + r1+ n.
Ial) < A(a), then A(u’) < A(u).

b) Add more glue, but no tokens to the procedure.
Then, clearly A(a’) > A(u) since we increase the
numerator but the denominator is unchanged.

2) Extend a slice:

Case 1: 112 = 1
There is no change, A(u) = A(a’), since
Adhesiveness= 1 for any one-slice abstraction.

Case 2: Ial > 1

Case 2(a): Extend a slice by adding a token:

i) Add a superglue token: A(u’) > A(u)
ii) Add a glue (but not super-glue) token:

The relationship between A(a’) and A(u)
depends on the ratio of the number of
slices, s, that the new token lies on and
the total number of slices in the abstrac-
tion, Ial. If A(a) > s/luI then A(a) >
A(a’), otherwise A(u) 5 A(a’).

iii) Add a non-glue token: A(a’) < A(a)

Cases 2(b) and 2(c): Extend a slice without adding a
token to the abstraction; the token(s) used to
extend the slice are already in the procedure:
A(a’) 2 A(u). In the normal case the data
token(s) added to a slice already lie on at
least one additional slice, thus when they are
added to the extended slice, the adhesiveness
of a’ increase, and A(a) > A(u). It is only
possible for A(u’) = A(u) when a slice
is extended by rearranging code to include
token(s) that were not previously in any slice.

ACKNOWLEDGMENT

We thank Colorado State University for providing the
resources for Prof. Ott during her sabbatical year when this
collaborative research effort began.

We especially thank N. Fenton, H. Zuse, K. Olender, S.
Gordon, T. Hale, B.-K. Kang, S. Karstu, J. Leminen, M. Vans,
J. Walls, L. Wu, H. Yin, and J. X. Zhao who reviewed earlier
versions of this manuscript. Their comments greatly improved
the paper. We also received valuable insights from the graduate
students in our seminars in software measurement at Michigan
Technological University and Colorado State University.

We thank the anonymous referees for their careful reviews.
Their comments greatly improved both the content and the
presentation. We acknowledge the contribution of the referee
who suggested the proposed empirical study described in
the conclusions. Finally, we thank the Associate Editor, B.
Littlewood, for his timely management of the review process
for this paper and for his suggestions concerning revisions.

REFERENCES

[l] A. Baker, J. Bieman, N. Fenton, A. Melton, and R. Whitty, “A
philosophy for software measurement.” J. Sysr. &C Sofrwwe. vol. 12,
no. 3, pp. 277-281, July 1990.

BtEMAN AND OTT: MEASURING FUNCTIONAL COHESION

121

131

[41

I51

161

[71

P31

[91

I lO1

III1

1121

[I31

[I41

[I51

1161

1171

[I81

I191

[201

Pll
I221

1231

[241

I251

1261
[271

1281

J. Bieman. A Baker, P. Clites, D. Gustafson, and A. Melton, “A standard [291
representation of imperative language programs for data collection and
software measures specification,” J. Sysr. Sz Software, vol. 8, no. 1, pp.
13-37, Jan. 1988.
J. Bieman and L. Ott, “Measuring Functional Cohesion (Extended [301
Version),” Tech. Rep. CS-93.109, Comput. Sci. Dept., Colorado State
Univ. Tech. Rep. CS-93-l. Comput. Sci. Dept., Michigan Technological I311
Univ., 1993.
J. Bieman and J. Schultz, “Estimating the number of test cases required
to satisfy the all-du-paths testing criterion,” in Proc,. Software Testing,
AnaI. Verijicarion Symp. (TAV3-SIGSUFT89j, Dec. 1989, pp. 179-186. [321
J. Bieman and J. Schultz, “An empirical evaluation (and specification)
of the all-du-paths testing criterion,” IEEE Software Eng. J.. vol. 7. no.
1, pp. 43-51; Jan. 1992. [331
P. Bollmann-Sdorra, and H. Zuse, “Prediction models and software
complexity measures from a measurement theoretic view,” in Proc. 3rd [341
Int. Software Qual. Conf. (3ISQCI. 1993.
J.-D. Choi, B. Miller, and P. Netzer, “Techniques for debugging parallel [351
programs, ” Tech. Rep. 786, Univ. Wisconsin-Madison, 1988.
T. J. Emerson, “Program testing, path coverage, and the cohesion
metric,” in Proc. ComputSofware Applicat. Conf. (COMPSAC-84),

WI
pp. 421431, 1984.
T. J. Emerson, “A discriminant metric for module cohesion,” in Proc.

[371

7th 1n1. Conf. Software Eng. (ICSE-7), 1984, pp. 294-303.
N. Fenton, Software Metric,s--A Rigorous Approach. London: Chap- [381

man and Hall, 1991.
N. Fenton, “Software measurement: A necessary scientific basis,” IEEE 1101
Trans. Software Eng., vol. 20, no. 3, pp. 199-206, 1994. L-“,

L. Finkelstein. “A review of the fundamental concepts of measurement,”
Measurement, vol. 2, no. 1, pp. 25-34, 1984. [401

K. B. Gallagher and J. R. Lyle, “Using program slicing in software
maintenance,” IEEE Truns. Software En,?., vol. 17, no. 8, pp. 751-761,
1991. [411
D. Gustafson. J. Tan, and P. Weaver, “Software measure specification”
in Proc. First ACM SIGSOFT Symp. Foundations of Sofinare Eng.. pp. [421

1993, 163-168.
S. Horwitz, J. Prins, and T. Reps “Integrating non-interfering versions
of programs,” ACM Trans. Programming Lung. and Syst.. vol. 11, no.
3, pp. 345-386, 1989.
S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. Programming Lang. and Syst., vol.
12, no. 1, pp. 3546, 1990.
B. Korel and J. W. Laski, “Dynamic program slicing,” Inform. Process.
ing Letr., vol. 29, no. 3, pp. -155-163, 1988. -
B. Korel and J. W. Laski, “Stad-a system for testing and debugging:
User perspective,” in Proc. 2nd Workshop Sofmwre Testing, Verification
and Anal. (TAV2), 1988.
Arun Lakhotia, “Insights into relationships between end-slices,” Tech.
Rep. CACS TR-91-5-3, Univ. Southwestern Louisiana, Sept. 1991.
Arun Lakhotia, “Rule-based approach to computing module cohesion,”
in Proc. 15th Int. Conf. Software Eng. (ICSE-I5), 1993, pp. 3544.
H. D. Longworth, “Slice based program metrics,” Master’s thesis,
Michigan Technological Univ., 1985.
H. D. Longworth, L. M. Ottenstein [Ott], and M. R. Smith, “The
relationship between program complexity and slice complexity dur-
ing debugging tasks,” in Proc. ComputSofbvare and Applicat. Conf.
(COMPSACR6), 1986, pp. 383-389.
A. Macro and J. Buxton, The Craft of Sofiware Engineering. Reading,
MA: Addison Wesley, 1987.
A. Melton, D. Gustafson, J. Bieman, and A. Baker, “A mathematical
perspective for software measures research,” IEEE Software Engineering
J.. vol. 5, no. 5, pp. 246254, 1990.
L. M. Ott, “Using slice profiles and metrics during software main-
tenance,” in Proc. 10th Annu. Sofhvare Reliability Symp.. 1992, pp.
16-23.
L. M. Ott and J. M. Bieman, “Effects of Software changes on module
cohesion,” Proc. Canf Software Maint.. Nov. 1992.
K. J. Ottenstein and L. M. Ottenstein [Ott], “The program dependence
graph in a software development environment,” in Proc. ACM SIG-
SOFTISIGPLAN Symp. Practical Software Develop. Envir., 1984. See
also SIGPLAN Notices, vol. 19, no. 5, pp. 177-184.
L. M. Ott and J. J. ‘Ihuss, “The relationship between slices and module
cohesion,” in Proc,. l/th Int. Conf. Software Eng.. 1989, pp. 198-204.

-, “Using slice profiles and metrics as tools in the production of
reliable software,” Tech. Rep. CS-92-8, Dept. Comput. Sci., Michigan
Technological Univ., April, 1992. Also published as Tech. Rep. G-92.
115 Dept. Comput. Sci., Colorado State Univ.
-3 “Slice based metrics for estimating cohesion,” Proc. IEEE-CS
Int.Software Metrics Symp., pp. 71-81, 1993.
T. Reps and W. Yang, “The semantics of program slicing and program
integration,” in Proc. Colloquium on Current Issues in Programming
Lang., pp. 36&374, 1989. Lecture Notes in Computer Science, vol.
352. New York: Springer-Verlag.
R. Selby and V. Basili, “Analyzing Error-Prone System Coupling and
Cohesion,” Tech. Rep. UMIACS-TR-86-46, Computer Science, Univ.
of Maryland, June 1988.
J. J. Thuss, “An investigation into slice based cohesion metrics,”
Master’s thesis, Michigan-Technological Univ., 1988.
D. Trov and S. Zweben, “Measuring the quality of structured designs,”
J. Syst: and SofnYare, vol. 2 pp. 1 l!-,201 1981.
M. D. Weiser, “Program slicing,” in Proc. 5th Int. Conf. on Sofhvore
Eng.. 1981, pp. 439-449.

“Programmers use slices when debugging,” Commun. ACM, vol.
25,: 7, pp. 446452, 1982.
-3 “Program slicing,” IEEE Trans. Software Eng., vol. 10, no. 4,
pp. 352-357; 1984. -
L. Wilson and L. Leelasena, “The QUALMS program documentation,”
Tech. Rep. Alvey Project SE/69, SBP/l02, South Bank Polytechnic,
London, 1988.
E. Yourdon and L. Constantine, Structured Des&n. Englewood Cliffs,
NJ: Prentice-Hall, 1979.
H. Zuse and P. Bollmann, “Software metrics: Using measurement theory
to describe the properties and scales of software complexity metrics,”
ACM SIGPLAN Notices, vol. 24, no. 8, pp. 23-33, Aug. 1989.
H. Zuse, SofnYare Complexity Measures and Methods. Berlin: W. de
Gruyter, 1991.
-, “Support of validation of software measures by measurement
theory,” Invited Presentation at the 15th fnt. Conf Software Eng. (ICSE-
IS) and the First IEEE-CS Int. Software Metrics Symp., Baltimore, MD,
May 1993.

James M. Bieman (S’81-M’8&SM’92) is an Asso-
ciate Professor in the Computer Science Department
at Colorado State University. His research is focused
on automated software testing and software mea-
surement. He is evaluating the use of executable
specifications and software probes as practical soft-
ware testing oracles, and is developing methods to
quantify software reuse, functional cohesion, and
attributes of object oriented software.

Dr. Bieman is a senior member of the IEEE, a
member of the ACM, and is currently the Chair of

the IEEE-CS TCSE Subcommittee on Quantitative Methods, and Chair of the
Steering Committee for the IEEE-CS International Symposium on Software
Metrics.

Linda M:.Ott is an Associate Professor of Com-
puter Science at Michigan Technological University.
Her research is focused on measuring functional
cohesion of software and software specifications
and exploring the existence of relationships between
functional cohesion and other software quality and
software process attributes. She is also interested
in functional and data cohesion of object-oriented
software.

Dr. Ott is a member of the IEEE Computer
Society, ACM, and is currently editor of Q-Methods

Report, the newsletter of the IEEE-CS TCSE Subcommittee on Quantitative
Methods, and is Vice-Chair of that subcommittee.

