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Measuring Functional Cohesion _ 
James M. Bieman, Senior Member, IEEE, and Linda M. Ott 

Abstract-We examine the functional cohesion of procedures 
using a data slice abstraction. Our analysis identifies the data 
tokens that lie on more than one slice as the ‘glue” that binds 
separate components together. Cohesion is measured in terms 
of the relative number of glue tokens, tokens that lie on more 
than one data slice, and super-glue tokens, tokens that lie on all 
data slices in a procedure, and the adhesiveness of the tokens. 
The intuition and measurement scale factors are demonstrated 
through a set of abstract transformations. 

Zndex Terms- Software measurement, cohesion, program 
slices, measurement theory. 

I. INTRODUCTION 

C OHESION is an attribute of a software unit or module 
that refers to the “relatedness” of module components. A 

highly cohesive software module is a module that has one basic 
function and is indivisible-it is difficult to split a cohesive 
module into separate components. 

Virtually every software engineering text describes cohesion 
as an important factor of design quality. If, cohesion is an 
important attribute of software design quality, we should be 
able to recognize when a module exhibits cohesion, and, 
ideally, we should be able to quantify the amount of cohesion 
in a module. Such cohesion measures can help developers 
design modules with greater cohesion. 

Module cohesion can be classified using an ordinal scale 
that includes coincidental, logical, temporal, procedural, com- 
municational, sequential, and functional cohesion [39, ch. 71. 
Using this model, a module exhibits one of these seven co- 
hesion categories. The cohesion categories vary in desirability 
ranging from the most desirable (functional cohesion) to the 
least desirable (coincidental cohesion). All of these cohesion 
categories indicate the extent of the “functional strength” of a 
module, the contribution of module parts towards performing 
one task [lo, pp. 199-2001. 

Our  aim is to develop quantitative measures of functional 
cohesion, the most desirable of these functional strength 
cohesion categories. According to Yourdon and Constantine, 
every element in a module exhibiting functional cohesion “is 
an integral part of, and is essential to, the performance of 
a single function” [39, p. 1271. In their model, a module 
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is either functionally cohesive or not. In contrast, we are 
developing techniques that indicate the extent to which a 
module approaches the ideal of functional cohesion. 

Note that one can also evaluate cohesion from the perspec- 
tive of data abstraction [23, pp. 169-1711. Fenton describes 
this abstract or data cohesion as a different notion of cohesion 
with a different set of measurement attributes [lo, p. 2001. 
In this paper, we address functional cohesion; we defer the 
treatment of abstract or data cohesion to future work. 

Measurement techniques used in the physical sciences guide 
us in our development of functional cohesion measures. As- 
pects of functional cohesion are internal product attributes 
related to properties of programs [ 111. Our  objectives include 
the development of 1) a good model of functional cohesion, 
and 2) measures that use the model to quantify functional 
cohesion. 

For cohesion measures to provide meaningful measure- 
ments, they must be rigorously defined, accurately reflect well 
understood software attributes, and be based on models that 
capture these attributes [I]. The measures should be specified 
independently from the measurement tools, and such tools 
should be based on the models. For example, QUALMS [38] 
is based on the flow graph model, and the test coverage 
measurement tools of Bieman and Schultz [4], [5] are based 
on the standard representation model [2]. We use a slice 
abstraction of a program based on data slices to model 
cohesion [26]. 

A program slice is the portion of program text that affects a 
specified program variable [35]. A variation on program slices 
can model and measure functional cohesion [28]. Procedure 
cohesion measures must indicate the cohesion that is expressed 
in the program text. We cannot measure semantic relations 
between program components that cannot be identified from 
the program text alone. Note that functional cohesion is 
actually an attribute of individual procedures or functions, 
rather than an attribute of a separately compilable program unit 
or module (depending on the‘programming language, modules 
may include several procedures and declarations). We will use 
the term “procedure” to refer to both procedures and functions. 

We develop cohesion measures in terms of the slice model, 
and validate the measures by demonstrating that they are 
consistent with expected cohesion mode1 orderings and deter- 
mining their scale properties. Thus, we appeal to the represen- 
tation condition of measurement theory [ 10, pp. 25-261, [ 1 I], 
which requires that our intuition about the relative quantity of 
functional cohesion is preserved by a cohesion measure. To 
be measurable on an ordinal scale, an attribute of cohesion 
must impart an ordering on the model. That is, the model of 
a procedure with “more” of one cohesion attribute must be 
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ranked (according to the attribute ordering) higher than the 
model  of a  procedure with “less” of the attribute [24]. 

A measure is specif ied as  a  mapping from the model  to a  
quantitative value. Such a  measure must be  consistent with the 
cohesion ordering. One  way to demonstrate that a  measure is 
consistent with the ordering is to evaluate the effect of code 
modifications to the model  and  the measures.  W e  focus on  the 
direction of the changes  to cohesion measurements  resulting 
from relatively simple code modifications. The  direction of 
measurement  changes  provides a  ranking of relative levels of 
cohesion before and  after a  code change.  Our  analysis also 
demonstrates the scale propert ies and  the arithmetic operat ions 
that can be  appl ied to the measurement  values [41, ch. 41. 

The  role of experimentat ion in software measurement  re- 
search is to map  structural measures back to process goals such 
as  fewer defects, increased maintainability, etc. But, before we 
can conduct  effective empirical research, we must first have  
sound measures [ 11. Thus,  our  goal here is to develop measures 
that accurately reflect the concept  of cohesion. 

The  paper  has  the following organization. In Section II, we  
define the abstractions used to model  functional cohesions. In 
Section III, we  examine the cohesion attributes and  measures,  
and  Section IV evaluates the scale propert ies of the measures.  
In Section V, we provide some examples of procedures,  
cohesion orderings, and  cohesion measures.  Section VI is a  
review of related work. Our  conclusions are given in Section 
VII. 

II. COHESION ABSTRACTIONS 

In our  analysis, functional cohesion is based on  proce- 
dure outputs. Each output “object” (output parameter,  mod-  
ified global variable, or file), represents one  component  of 
a  procedure’s functionality. W e  identify the components  of 
a  procedure that contribute to particular outputs. Al though a  
procedure may perform computat ion that does  not produce 
outputs, outputs of some kinds are general ly the externally 
visible manifestation of functionality. W e  do  not address the 
cases where activities that do  not produce outputs are the real 
functionality, for example modules whose main functionality 
is to produce a  time delay. In the case of procedures with 
multiple outputs, we see how closely the program parts that 
contribute to different outputs are bound.  Using this approach,  
procedures with only one  output exhibit maximum functional 
cohesion. 

A. Program Slices 

Slicing is a  method of program reduct ion introduced by  
Weiser [35]-[37]. A slice of a  procedure at statement s 
with respect to variable w is the sequence of all statements 
and  predicates that might affect the value of r~ at s. Slices 
were proposed as  potential debugging tools and  program 
understanding aids. They have since been  used in a  broader  
class of applications (e.g., debugging parallel programs [7], 
maintenance [13], [15], [25], and  testing [ 171,  [ 181,  [22], [29]). 

Weiser’s algorithm for comput ing slices is based on  data 
flow analysis. It is suggested in [27] that a  program depen-  
dence  graph representat ion can be  used to compute slices more 

efficiently and  precisely. An algorithm for comput ing slices 
using a  program dependence  graph representat ion is presented 
by  Horwitz, et al., [16], [31]. A slice is obtained by  walking 
backwards over  the program dependence  graph to obtain all 
nodes  which have an  effect on  the value of the variable of 
interest. Similarly, a  fonvard slice [16] can be  obtained by  
walking forward over  the program dependence  graph to obtain 
all nodes  which are affected by  the value of a  variable. The  
algorithm based on  the program dependence  graph is more 
restricted than Weiser’s in the sense that it will only compute 
a  slice for variable v at statement s if 21  is def ined or used in 
statement s. Both intraprocedural slices and  interprocedural 
slices can be  computed.  

W e  derive cohesion measures directly from slices rather than 
dependence  graphs.  Slices promote a  more intuitive analysis 
since they are based on  program text. Our  measurement  theory 
approach requires that a  measure be  consistent with intuition, 
and  including program text in our  abstraction eases intuitive 
analysis. 

B. Data Slices 

In [37], Weiser def ined several slice based measures.  Long-  
worth [21] first studied their use  as  indicators of cohesion. In 
[30] and  [33], Thuss eliminates certain inconsistencies noted 
by  Longworth through the use of metric slices. A metric slice 
takes into account  both lcses and  used by  data relationships; 
that is, they are the union of Horwitz et al.‘s backward and  
forward slices. 

In order to analyze the effects of changes  on  slice measures,  
we modify this concept  of metric slices to use data tokens (i.e., 
variable and  constant definitions and  references) rather than 
statements as  the basic unit. W e  call these slices data slices. 

Using data tokens as  the basis of the slices ensures that all 
changes  of interest will cause a  change in at least one  slice 
of a  procedure.  W e  consider a  change of interest to be  any  
change which could have an  effect on  the cohesiveness of 
a  procedure.  An example of a  change that is not of interest 
is changing some operator to a  different operator.  Examples 
of changes  of interest include adding code,  deleting code,  or 
changing the variable used in a  given context. Each of these 
changes  would result in a  change to at least one  data slice. 
(This is in contrast to a  metric slice, where if a  statement 
is modified, the actual statements in the slice might not 
change.)  

Informally, we view a  data slice for a  data token, 21, as  the 
sequence of all data tokens in the statements that comprise the 
“backward” and  “forward” slices of u. W e  use intraprocedural 
slicing since we are interested in examining the cohesiveness 
of each  procedure as  a  separate entity. 

W e  compute a  data slice for each  output of a  procedure.  
An “output” is any  single value explicitly output to a  file 
(or user  output), an  output parameter,  or an  assignment to 
a  global variable. An output tuple with multiple components  
is considered to be  multiple outputs. Since we are interested in 
the cohesion of the whole procedure,  we use a  concept  similar 
to that of end-sl ices [ 191.  The  “backward” slices are computed 
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procedure SumAndProduct 

ml: integer; 

var 1 SumN ], ProdN : integer ); 
var 

/T-J: integer; 
begin 

fKGTq::=@ 
ProdN := 1; 
for m := q to q do begin 

(q::=ISumNIt0; 
ProdN := ProdN * I 

end 
end; 

Fig. 1. Data slice for SumN. Items included in the slice are contained within 
boxes. 

from the end of the procedure’ and the “forward” slices are 
computed from the “top”s of the backward slices. 

Fig. 1 displays an example of a data slice embedded in a 
program. The slice for SumN in Fig. 1 is a sequence of data 
tokens: 

NI .SumNl. II .SumNz .Ol.Iz. 12. N2 .SurnNs .SurnNd. Is. 

where each T; indicates the i’th data token for T in the 
procedure. Note that in the slice for SumN, the subscript in 
“la” indicates that the token is the second occurrence of data 
token “1” in the procedure. We can also compute the slice for 
ProdN: 

N1 .ProdNl .I1 .ProdN2.11. Ia.12. Nz .ProdN3.Prod4N4.14. 

We can profile the data slices in a procedure to give a 
sense of the relationships among data slices. Fig. 2 shows an 
example of a data slice profile. We indicate, in the column for 
a slice variable, the number of data tokens in that line that are 
included in the slice. This profile was derived from an earlier 
method developed for visualizing slices [25], [28], [33]. 

C. Slice Abstractions 

Our  analysis of functional cohesion is developed using an 
abstract model of procedures based on data slices. The Slice 
Abstraction models each procedure as a set of data slices, and 
a data slice as a sequence of data tokens. Essentially, we strip 
away all of the non-data tokens from a procedure and include 
only the data tokens in the abstraction. 

The slice abstraction for the SumAndProduct procedure of 
Fig. 1 and Fig. 2 is: 

SA( SumAndProduct ) = 
{Nl’ SumNl . II . SumNz .OI.I~. 12 s N2 
* SumN3 . SumN, ’ 13, N1 e ProdNl e II . ProdN2 .11 ’ I2 
’ 12 . N2 . ProdN3 . ProdN4 . 14). 

’ We use the FinalCIise nodes of [ 161 as the end of a procedure. 

SumN ProdN Statement 

procedure SumAndProduct 
1 1 ( N  : integer; 
1 1 var SumN, ProdN : integer ); 

var 
1 1 I : integer; 

begin 
2 SumN := 0; 

2 ProdN := 1; 
3 3 for I := 1 to N do begin 
3 SumN := SumN •l- I; 

3 ProdN := ProdN * I 
end 

end; . 

Fig. 2. Data slice profile for SumAndProduct. The number of data tokens 
included in the data slice for SumN and ProdN is indicated in columns I and 
2, respectively. 

Fig. 3(a) provides another view of a slice abstraction of the 
SumAndProduct procedure. The names of the data tokens are 
listed in the first column of Fig. 3(a). A ‘*I” in the second and 
third column indicates that the indicated data token is part of 
the data slice for the named output. 

We find an uncluttered view of slice abstractions without 
labels useful for visualizing important attributes of functional 
cohesion in slice abstractions. Fig. 3(b) is an unlabeled view of 
the slice abstraction of the SumAndProduct procedure. When 
analyzing functional cohesion, it is important to know when 
one token is in more than one data slice, but the actual names 
of the tokens are not important. The slice abstractions from two 
completely different procedures can have the same cohesion 
properties, and look identical when viewed in the unlabeled 
form. 

D. Glue, Super-Glue, and Stickiness 

As Fig. 3(a) and Fig. 3(b) show, several of the data 
tokens are common to more than one data slice. Data tokens 
N1, I,, 12,12, and Nz are-in the data slice for SumN and the 
data slice for ProdN. Such tokens, common to more than one 
data slice in a slice abstraction, are the connections between 
the slices. We say that these tokens are the “glue” that binds 
the slices. Thus, we define the glue in a slice abstraction of 
a procedure P, G(SA(P)), as the set of data tokens that lie 
on more than one data slice in SA(P). A glue token is a 
token that lies on more than one data slice. We also consider 
all of the tokens in an abstraction with only one slice to be 
glue tokens. Fig. 3(c) shows SA(SumAndProduct) with the glue 
tokens enclosed in boxes. Although there are two “I” symbols 
on each row of glue tokens in Fig. 3(c), there is actually only 
one token for each row. 

It is useful to identify the data tokens that are common to 
every data slice in a procedure. These tokens are the super- 
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Data Token 

NI 
SumNl 
ProdNi 

11 
SumNs 

01 
ProdNz 

11  
12  
12  

N2 

SumNa 
SumN4 

I3 
ProdN3 
ProdN4 

I4 

SumN ProdN 

I ’ 

I 

I 

I 
I 
I I 

(a) 

I 

/ I 
I I 

I 

I 
1  I 

(b) 
Fig. 3. Three Views of SA(SumAndProducr)  (a) SA(SumAndProduct)  ; (b) Unlabeled View; (c) Glue tokens highlighted. 

s,s2.& 
Super-glue: 1  ( I 

I 

Super-glue: 1  I ) 

Glue: I l 
Glue: I I 

Glue: I I 

Fig. 4. A Three-sl ice SA with glue and  super-glue. 

glue tokens, and  SG(SA(P)) denotes the set of data tokens 
that lie on  all data slices in SA(P). The  notion of super-glue 
tokens is especially useful in slice abstractions with more than 
two data slices. Note that SG(SA(P)) C G(SA(P))-all 
super-glue tokens are also glue tokens. If ISA(P) 1  2  2  then 
SG(SA(P)) =  G(SA(P)). Note that all of the data tokens in 
a  procedure’with only one  slice are super-glue tokens. 

Fig. 4  shows a  three-slice abstraction with glue and  super-  
glue tokens. This abstraction has  two super-glue tokens and  
five glue tokens (super-glue is still glue). One  of the tokens 
glues S1 to Ss, one  glues Sa to S’s, and  one  glues S1 to Ss. 
The  super-glue tokens bind all three slices together. Six of the 
tokens lie on  only one  data slice and  are not glue tokens. 

The  distribution of glue and  super-glue tokens indicates 
how tightly bound  the individual slices are, since the effect 
of glue tokens is to bind slices. Individual glue tokens can 
have a  varying effect on  cohesion based on  the number  of 
slices that they bind. Thus,  we can descr ibe the relative 

I u  I I / ’ 
Cc) 

stickiness or adhesiveness of a  glue token. The  notion of token 
adhesiveness can characterize the .adhesiveness property of 
an  entire procedure or slice abstraction. W e  use the concepts 
of glue, super-glue, and  adhesiveness to develop functional 
cohesion measures.  

III. FUNCTIONAL COHESION ATTRIBUTES AND MEASURES 

A. Definition of Measures 

W e  define functional cohesion attributes and  measures in 
terms of slice abstractions, data tokens, glue and  super-glue. 
W e  also use the set of data tokens in a  slice abstraction a, 
denoted tokens(a), and  the set of data tokens in procedure p, 
denoted tokens(p). In general,  tokens(p) =  tokens(SA(p)). 
However,  if a  value is computed that does  not contribute to 
any  output (usually a  program anomaly),  then there may be  
data tokens that do  not lie on  any  slice and  tokens(SA(p)) c 
tokens(p). Note that each  appearance of a  data token in a  
program is counted as  a  different token, and  each token can 
be  in more than one  data shce. 

Metrics based on  the relative number  of glue and  super-  
glue tokens are intuitive and  can easily be  def ined in terms of 
slice abstractions. According to Yourdon and  Constant ine [39, 
pp. 127-1301,  a  procedure with functional cohesion is one  in 
which all parts are cohesive. This view recognizes only the 
strongest functional cohesion and  is consistent with the use 
of the super-glue tokens as  the basis for defining cohesion 
attributes and  measures.  Thus,  we define strong functional 
cohesion (WC) as  the ratio of super-glue tokens to the total 
number  of data tokens in a  procedure p: 

SFC(p)  = ISG(SA(P)) I 
( tokens(p) 1  ’ (1) 
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The SFC is a  measure of the minimal functional cohesion 
in a  procedure.  SFC is very similar to the Tightness measure 
def ined by  Ott and  Thuss [30]. However  Tightness is def ined 
in terms of statements shared by  slices rather than data tokens. 

W e  can also measure cohesion in terms of the glue tokens in 
a  slice abstraction. Such a  measure can be  more sensitive than a  
measure based on  only the super-glue tokens-it can indicate 
that adding something may “glue” together previously non-  
cohesive elements even if the token does  not “glue” together 
all of the slices. Such functional cohesion indicates a  “weaker” 
type of cohesion than indicated by  the super-glue tokens. Thus 
we define weak functional cohesion (WFC) as  the ratio of 
glue tokens to the total number  of tokens in a  procedure.  For 
procedure p: 

(2) 

Another way to measure cohesion is in terms of the adhe-  
s iveness of glue tokens. The  adhesiveness is related to the 
relative number  of slices that each  token “glues” together. 
Thus,  a  token that “glues” together four slices in a  five slice 
procedure is more adhesive than a  token that “glues” together 
two or three slices. W e  can define the adhesiveness,  N, of 
token t in procedure p  as  follows: 

4hP) = 

C #slices in p  containing t 
IS‘~(P)I if t E G(SA(p)). 

0  otherwise 
(3) 

The  overall adhesiveness,  A, of an  SA is the average adhe-  
s iveness of the data tokens in a  procedure:  

tEtokens(p) 
A(p) =  Itokens(p)l 

Equivalently, overall adhesiveness can be  computed as  a  
ratio of the amount  of adhesiveness to the total possible 
adhesiveness.  That is, for procedure p: 

#  slices containing t 

A(P) =  
tEG(SAb)) 

Itokens(p)l. ISA(p)l 
(5) 

In the examples in the following subsection, we compute A 
using equat ion (5), s ince equat ion (5) is easier to apply. 

Adhesiveness should indicate the relative strength of the 
glue in a  procedure.  Adhesiveness is most closely related 
to the coverage measure of Ott and  Thuss [30]. It should 
be  particularly sensitive to the cohesion resulting from glue 
tokens that lie on  more than two slices, but do  not lie on  all 
slices. 

All of these cohesion measures (strong functional cohesion, 
weak functional cohesion, and  adhesiveness)  range in value 
from zero to one.  They have a  value of zero when a  procedure 
has  more than one  output and  exhibits none  of the cohesion 
attribute indicated by  a  particular measure.  A procedure with 
no  super-glue tokens, no  tokens that are common to all data 

slices, has  zero strong functional cohesion-there are no  data 
tokens that contribute to all outputs. A procedure with no  glue 
tokens, that is no  tokens common to more than one  da& slice 
(in procedures with more than one  data slice), exhibits zero 
weak functional cohesion and  zero adhesiveness- there are no  
data tokens that contribute to more than one  output. The  strong 
functional cohesion and  adhesiveness are at a  maximum value 
of one  for procedures in which all of the data tokens are 
super-glue tokens-all data tokens affect all outputs. Weak  
functional cohesion of a  procedure is one  if all data tokens 
are glue tokens-all data tokens affect more than one  output 
in procedures with more than one  slice. 

3. Examples 

The cohesion measures can be  appl ied to the SumAndProd-  
uct procedure.  SA(SumAndProduct)  has  two slices with 17  
tokens and  5  glue tokens. Each glue token is a  super-glue token 
since SA(SumAndProduct)  has  only two data slices. Thus, 

WFC(SA (SumAndProduct))  =  

SFC(SA(SurnAndProduct))  =  & = .294. 

Adhesiveness is calculated as  follows: 

A(SA(SumAndProduct))  =  E = .294, 

because there are five glue tokens and  each glue token lies on  
two slices. The  denominator  is the total number  of tokens times 
the number  of slices. W e  see that in this two slice example 
procedure all three cohesion measures give the same value. 
This is not surprising since the WFC and  A measures gain 
sensitivity on  multi-slice procedures-al l  glue tokens are also 
super-glue tokens on  a  one  or two slice procedure.  

The  WFC and  SFC of the 3-slice abstraction in Fig. 4  will 
differ since some of the glue tokens are not super-glue. Out 
of a  total of 11  tokens, this abstraction has  five glue tokens of 
which two are super-glue. Thus,  

WFC(SA(Fig. 4)) =  5/11 = ,455, 

SFC(SA(Fig. 4)) =  2/11 = .182. 

Because there are two tokeni’on  three slices and  three tokens 
on  two slices, adhesiveness is calculated as  follows: 

A(SA(Fig. 4)) =  2  y1+. z 2  =  g  = .36. 

Adhesiveness and  the strong and  weak cohesion measures 
are based solely on  the number  of slices and  data tokens in a  
procedure,  and  the number  of glue and  super-glue tokens. 

C. Relationships Between the Measures 
By examining the definitions, we can determine relation- 

ships among the three proposed measures.  Since SG(SA(P)) 
& G(SA(P)), it follows that ISG(SA(P))J I JG(SA(P))I. 
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Thus, using (1) and  (2) we can see that for a  given procedure p: 

(6) 

W e  see that: 

SFC(P) 5: A(P), (7) 

by  noticing that a(t, p) =  1  using Definition (3) for all 
t E SG(SA(p)) and  therefore, the numerator  in (4) is at least 
as  large as  the numerator  in (I). Similarly, since ~y(t: p) 5  1  
for all t E G(SA(P)), using (2) and  (4), we see that: 

A(P) I WFC(?-‘). (8) 

Thus,  we have:  

SFC(p) 5  4~) I WFC(p).  (9) 

Finally, we see that A(p) is more “sensitive” than either 
WFC(p)  or SFC(p) to dif ferences in the amount  of program 
cohesion. If we  fix the size of programs considered, that is, 
jfokens(p)l, and  we fix the number  of slices considered, that 
is, ISA(p)(, we see that WFC(p)  and  SFC(p) can assume at 
most I t&ens(p)1 values. A(p), on  the other hand,  can assume 
Ifokens(y)) . (JSA(p)J - 1) values. 

IV. DISCUSSION OF SCALE PROPERTIES 

Fenton defines the term “validation” as  “the process of en-  
suring that the measure is a  proper  numerical characterization 
of the claimed attribute” [lo, p. 821.  This kind of validation 
is very difficult when the attribute to be  measured is loosely 
understood.  W e  need  to rely on  human intuition to determine 
the relative levels of our  cohesion properties, to see if they are 
consistent with the measurement  values. Zuse shows how to 
determine what type of scale software measures assume [41, 
ch. 41, [42], [6]. In this paper,  we combine the methods of 
Fenton and  Zuse to validate the cohesion measures in terms 
of intuitive notions of cohesion and  to determine the scale 
propert ies of the measures.  First, we show that the measures 
assume an  ordinal scale that matches our  intuition concerning 
the cohesion attributes that are measured.  Then,  we evaluate 
the measures in terms of the requirements of a  ratio scale. 

A. Cohesion Measures and  the Ordinal Scale 

For a  real-valued ordinal scale measure of cohesion at- 
tributes to exist, our  intuition about  these attributes, called 
“empirical relations” or “viewpoints”, must satisfy three ax- 
ioms: reflexivity, transitivity, and  completeness [40], [41, p. 
471,  [42], [6]. These are the requirements of a  weak order. 
From [40], we defme a  cohesion viewpoint as  binary relations, 
*>, *=, and  *> on  programs ‘P where: 

P,*> P2 PI is more “cohesive” than Pz: 

P,*z P2 PI and  Pz are equally “cohesive”, 

p1*> p2 PI*> P2 or PI*% P2, 

called an  elementary viewpoint. An elementary viewpoint is 
def ined in terms of a  finite set of transformations on  a  program 
representation. A complete set of elementary transformations 
can be  used to generate every possible instance of a  program 
representat ion from a  base representation. To  show that a  
measure is on  an  ordinal scale, we need  to show that it is 
consistent with a  complete set of elementary transformations, 
since the set represents the cohesion viewpoint. Thus,  we 
evaluate the “functional cohesion orderings” of procedures in 
terms of intuitively obvious effects of program modifications 
on  functional cohesion. W e  model  the changes  in terms of 
an  ordering of slice abstractions. In this analysis, we assume 
that it is the “shape” of slice abstractions that is critical, 
so  two completely different procedures can have the same 
functional cohesion attributes. W e  use unlabeled views of 
slice abstractions as  depicted in Fig. 3(b) to demonstrate the 
necessary attributes and  transformations. 

Slice Abstraction Transform&ions: Functional cohesion 
orderings can be  developed in terms of a  set of elementary 
transformations of slice abstractions. W e  seek a  set of 
transformations that can generate the set of all slice 
abstractions, and  provide an  ordering. The  transformations 
are developed inductively. 

Base case: A one  slice procedure:  

A one  slice procedure is entirely cohesive, and  should have 
the highest possible SFC! WFC! and  A. All three of our  
measures satisfy intuition here. SFC, WFC and  A give their 
maximum value of I for a  one  slice procedure.  

Transformations: 
1) Add one  slice. There are two ways to add  a  slice: 

x ** 

The new output is not on  any  of the previous 
slices. Thus at least one  new non-glue token is 
added.  

b) Output existing functionality. This can be  accom- 
pl ished by  changing a  non-output  token into an  
output token. The  following change to C-like 
pseudo-code is an  example of such a  transforma- 
tion: 

y =  x * printf (y =  3;) 

for PI, P2 E P. 
lt is not possible to give a  general  definition of cohesion 

*We use “*” to indicate a  token added to a  slice that is not new to the 
proce&,re, we use Li**l’ to indicate when an added token is new to the 

viewpoints. Rather we can use a  subset  of the above  relations program; it is a  token that is not on  any other slice. 
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A simple change to the parameters in a Pascal 
program can also cause existing functionality to 
become a new output: 

2 : integer * var x  : integer 

With such transformations, a new slice 
created without adding any new tokens. 

can be 

2) Extend n slices by adding one token to them. This added 
token may be a token that is either 

4 not in any of the slices in the slice abstraction 
(i.e., a new token): 

I I 
I I I I 

II- Ij 

I . ** 
b) a token already in one or more of the other slices 

in the slice abstraction, but not in all of the other 
slices: 

I I 

I / 
I I 

===+ I I* 

’ / ’ / 
cl or, a token already in all of the other slices: 

i I 

A token can be added to a slice without adding 
new code by moving the token within a procedure 
to a location that puts it in the scope of the slice. 

This set of transformations is complete-we can build all 
slice abstractions using the base case and repetitions of the two 
transformations. Removing and shortening slices are inverse 
operations to the add and extend operations. 

Effect of Transformations on the Metrics: We summarize 
the effects of the transformations introduced above on the 
cohesion measures that we have defined. See the appendix for 
the detailed arguments. For consistency with the appendix, 
we will refer to the initial abstraction as a and the abstraction 
after a transformation as a’. 

Strong Functional Cohesion: When adding a new slice to 
a, SFC(a’) 5 SFC(a). Th’ 1s is consistent with our intuition 
that adding functionality tends to decrease the cohesiveness of 
a procedure. When extending slices, we find that SFC(a’) > 
SFC(a) only when the number of super-glue tokens has 
increased. Thus, the effects of the transformations match 
our intuition that the strong functional cohesion components 
include only elements that contribute to all the functionality 
computed by the procedure. 

Weak Functional Cohesion: When we add functionality to 
a procedure by adding a new output, we increase cohesion 
only when the net effect is to “glue” previously non coliesive 
parts creating a higher percentage of glue tokens. When 
we output existing functionality without adding new tokens, 
WFC(u’) 2 WFC(u).  When extending a slice, WFC can 
remain unchanged, increase or decrease, depending on whether 
the new token is already “glue”, is new “glue” or is not “glue”, 
respectively. 

Adhesiveness: When we add functionality to a procedure 
by adding a new output, A can increase or decrease. If we add 
only non-glue tokens, then A will decrease. If we add at least 
some glue tokens, the effect on A depends upon the amount 
of “glue” added, the size of the procedure and the size of the 
slice being added. When we extend a slice of a multiple slice 
procedure, A will increase if we add a super-glue token and 
will decrease if we add a non-glue token. If we add a glue 
token (which is not also superglue), the effect on A depends 
upon the ratio of the number of slices that the new token 
lies on, and the total number of slices in the abstraction. If we 
extend a slice without adding any tokens, then normally A will 
increase. A remains unchanged only if we extend a slice by 
rearranging code to include token(s) that were not previously 
in any slice. 

Evaluation of Orderings and Cohesion Metrics: To vali- 
date that the three measures, SFC, WFC, and A, assume 
an ordinal scale we need to demonstrate that the orderings 
imposed by the measures are consistent with the elementary 
viewpoints of the associated cohesion attributes. Such a 
conclusion relies heavily on intuition, since elementary 
viewpoints are defined in terms of subjective views of 
cohesion. Our  main goal here is to demonstrate that the 
measures are consistent with intuition. At the very least, we 
are convinced that the orderings imposed by the measures 
are not counterintuitive. The measures are on an ordinal scale 
to the extent that the orderings imposed by the measures 
match the users (of the measures) intuition concerning the 
elementary viewpoints of cohesion. 

B. Cohesion Measures and the Ratio Scale 

To perform multiplication and division on measurement 
values, the measures must assume a ratio scale. Thus we 
evaluate our functional cohesion measures in terms of the 
requirements for ratio scale measurement. 

On  way to demonstrate that a measure is on the ratio 
scale involves adding a program composition operator “0 ” 
to the relational system used in an ordinal scale evaluation. A 
composition operator takes two slice abstractions and com- 
bines them to create a new slice abstraction. Adding o to 
the cohesion viewpoint of Section IV-A, gives us a relational 
system (P, *>, 0). Zuse [41, p. 49-501 shows that a measure 
is on a ratio scale if the measure is a real valued function m, 
is on an ordinal scale, and the following axioms hold: 

PI *> P2 ++ ,Il(P,) > TrL(P2) 
m(P1 0 P2) = 7n(Pl) + 7n(P2). 
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The first axiom requires that m be  consistent with the intuitive 
ordering of the procedures imposed by  the attribute being 
measured.  The  second axiom requires that m be  additive. 

Meaningful  composit ion operators are necessary to use 
Zuse’s method of verifying that a  measure assumes a  ratio 
scale. In the extended version of this paper  [3], we define 
two composit ion operators. One  operator ties the output of the 
slices in one  abstraction to the inputs of another  abstraction. 
The  second operator assumes no  interactions between the two 
merged abstractions. 

The  requirement that m(Pl o  P’) =  m(Pl)+m(&) is not 
satisfied using either of the two composit ion operators. This is 
because the size attribute / tokens (p)l, the number  of tokens in 
the procedure,  is in the denominator  of the calculation for all 
three of the cohesion measures (SFC, WFC, and  A). Under  
the two composit ion operators, the measures are not additive, 
and,  thus, do  not assume a  ratio scale. 

Gustafson, Tan, and  Weaver  argue that composit ion opera-  
tors for the complex models (such as  slice abstractions) used 
to define structural measures do  “not make sense” because 
programmers rarely merge programs [ 141.  As an  alternative to 
the analysis based on  composit ion operators, we can use an  in- 
tuitive argument  that the functional cohesion measures do  not 
assume a  ratio scale. Multiplication makes sense for ratio scale 
measures.  Thus,  if the functional cohesion measures are on  a  
ratio scale, we should be  able to argue that one  procedure (or 
slice abstraction) is twice as  cohesive as  another.  W e  can find 
slice abstractions sl and  32, where SFC(s1) =  2SFC(s2), 
WFC(s1)  =  2WFC(s2),  or A(2) =  2A(2). However,  we 
find no  justification (other than the measures themselves) for 
claiming that any  sl is twice as  cohesive as  ~2. The  notion of 
doubl ing cohesion is not intuitive, and  multiplying cohesion 
values does  not seem to be  meaningful.  Thus,  we find no  
evidence that the functional cohesion measures assume a  ratio 
scale. 

V. EXAMPLES 

In this section, we examine a  few small code segments to 
illustrate the dif ferences among the three proposed cohesion 
measures.  The  figures in this section use slice profiles (as in 
Fig. 2) showing the entire procedure text rather than slice 
abstractions showing only data tokens to make it easier to 
visualize the connect ion between program text and  slices. As 
descr ibed in Section II-B, the slices in the examples are the 
union of the backward and  forward slices based on  the output 
variables. 

The  first example uses a  procedure that transforms a  value 
in one  of two ways depending on  the initial value. A flag 
that indicates which of the two transformations was used is 
also returned. Fig. 5  contains a  slice profile and  cohesion 
measurements  for this Decode procedure.  In this case the three 
measures give equivalent values. The  cohesion measurements  
are always equivalent for two slice procedures since in such 
cases G(SA(p)) =  SG(SA(p)). The  .53 measurement  values 
indicate that approximately half of the tokens lie on  both slices. 

The  three cohesion measurements  are lowered when the 
procedure is modif ied by  adding an  output variable that is not 

value small 
1 1 procedure Decode(var value: integer; 
1 1 var small: boolean); 

begin 
2 2 if value < 5000 then begin 
4 value := value * 8 mod 10; 
2 2 small := true 

end 
else begin 

3 value:=value mod 10; 
2 2 small := false 

end; 
end; 

WFC(Decode) = $ = .53 

8*2 
A(Decode) = - = .53 15*2 

SFC(Decode] e= $  =  .53 

Fig. 5. A slice profile and cohesion measurements for a simple procedure. 

value small count 
1 1 procedure Decode2(var value: integer; 
1 1 var small: boolean; 

1 var count: integer); 
begin 

2 2 if value < 5000 then begin 
4 value := value * 8 mod 10; 
2 2 small := true 

end 
else begin 

3 value:=value mod 10; 
2 2 small := false 

end; 
3 count := count $1; 

end; 

WFC(Decode2) =  i =  .42 

A(Decode2) =  s =  .25 

SFC(Decode2) =  - 0  =  0.0 
19 

Fig. 6. A slice profile and cohesion measurements for a noncohesive 
procedure. 

connected to the slices of itie original outputs. The  modif ied 
procedure,  Decode2,  is in Fig. 6. Decode2 was created by  
adding a  variable count  to the original procedure Decode.  It 
is a  global variable that may indicate the number  of t imes 
that Decode2 is called. SFC(Decode2)  is zero, and  clearly 
indicates the existence of some noncohesive components  in 
the procedure- the slice for output variable count  does  not 
include any  tokens that lie on  the slices for the other outputs. 
WFC(Decode2)  has  dropped to .42 and  A(Decode2) has  
dropped further down to .28. Of WFC and  A, A is more 
dramatically affected by  adding the noncohesive component .  

Figs. 7, 8, and  9  demonstrate how the measures behave  
when functionality is combined. Procedure Lookup in Fig. 
7  is a  table lookup routine which returns a  password and  
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3uccess passwd address 
3 3 3 procedure LookUp(A: Table; Size: integer; key: keytype; 
1 1 1 var success: boolean; 
1 1 var passwd: integer; 
1 1 var address: string); 

begin 
2 2 2 i := 1; 
2 2 2 success:= false; 
3 3 3 while not success and i <= Size do 
3 3 3 if A.name[i] = key then 

begin 
2 2 2 success := true; 
3 3 passwd := A.value[i]; 
3 3 address := A.add[i]; 

end 
else 

3 3 3 i := i + 1; 
end; 

WFC(LookUp) = ; = 1.0 

A(LookUp) = 
8*2+ 19*3 

27*3 
= .90 

SFC(LookUp) = ; = .70 

Fig. 7. A table lookup procedure. 

address associated with a key, and a boolean flag which 
indicates a successful search. As can be seen in Fig. 7, the 
three cohesion measures give relatively high values for this 
procedure, WFC(LookUp) = 1.0, A(LookUp) = .90, and 
SFC(LookUp) = .70. Most of the data tokens affect or are 
affected by the three outputs. 

In Fig. 8, we combine procedure LookUp with procedure 
Decode from Fig. 5 to create procedure LookCJp2. The pro- 
cedures are combined such that Decode operates on the same 
data used by Lookup. The cohesion measurement values for 
this procedure are WFC (LookUp2) = .83, A (LookUp2) 
= .69, and SFC(LookUp2) = .43. The original procedure 
Decode is intuitively less cohesive than procedure Lookup. In 
this combined case, WFC and A fall between their values 
for the two original procedures, while SFC has a value that 
is below the value of either of the original procedures. SFC 
tends to drop dramatically, when non-cohesive components 
are added. 

Procedure Lookup and Decode are again combined in Fig. 
9 creating procedure LookUp3. This time we combine the 
procedures such that Decode operates on data that is distinct 
from the data used by Lookup. For this combined procedure, 
WFC (LookUp3) = .83, A (LookUp3) = .43, and SFC 
(LookUp) = 0.0. SFC clearly indicates with a value of 
zero that there are no data tokens that are common to all of 
the slices. WFC does not distinguish between LookUp2 and 
LookUp3-according to WFC the two procedure are equally 
cohesive. A does indicate that LookUp3 is less cohesive than 
LookUp2, however, unlike SFC, A also indicates that there 
are some cohesive components. 

These two examples show that A rather than WFC more 
accurately matches our intuition concerning the cohesiveness 

of a procedure which contains several functional components. 
This is true, in general. For a more detailed analysis of the 
sensitivity of the cohesion measures, see the extended version 
of this paper [3]. 

VI. RELATED WORK 

Our current efforts are based on earlier work using slice 
based measures as indicators of cohesion [21], [33], [28], [30]. 
Longworth [21] and Thuss [33], [28] examined the potential of 
measures proposed by Weiser [35] as indicators of cohesion. 
Ott and Thuss first noted the visual relationship that existed 
between the slices of a module and its cohesion as depicted 
in a slice profile [28]. The insights gained from this earlier 
work were instrumental in developing the data slice model of 
cohesion and cohesion measures presented here. 

Other researchers have also examined the problem of mea- 
suring cohesion including Emerson [8], [9], Lakhotia [20], 
Troy and Zweben [34], and Selby and Basili [32]. 

A. Emerson’s Work 
Emerson bases his cohesion measure on a control flow graph 

representation of a module [8], [9]. The graph contains a node 
for each statement in the module that contains a variable. 
After construction of the graph, a reference set is constructed 
for each variable in the module which indicates the nodes in 
the control flow graph that reference that variable. A flow 
subgraph, (R), is computed for each references set, R, as the 
minimal subgraph of F which contains every complete path in 
F that passes through an element of R. This is equivalent to 
generating the set of vertices which are either reachable from 
an element of R or from which an element of R is reachable. A 
cohesion value is computed for each reference set as the ratio 
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success passwd address 
3 3 3 procedure LookUp2(A: Table; Size: integer; key: keytype; 
1  1  1  var success:  boolean; 
1  1 var passwd: integer; 
1  1  var address:  string); 

begin 
2  2  2  i := 1; 
2  2  2  success:= false; 
3  3  3  while not success and  i <= Size do 
3  3  3  if A.name[i] = key then 

begin 
3  3  passwd := A.value[i]; 
2  2  success := true; 
3  3  address := A.add[i]; 

end;  
else 

3  3  3  i:=i+ 1; 
2  2  if passwd < 5000  then begin 

4  paaswd := passwd * 8  mod  10; 
2  2  success := true. 

end  
else b&gin 

3  passwd := passwd mod 10; 
2  2  success := false; 

end  
end;  

WFC(LooklJp2)  =  E = .83 

A( LookUp2)  16 * 2 + 17 * 3 = = .69 
40  * 3  

SFC(LookUp2) =  z =  0.43 

Fig. 8. A table lookup procedure combined with a decode procedure such that both use of same data. 

of the cyclomatic complexity of (R) times the size of R to the 
cyclomatic complexity of F  times the size of F. The  cohesion 
of a  module is then computed as  the mean  of the cohesion 
values of the reference sets for each  variable in the module. 
The  values for Emerson’s complexity measure range from 0  
to 1. Discrimination levels are suggested to map  these values 
to three levels of cohesion: data cohesion, control cohesion, 
and  superficial cohesion. 

Emerson indicates that his flow graph and  reference set 
constructs are related to slicing [9]. Emerson computes flow 
subgraphs based on  generat ing all vertices which are either 
reachable from an  element of R or from which an  element 
of R is reachable. Thus,  these flow graphs are more closely 
related to metric slicing than Weiser’s original definition 
of slicing [35]. Weiser only used “backwards slices” while 
Emerson’s subf lowgraph is clearly related to both forwards 
and  backwards slicing. 

The  measure def ined by  Emerson is somewhat  analogous to 
the coverage measure def ined in [28]. (coverage is the average 
of the ratios of the lengths of each  slice to the module length.) 
Emerson’s measure is the average of the ratios of the size of 
each  reference set (weighted by  the cyclomatic complexity of 
the subgraph generated from the reference set) to the size of the 
flow graph (weighted by  the cyclomatic complexity of the flow 
graph).  Emerson computes reference sets and  subgraphs for 

each  variable while coverage is based only on  slices for output 
variables. Although there is an  apparent  relation between these 
two measures,  the precise meaning of Emerson’s measure is 
unclear. In particular, the effect of multiplying the reference 
set by  the cyclomatic complexity is to mask the view of 
cohesion. Cyclomatic complexity is a  control flow measure,  
and  combining the measures of different attributes weakens 
the discriminating power  of a  measure [24]. In contrast, our  
slice based cohesion measures are based on  intuitively sound 
abstractions that are designed to isolate functional cohesion 
attributes from other factors.. 

B. Lakhot ia’s Work  
Lakhot ia developed a  method for comput ing cohesion based 

on  an  analysis of the variable dependence  graphs of a  module 
[20]. Pairs of outputs are examined to identify any  data or 
control dependences  that exist between the two outputs. Rules 
are provided for determining the cohesion of the pairs. For 
example, “two variables have sequential  cohesion if one  has  
data dependence  on  the other.” the cohesion of a  module 
is then def ined to be  “functional if it has  only one  output 
variable; it is undef ined if it has  no  output variables; else 
it is the lowest cohesion of all pairs of the output vari- 
ables of the module.” Through examples Lakhot ia argues 
that this method closely matches the original classifications 
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success passwd address value small 
3 3 3 procedure LookUp3(A: Table; Size: integer; key: keytype; 
1 1 1 var success: boolean; 
1 1 var passwd: integer; 
1 1 var address: string; 

1 1 var value: integer; 
1 1 var small: boolean); 

begin 
2 2 2 i := 1; 
2 2 2 success:= false; 
3 3 3 while not success and i <= Size do 
3 3 3 if A.name[i] = key then 

begin 
3 3 passwd := A.value[i]; 
2 2 success := true; 
3 3 3 address := A.add[i]; 

end; 
else 

3 3 3 i := i+ 1; 
2 2 if value < 5000 then begin 
4 value := value * 8 mod 10; 
2 2 small := true; end 

else 
3 value := value mod 10; 
2 2 small := false; end 

end; 

WFC(LookUp3) = z = .83 

A( LookUp3) 15 * 2 + 20 * 3 = = .43 
42 * 5 

SFC( LookUp3) = ; = 0.0 

Fig. 9. A table lookup procedure combined with a decode procedure such that both use distinct data. 

(coincidental, logical, temporal, procedural, communicational, 
sequential, and functional) of cohesion [39, pp. 1081. Rather 
than develop an algorithmic mechanism to determine the 
original levels of cohesion, our objective is to quantify the 
amount of functional cohesion. Thus, in certain situations we 
will obtain differing results. For example, our measures will 
indicate that a significant part of a module is highly cohesive. 
In contrast, Lakhotia’s method will indicate the lowest type of 
cohesion demonstrated by the module. Only a module with a 
single output exhibits functional cohesion in Lakhotia’s model. 
This is equivalent to identifying functional cohesion only in 
the cases when SFG(P) = 1. We are able to generate relative 
levels of functional cohesion using our measures. 

C. Other Work Related to Cohesion 

Two other studies examine cohesion indicators rather than 
attempting to measure cohesion directly. Troy and Zweben 
examined the quality of structured designs using in part, some 
design cohesion indicators [34]. They used 

1) The number of effects listed in the design document; 
2) The number of effects other than I/O errors; 
3) The maximum fan-in to any one box in the structure 

chart, that is, the number of lines emanating upward 
from that box; 

4) The average fan-in in the structure chart; and 
5) The number of possible return values 

as indicators of cohesion. They did not find evidence of a clear 
relationship between these measures and the “quality” of the 
software. Quality is measured here by the number of source 
code modifications. These negative results may mean that 
cohesion is not related to number of source code modifications 
or that these measures are not indicative of cohesion. Troy and 
Zweben did not attempt to show a relationship between these 
measures and cohesion. 

Selby and Basili examined a measure based on data in- 
teractions, called data bindings, as a basis for computing the 
cohesion and coupling of the components of a system [32]. 
Routines are placed into clusters based on the data bindings 
and the coupling of a cluster with other clusters is determined. 
A ratio of the cluster coupling factor to the internal strength of 
a cluster is computed. An experiment indicated that clusters 
with a high ratio had the most errors and the highest error 
correction efforts. Selby and Basili also did not attempt to 
show a relationship between their measure and cohesion. 

VII. CONCLUSION 

Using principles from measurement theory, we derive a 
set of three functional cohesion measures. First, we develop 
an abstraction of procedures to isolate intuitive attributes of 
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functional cohesion. This abstraction is based on data slices 
of procedures. Using the data slice abstraction, we define the 
concept of glue and super-glue data tokens. We also introduce 
the concept of data token adhesiveness. Using the slice abstrac- 
tion and the concept of glue, super-glue and adhesiveness, we 
derive the measures. Strong functional cohesion (SFC) is based 
on the relative number of super-glue tokens in a procedure. 
SFC is the measure most closely related to the original 
definition of functional cohesion of Yourdon and Constantine 
[39, ch. 71. Weak functional cohesion (WFC) is based on the 
relative number of glue tokens in a procedure and includes 
some notion of Yourdon and Constantine’s weaker categories 
of cohesion. Adhesiveness is based on the relative “stickiness” 
of the glue tokens in a procedure, and is the measure that is 
most sensitive to minor program modifications. 

We show that the measures satisfy the requirements of an 
ordinal scale to the extent that the orderings imposed by a 
set of simple transformations match our intuition concerning 
functional cohesion. We are not able to demonstrate that the 
measures are on a ratio scale. The measures are not additive 
under two possible composition operations, and the multipli- 
cation of cohesion values is not intuitive. As a result, one can 
use ordinal scale computations when analyzing measurement 
values, but ratio scale computations are not justified. Thus, 
analyses requiring a median value are meaningful, but a 
statistical analysis that requires a mean may not be valid. 

We show analytically that, for a given procedure p, SFC(p) 
5 A(p) 2 WFC(p).  We also show, through a series of 
examples, that Adhesiveness appears to be the most sensitive 
and potentially most useful of the proposed measures. 

We do not show that our functional cohesion measures 
can predict software process attributes such as reliability or 
maintainability. Rather, we have derived ordinal measures of 
an important attribute of programs-functional cohesion. A 
well-defined measure is a prerequisite to empirical studies that 
relate one attribute to another. 

Tools to automate the measurement of the functional co- 
hesion are more difficult to develop than tools to measure 
control flow structure. However,  such automated measurement 
tools are feasible-they can make use of the kind of data flow 
analysis often performed by compilers. We are now developing 
functional cohesion measurement tools for empirical studies. 
One empirical study that we plan to conduct involves relating 
the traditional cohesion classes: co-incidental, logical, tempo- 
ral, procedural, communicational, sequential, and functional 
cohesion to our functional cohesion measures. In a sense, these 
cohesion classes are different levels of functional cohesion. 
We would expect a module with only coincidental cohesion to 
measure near zero for our three proposed measures. However,  
we do not know how our measures will evaluate modules that 
fall into the other cohesion classes. Such a study could help 
demonstrate whether or not the traditional cohesion classes 
are actually on an ordinal scale. 

APPENDIX 

Application of Transformations 

We follow the transformations described in Section IV-A, 
Slice Abstraction Transformations, to evaluate the orderings 

implied by the three functional cohesion measures. In the 
following discussion, we assume that slice abstraction a is 
modified to create a’, 

Strong Functional Cohesion (SFC) Orderings 

1) Add a slice to a creating a’.. 
Adding a new output to a. (This requires adding at 
least one token to the procedure.) With this trans- 
formation, SFC(a’) < SFC(a). Adding an output 
always reduces SFC because a new functionality 
is added. Adding a slice can never increase the 
super-glue tokens, but it is likely to increase the 
non-super-glue if a new token is added. Our  intuition 
about SFC is that fewer functionalities, in terms of 
output data, is always more cohesive. 
Output existing functionality without adding any 
tokens. In this case, SFC(a’) 5 SFC(a). Adding a 
slice still cannot increase the number of super-glue 
tokens, while the number of non-super-glue tokens 
might not change. 

2) Extend one or more slices in a creating a’. We have two 
cases here: 

Case 1: /a( = 1 
SFC(a’) = SFC(a) since u’ is still a one slice 
abstraction. 

Case 2: JuJ > 1 

Case 2(a): Extend a slice by adding a new data token. 

i) SFC(a’) < SFC(u) if the added token 
is new and is added to only one slice. No 
new super-glue tokens are created but the 
total number of tokens (non-super-glue 
tokens) has increased. 

ii) SFC(u’) > SFC(u) if the added token 
is new and is added to all of the slices. 
One new super-glne token is created. 

Case 2(b): SFC(u’) = SFC(u) if the added token is 
not new but is not in all of the other slices in 
a then no new super-glue or non-super-glue 
is created. 

Case 2(c): SFC(u’) > SFC(u) if the added token is 
not new and is in all of the other slices in 
a. This transformation turns a non-super-glue 
token into super-glue. 

To summarize, when an incremental change increases the 
number of super-glue tokens in a procedure with more than 
one slice, SFC(u’) > SFC(u). 

Weak Functional Cohesion (WFC) Orderings 
1) Add a slice to a creating a’. 

a) Add functionality by adding a new output to the 
program. Here, WFC(u’) > WFC(u) if and only 
if the net effect is to “glue” previously non-cohesive 
parts creating a higher percentage of glue tokens. 
If g = G(u’) - G(u),  the set of new glue to- 
kens created by the added functionality, and t = 
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b) 

tokens - tokens(a), the sets of added tokens, 
then WFC(a’) > WFC(a) if and only if w  > 
WFC(a).  The potential for increasing weak func- 
tional cohesion depends on the amount of glue in the 
original slice abstraction, a. If there is a significant 
number of non-glue tokens in a, then there is a lot 
of potential to increase the weak functional cohesion 
in a by adding a slice. 
Output existing functionality without adding new 
data tokens, then WFC(a’) 2 WFC(u).  We are 
creating a new slice, and some tokens that lie on 
one slice in a may lie on the new slice in a’ as 
well. New glue tokens can be created in this manner, 
but the total number of tokens does not change. 
It is possible that all of the tokens on the new 
slice do not lie on any other slices. In this case, 
WFC(a’) = WFC(a).  This can only happen if 
there are values produced that are never referenced 
by any of the slices for all of the output tokens in a. 

2) Extend one or more slices in a creating a’. Again, we 
have two cases here: 

Case 1: [al = 1 
WFC(u’) = WFC(a) since a’ is still a one slice 
abstraction. 

Case 2: JuJ > 1 

Case 2(a): Add a new token. If it extends only one 
slice, then there is no new glue added and 
WFC(u’) < WFC(u).  If new glue is 
added, then WFC(a’) > WFC(u).  

Case 2(b): WFC(u’) > WFC(a) when the added 
token is not new but is not in all of the 
other slices in a. New glue is created if the 
token added to the slice is in just one of the 
other slices and WFC(u’) > WFC(a).  If 
the added token is already a glue token, then 
no new glue is created and WFC(u’) = 
WFC(u).  

Case 2(c): WFC(a’) = WFC(u) when the added 
token is not new and is in all of the other 
slices. The added token is already a glue 
token and thus the WFC value does not 
change. 

Adhesiveness (A) Orderings 
1) Add a slice to a creating a’. 

a) Add functionality by adding a new output. If we add 
only non-glue tokens, then A(a’) < A(u). We have 
increased Jtokens(a)l . Ial without adding any glue 
tokens. 
If we add both glue and non-glue tokens, then we can 
determine the increase or decrease of adhesiveness 
in terms of the number of new glue tokens, y, created 
by the added functionality, the number of new tokens 
added, n, the number of tokens, Itokens I, and 
number of slices, Ia/, in the original slice abstrac- 
tion, a. Using algebraic transformations, we find 
that if g/()tokens(a)l + n + 71 Ial) > A(u), then 

A(a’) > A(a), if g/(lzokens(u)I + TL + TL . Ial) = 
A(a), thenA = A(a), ifg/(ltokens(u)l + r1+ n. 
Ial) < A(a), then A(u’) < A(u). 

b) Add more glue, but no tokens to the procedure. 
Then, clearly A(a’) > A(u) since we increase the 
numerator but the denominator is unchanged. 

2) Extend a slice: 

Case 1: 112 = 1 
There is no change, A(u) = A(a’), since 
Adhesiveness= 1 for any one-slice abstraction. 

Case 2: Ial > 1 

Case 2(a): Extend a slice by adding a token: 

i) Add a superglue token: A(u’) > A(u) 
ii) Add a glue (but not super-glue) token: 

The relationship between A( a’) and A(u) 
depends on the ratio of the number of 
slices, s, that the new token lies on and 
the total number of slices in the abstrac- 
tion, Ial. If A(a) > s/luI then A(a) > 
A(a’), otherwise A(u) 5 A(a’). 

iii) Add a non-glue token: A(a’) < A(a) 

Cases 2(b) and 2(c): Extend a slice without adding a 
token to the abstraction; the token(s) used to 
extend the slice are already in the procedure: 
A(a’) 2 A(u). In the normal case the data 
token(s) added to a slice already lie on at 
least one additional slice, thus when they are 
added to the extended slice, the adhesiveness 
of a’ increase, and A(a) > A(u). It is only 
possible for A(u’) = A(u) when a slice 
is extended by rearranging code to include 
token(s) that were not previously in any slice. 
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