
Measuring Design-level Cohesion

James M. Bieman, Senior Member, IEEE

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523 USA
bieman@cs.colostate.edu

Voice: (970)491-7096, Fax: (970) 491-2466.

Byung-Kyoo Kang
Electronics and Telecommunications Research Institute

161 Kajong-Dong Yusong-Gu Taejon, 305-350
KOREA

bkkang@nice.etri.re.kr
Tel: +82-42-863-8885, Fax: +82-42-860-6380

Appeared in IEEE Trans. Software Engineering, 24(2):111{124, February 1998.

Abstract

Cohesion was �rst introduced as a software attribute that, when measured, could be used to predict

properties of implementations that would be created from a given design. Unfortunately, cohesion, as

originally de�ned, could not be objectively assessed, while more recently developed objective cohesion

measures depend on code-level information. We show that association-based and slice-based approaches

can be used to measure cohesion using only design-level information. An analytical and empirical anal-

ysis shows that the design-level measures correspond closely with code-level cohesion measures. They

can be used as predictors of or surrogates for the code-level measures. The design-level cohesion mea-

sures are formally de�ned, have been implemented, and can support software design, maintenance, and

restructuring.

Index terms | cohesion, software measurement and metrics, software design, software

maintenance, software restructuring and re-engineering, software visualization, software

reuse.

1 Introduction

Module cohesion was de�ned by Yourdon and Constantine as \how tightly bound or related its internal

elements are to one another"[19, p. 106]. They describe cohesion as an attribute of designs, rather than code,

and an attribute that can be used to predict properties of implementations such as \ease of debugging, ease

of maintenance, and ease of modi�cation" [19, p. 140]. Since cohesion refers to the degree to which module

components belong together, cohesion measurement should prove to be a very useful restructuring tool [7].

Following the original guidelines [15], the assessment of module cohesion is conducted by skilled engi-

neers. These engineers would apply a set of subjective criteria to analyze associations between \processing

elements" and classify the nature of these associations. Because of the subjective nature of the assessment,
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the measurement of module cohesion has been di�cult to automate, and cohesion has not been e�ectively

used as a software quality indicator [18].

Existing techniques can measure or assess the cohesion of procedural code [5, 9, 2], structured design

documents [15, 16], packages [13, 12, 3], and classes [4, 14, 1]. Our objective is to develop techniques

to objectively measure cohesion in terms of information available from the detailed design of modules in

procedural programs. More precisely, for each procedure we assume that a detailed design includes the

speci�cation of a procedure or function interface and the dependencies between interface components. In

this paper, we assume that a \module" consists of one procedure or function rather than a collection or �le

of procedures.

We follow two approaches that have been used to develop objective, automatable methods for measuring

module cohesion. The �rst approach, an association-based approach, is used by Lakhotia [9] to formalize

the notion of the associations between processing elements as a set of rules concerning data dependencies

in module code. Lakhotia's methods require the analysis of code-level information; they can be adapted for

use on design-level constructs.

The second approach, a slice-based approach, is used by Bieman and Ott [2]. They measure functional

cohesion in terms of the connections between code data tokens on module output slices. The computation

of functional cohesion also requires code level information.

Class cohesion measures for object-oriented software have also been de�ned using a slice-based approach,

and by analyzing the connectivity between methods through common references to instance variables[1, 10,

11]. Method bodies are needed to apply these code-level class cohesion measures.

Cohesion is only one of many attributes that designers strive to improve. For example, designers also

aim to reduce coupling. We need to be able to objectively measure such attributes in order to evaluate

alternative design options. Some design goals may be in con
ict | high cohesion with low coupling appear

to be competing goals. We need to be able to measure these attributes so that we can study the relationships

between such apparently con
icting objectives. Only then we can determine, for example, if high cohesion

and low coupling are mutually exclusive.

In this paper, we show that module cohesion can be objectively assessed using only design-level informa-

tion. We develop and compare a set of association-based and slice-base design-level cohesion measures, and

we describe how these measures can be applied as design, maintenance, and restructuring tools.

2 Association-based Cohesion Measures

Stevens, Myers and Constantine de�ne module cohesion (SMC Cohesion) on an ordinal scale. SMC Cohesion

includes coincidental, logical, temporal, procedural, communicational, sequential, and functional cohesion

where coincidental cohesion is the weakest and functional cohesion is strongest cohesion [15]. SMC Cohesion

is determined by inspecting the association between all pairs of a module's processing elements.

Lakhotia uses the output variables of a module as the processing elements of SMC Cohesion and de�nes

rules for designating a cohesion level which preserve the intent of SMC Cohesion [9]. The associative principles

of SMC Cohesion are transformed to relate the output variables based on data dependence relationships.

A variable dependence graph models the control and data dependencies between module variables. The

rules for designating a cohesion level are de�ned using a strict interpretation of the association principles of

SMC Cohesion. Because the rules are formal, a tool can automatically perform the classi�cation. However,

the technique, as originally de�ned, can be applied only after the coding stage since it is de�ned upon the

implementation details.

SMC Cohesion de�nes an intuitive notion of the cohesion attribute of design components. In a previous

paper [7], we used SMC Cohesion as an empirical relation system to help us to de�ne a cohesion measure that

satis�es the representation theorem of measurement [6] and can be readily automated. This new measure

can be applied to both the design and code of a module. It is derived from a design-level view of a module,

an input-output dependence graph. In this section, the model and measure are summarized.

2.1 A Design-Level View of a Module

The input-output dependence graph (IODG), adapted from the variable dependence graph of Lakhotia [9],

is based on the data and control dependence relationships between input-output components of a module.
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Input components of a module include in-parameters and referenced global variables. Output components

include out-parameters, modi�ed global variables, and `function return' values. The term `component' refers

to a static entity. An array, a linked list, a record, or a �le is one component rather than a group of

components. We de�ne data and control dependence informally using the notation of Lakhotia [9]; formal

de�nitions are given in compiler texts, for example, see reference [20].

De�nitions:

� A variable y has a data dependence on another variable x (x
d
! y) if x `reaches' y through a path

consisting of a `de�nition-use' and `use-de�nition' chain (from Lakhotia [9]).

� A variable y has a control dependence on another variable x if the value of x determines whether or not

the statement containing y will be performed (from Lakhotia [9]).

� A variable y is dependent on another variable x (x ! y) when there is a path from x to y through a

sequence of data or control dependence. We call the path a dependence path.

� A variable y has condition-control dependence on another variable x (x
cc
! y) if y has a control depen-

dence on x, and x is used in the predicate of a decision (i.e., if-then-else) structure.

� A variable y has iteration-control dependence on another variable x (x
ic
! y) if y has a control dependence

on x, and x is used in the predicate of an iteration structure.

� A variable y has c-control dependence on another variable x (x
c
! y) if the dependence path between

x and y contains a condition-control dependence but no iteration-control dependence.

� A variable y has i-control dependence on another variable x (x
i
! y) if the dependence path between x

and y contains an iteration-control dependence.

IODG De�nition. The input-output dependence graph (IODG) of a module M is a directed graph, GM =

(V, E) where V is a set of input-output components of M, and E is a set of edges labeled with dependence

types such that E = f(x; y) 2 V � V j y has data, c-control, and/or i-control dependence on xg

The IODG shows the relationship between input and output components of a module. Each input

contributes to one or more outputs; it is used to compute output(s), as input data, decision invariant,

and/or loop invariant. The IODG is used to de�ne a design-level cohesion measure.

2.2 Design-Level Cohesion (DLC) Measure

In a manner similar to the approach used to develop SMC Cohesion, we use six relations between a pair of

output components based on the IODG representation:

1. Coincidental relation (R
1
):

R
1
(o

1
; o

2
) = o

1
6= o

2
^ :(o

1
! o

2
) ^ :(o

2
! o

1
) ^ :9x [(x! o

1
) ^ (x! o

2
)]

Two outputs o
1
and o

2
of a module have neither dependence relationship with each other, nor depen-

dence on a common input.

2. Conditional relation (R2):

R
2
(o

1
; o

2
) = o

1
6= o

2
^ 9x [(x

c
! o

1
) ^ (x

c
! o

2
)]

Two outputs are c-control dependent on a common input.

3. Iterative relation (R3):

R3(o1; o2) = o1 6= o2 ^ 9x [(x
i
! o1) ^ (x

i
! o2)]

Two outputs are i-control dependent on a common input.
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4. Communicational relation (R4):

R4(o1; o2) = o1 6= o2 ^ 9x [((x
d
! o1) ^ (x

d
! o2)) _ ((x

p
! o1) ^ (x

q
! o2))], where p; q 2 fd; c; ig,

and p 6= q.
Two outputs are dependent on a common input. An input is used to compute both outputs, but as

neither a condition 
ag to select one of two outputs nor a loop invariant to compute both outputs.

5. Sequential relation (R5):

R5(o1; o2) = o1 6= o2 ^ ((o1 ! o2) _ (o2 ! o1))
One output is dependent on the other output.

6. Functional relation (R6):

R6(o1; o2) = (o1 = o2)
There is only one output in a module.

Our relations are derived from Lakhotia [9]; relations 1, 4 and 5 are essentially identical to the corresponding

relations of Lakhotia. The remaining relations are de�ned to �t the IODG model.

Cohesion strength increases from relation R1 to R6. The six relations correspond to six association

principles (temporal cohesion is not included) of SMC Cohesion with some degree of overlap.

DLC Measure De�nition. The cohesion level of a module is determined by the relation levels of output

pairs. For each pair of outputs, the strongest relation for that pair is used. The cohesion level of the module

is the weakest (lowest level) of all of the pairs. That is, the output pair with the weakest cohesion determines

the cohesion of the module.

We have shown that the DLC measure is on an ordinal scale as long as we accept the ordering implied

by the association principles of SMC Cohesion [8].

An IODG can be displayed visually in an IODG diagram. In its graphical form, the IODG visually displays

the functional structure of the module. In such a diagram, the caller-callee relationship is represented by

including the IODG of the callee in the IODG diagram of the caller. In an IODG digram, an input is

represented by a circle, and an output by a square. The texts in each circle and square are the names of

input and output variables. Each arrow indicates the dependence between two components. Fig. 1 shows

six cohesion levels for six simple modules.

3 Slice-based Cohesion Measures

A program slice is the portion of the program that might a�ect the value of a particular identi�er at a

speci�ed point in the program [17]. In developing cohesion measures, slices can be used to represent the

functional components of a module.

3.1 Functional Cohesion (FC) Measures

Bieman and Ott developed cohesion measures that indicate the extent to which a module approaches the ideal

of functional cohesion [2]. They introduced three measures of functional cohesion as the relative number

of \glue" or \adhesive" data tokens based on \data slices" of a module (procedure). The data slice of a

variable is the sequence of data tokens which have a dependence relationship with the variable. A data slice

is computed for each output of a procedure at the point of procedure exit. Glue tokens are data tokens

common to more than one data slice. The glue tokens common to every data slice of a module are superglue

tokens. The adhesiveness of a data token is the number of data slices to which the data token is common.

The three measures of functional cohesion are Weak Functional Cohesion (WFC), Strong Functional Co-

hesion (SFC), and Adhesiveness (A). WFC is the ratio of glue tokens to the total number of tokens in a

procedure. SFC is the ratio of superglue tokens to the total number of data tokens in a procedure. Adhe-

siveness the ratio of the amount of adhesiveness to the total possible adhesiveness, which is the adhesiveness

when all data tokens are superglue tokens.
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n

Iterative cohesion

d d

arr1 arr2

prod1 prod2

i i

     sum2 := 0;
     sum1 := 0;
begin

        for i := 1 to n1 do
            sum1 := sum1 + arr1[i];

            sum2 := sum2 + arr2[i];
        for i := 1 to n2 do

end;

procedure Sum1_and_Sum2

var i : integer;

   ( n1, n2 : integer;
     arr1, arr2 : int_array;
     var sum1,
           sum2 : integer );

     for i := 1 to n do begin

     end;
end;

procedure Prod1_and_Prod2

     prod2 := 1;

         prod1 := prod1 * arr1[i];
         prod2 := prod2 * arr2[i];

begin
     prod1 := 1;

var i : integer;

     arr1, arr2 : int_array;
   ( n : integer;

     var prod1,
           prod2 : integer );

n1

sum1

arr1 n2 arr2

sum2

Coincidental cohesion

i d i d

flag

arr1n1

sum1 sum2

arr2n2

Conditional cohesion

ddi ic c

     sum2 := 0;
     sum1 := 0;
begin

     if flag = 1
        for i := 1 to n1 do
            sum1 := sum1 + arr1[i];
      else

end;

        for i := 1 to n2 do
            sum2 := sum2 + arr2[i];

           sum2 : integer );

procedure Sum1_or_Sum2

var i : integer;

     var sum1,

(e)

     arr1, arr2 : int_array;
   ( n1, n2, flag : integer;

(b)

n

fib_arr

begin

    for i := 3 to n 

    fib_arr[1] := 1;
    fib_arr[2] := 2;

      i : integer;
var sum : integer;

      var fib_arr : int_array;
    ( n : integer;

    Sum(n, fib_arr, sum);

end;

        fib_arr[i] := fib_arr[i-1]
                  + fib_arr[i-2];

Sequential cohesion

d

i

i d

d

Sum

d

procedure Fibo_Avg

      var avg : float );

    avg := sum / n;

 avg

n arr

sum

Functional cohesion

di

         sum := sum + arr[i];

begin
     sum := 0;
     for i := 1 to n do

end;

  ( n : integer;

procedure Sum

var i : integer;

    arr : int_array;
    var sum : integer );

(f)

     end;

var i : integer;

begin
     sum := 0;
     prod := 1;
     for i := 1 to n do begin
         sum := sum + arr[i];
         prod := prod * arr[i];

     var avg : float );

     var sum,
     arr : int_array;
   ( n : integer;

procedure Sum_and_Prod

           prod : integer;

end;
     avg := sum / n;

sum

n arr

avg

(d)

Communicational cohesion

dd

prod

i i

d

d

(c)

(a)

Figure 1: IODG's and DLC levels for six simple procedures.
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1
1

1

3

1

1

2

4

3

avg

1
1
1

1
1

2

3
4

3

1
1

1

3

1

3

3
3

max

  ( n : integer; /* pre: n>0 */

begin
    sum := 0;

    for i := 1 to n do begin
        sum := sum + arr[i];
        if arr[i] > max

    end;
    avg := sum / n;
end;

    var arr: int_array;
    var sum,
           max : integer;

statementsum

    i : integer;

procedure Sum_Max_Avg

     var avg : float );

Communicational cohesion

FC measures :

SFC = 6 / 27 = 0.22

WFC = 17 / 27 = 0.63

A = (11*2 + 6*3) / (27*3) = 0.49

SMC Cohesion :

    max := arr[1];

           max := arr[i];

Figure 2: Data slice pro�le for Sum Max Avg.

Fig. 2 shows functional cohesion computations for an example program. Each column in the �gure

corresponds to a data slice for each output. For example, the numbers in the �rst column are the number of

data tokens in the corresponding line that a�ect the output or are a�ected by the output. The data tokens

that are counted on more than one column are glue data tokens and those that are counted on all columns

are superglue data tokens. In this example, we �nd 17 glue data tokens and 6 superglue tokens.

The functional cohesion measure is formally de�ned. Thus, measurement tools can be (and have been)

readily implemented. However, the measures depend on the implementation details and can be applied only

after the body of a module has been coded.

3.2 Design-level Functional Cohesion (DFC) Measures

We derive DFC measures following the approach used to develop the functional cohesion measures. Rather

than analyzing code details, we use a design level view modeled by the IODG to de�ne the measure. The

DFC measures use a `simpli�ed' IODG which includes only dependence relationships between input-output

components, without classifying the dependencies. The DFC measures are analogous to the slice-based FC

measures in that both are de�ned in terms of the connections between components and outputs. The com-

ponents used to de�ne the FC measures includes all \data tokens", while only input and output components

are used to de�ne the DFC measures. Inputs and outputs are the only externally visible components, and

they represent the design-level information of the module. Fig. 3(a) shows a graphical (IODG) and Fig.

3(b) shows a tabular (IODT) representation of procedure Sum Max Avg of Fig. 2.

In Fig. 3 (b), the names of the output are listed in the �rst row and the names of the components (inputs

and outputs) are in the �rst column of the �gure. The \1" in the �gure indicates that the corresponding

component has a dependence relation with the named output, and the \0" indicates no dependence relation.

The IODG and IODT show the relationship between input-output components of a module. The DFC

measures are expressed in terms of the number of isolated and essential components, and the connectedness

of components:

De�nition: A component is isolated if it a�ects only one local functionality, i.e., it has a dependence

relationship with only one output.

For example, in Fig. 3, component `max' is isolated since it has a dependence relationship with only one
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arr

sum

n

com-
ponent

1

1

1

output

max

avg

0

1

sum  max  avg

1

1

0

1

0

1

1

1

0

1

(b)(a)

n arr

sum max

avg

Sum_Max_Avg

Figure 3: An example (a) the IODG and (b) IODT of a procedure Sum Max Avg.

output, itself. The other components are not isolated.

De�nition: A component is essential if it a�ects (or is a�ected by) all functionalities of the module, i.e., it

has dependence relationships with all outputs of the module.

If a module contains only one output, the output is the only functionality of the module. Thus, every

component in the module is not isolated and is essential. In Fig. 3, components `n' and `arr' are essential

since they a�ect all outputs.

We de�ne the connectedness of a component as the degree of \relatedness" of the component to the

outputs. Connectedness provides more information than a simple classi�cation of a component as isolated or

essential. The connectedness of a component represents the relative number of outputs that the component

relates together. We do not address the cases where an input does not contribute to the computation of any

output, i.e., in our model, every component has dependence relation with at least one output. Therefore,

the connectedness of a component is the relative number of the other output(s) with which the component

has a dependence relation. If a module contains only one output, the connectedness of every component in

the module is 1.

De�nition: For an arbitrary module, the connectedness of the i'th component is:

Ci =

�
Ni�1

O�1
if O > 1

1 otherwise

where Ni is the number of outputs with which the ith component has a dependence relation, and O is the

total number of outputs in the IODG model of the module.

The connectedness of an isolated component is 0 and the connectedness of an essential one is 1. In Fig.

3(b), the connectedness of n and arr is 1, the connectedness of sum and avg is 1=2, and the connectedness

of max is 0.

Three measures, Loose Cohesiveness (LC), Tight Cohesiveness (TC) and Module Cohesiveness (MC), are

de�ned as the relative number of non-isolated components, the relative number of essential components, and

the average connectedness of the components of the model, respectively:

DFC Measure De�nition.

LC(m) = D=T

TC(m) = E=T

MC(m) =

PT

i=1 Ci

T
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where D, E, and Ci are the number of non-isolated components, the number of essential components, and

the connectedness of i'th component, respectively, in the IODG of module m. T is the total number of

components in m.

Using the de�nition of component connectedness, module cohesiveness can be expressed as

MC(m) =

PT

i=1(Ni � 1)

T � (O � 1)
=

PT

i=1Ni � T

T �O � T

The three measures for the procedure Sum Max Avg in Fig. 2 and 3 are

LC(Sum Max Avg) = 4=5 = 0:8

TC(Sum Max Avg) = 2=5 = 0:4

MC(Sum Max Avg) = (2 � 2 + 2 � 1)=(5 � 2) = 0:6

An isolated component has zero connectedness, a non-isolated component has connectedness of greater

than 0, and essential component has connectedness of one. Thus, for a given module m:

E �

TX
i=1

Ci � D

where D, E, Ci, and T are de�ned as above. Therefore,

TC(m) � MC(m) � LC(m)

DFC measures have been derived using only interface components by following the approach used to

de�ne FC measures. Thus, we expect that each measure of DFC has some relationship with corresponding

FC measures. DFC and DLC measures are both design-level measures de�ned in terms of program IODG

information. We also determine the relationship between DFC and DLC measures. In next two sections, we

investigate the relationships between the cohesion measures analytically and empirically.

4 Analytical Comparison of Cohesion Measures

4.1 Relationship between the DFC and FC measures

The DFC measures correspond closely to the FC measures of Bieman and Ott [2]. Each of the DFC measures

(LC, TC, and MC) was de�ned to correspond to one of the FC measures (weak functional cohesion, strong

functional cohesion, and adhesiveness) respectively. However, DFC measures are de�ned in terms of relations

between the components of a module interface, while FC measures are based on the relationship between

the components in a module body.

To be consistent with our derivation of the DFC measure, we can treat internal superglue tokens as

essential internal tokens and internal non-glue as isolated internal tokens. Fig. 4 contains unlabeled IODG

diagrams for di�erent module con�gurations. Input, output, and selected internal data tokens are represented

by circles, rectangles, and square bars, respectively. Fig. 4(d) shows three modules with the same number of

inputs and outputs, and the same dependence relations. Thus, their DFC measures are equal. However, the

second module contains more superglue or essential data tokens. As a result, the FC measures of the second

module are higher than those of the �rst module. The third module contains more non-glue or isolated data

tokens. As a result, the FC measures of the third module are lower than those of the �rst module. Fig. 4 (e)

and (f) also show that an increase in the number of essential or isolated data tokens a�ects the FC measures.

Fig. 4 (a), (b), and (c) show that a change in the number of essential or isolated data tokens in a module

may not a�ect FC measures. All input-output components in a module are isolated for case (a), and essential

for cases (b) and (c). If the FC values are 1 for a given module, the DFC values are 1, if the FC values are

0 for a given module, the DFC values are 0. If the DFC values are between 0 and 1 for a given module, the

corresponding FC values depend on the relative number of isolated, non-isolated, and essential data tokens.

8



(a)

(b)

(c)

(d)

(e)

(f)

DFC = FC DFC = FC

DFC = FC DFC = FC

DFC = FC DFC = FC

DFC = FC DFC < FC DFC > FC

DFC = FC DFC = FC DFC > FC

DFC = FC DFC < FC DFC > FC

Figure 4: Comparing the DFC and FC measures.

Therefore, when FC > DFC, we know that there is a greater relative number of essential data tokens than

essential input-output components. When DFC > FC, there is a greater relative number of isolated data

tokens than isolated input-output components.

FC measures provide more detailed information for restructuring existing modules than DFC measures.

The FC measures captures the cohesion due to internal details. For example, the second module in Fig. 4(d)

is more di�cult to decompose into two modules than the third module in 4(d). To decompose the second

module, most of the data tokens need to be rewritten. However, the FC measures alone can not capture

input-output relationships. For example, high values of FC measures may be due to essential input-output

components or other essential data tokens. Both measures, when used together, can provide more complete

information.

We see that the FC and DFC measures are equivalent only for some modules. There is, however, a general

correspondence between the FC and DFC measures. An empirical study can determine the distribution of

isolated and essential data tokens in real software. We show, in Section 5, that there is a strong empirical

relationship between FC and DFC measures.

4.2 Relationship between the DLC and DFC Measures

The DLC measure is an association-based measure and the three DFC measures are slice-based measures.

Both sets of measures have been de�ned using an intuitive understanding of cohesion based on the \related-

ness" of module components. An analysis of the relationship between the DLC and DFC measures provides

further evidence of how the measures correspond to the intuition of cohesion.

We demonstrate the e�ect on the measures of increases in the number of connections between module

components and increases in the number of module components. To compare the DFC measures with the

DLC measure, we use the simpli�ed IODG. The simpli�ed IODG (without dependence labels) cannot account

for the di�erence between `conditional', `iterative', and `communicational' DLC levels. Thus, these relation

levels are represented as an `indirect' relation, and their corresponding cohesion levels are `indirect' cohesion.

4.2.1 The e�ect of increasing the number of dependence connections.

Fig. 5 shows the IODG, IODT, and DFC measures, the association level of each pair of outputs, and the

DLC measures for seven module con�gurations. To show the e�ect of increasing the number of connections

on the measures, we �x the number of inputs and outputs for each module. Each module in the �gure has

three inputs and three outputs.

The number of direct or indirect dependence connections increases from module (a) to module (g). We

look at the e�ect of increasing the number of connections for each measure.
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MC measure. The DFC MC measure always detects an increase in the number of dependence connections,

and is clearly more sensitive than the LC and TC measures. Fig. 5 shows that the MC values precisely

correspond to changes in the number of dependence connections in each module, which is consistent with our

intuition about cohesion. That is, modules with more related components are more cohesive than modules

with fewer related components.

LC measure. The LC measure captures the relative number of isolated (or non-isolated) components in a

module. A relatively low LC value means that there are more isolated components than non-isolated ones.

The modules in Fig. 5(c) and Fig. 5(d) have the same number of dependence connections and equal MC

values. However module 5(d) has more isolated components than module 5(c). Module 5(c) has two input

components connecting output components while module 5(d) has only one such connection. This di�erence

between modules 5(c) and 5(d) is re
ected by the LC measure.

TCmeasure. The TC measure detects the relative number of the components with the strongest connection.

These are the essential components of the module. TC is zero when there are no components that are used to

compute every output. TC equals one when all components in the module are tightly related and essential

to the functionality of the module. Modules 5(a), 5(b), and 5(c) contain no essential components. All

components of module 5(g) are essential and tightly related. Thus, TC is 0 for modules 5(a), 5(b), and 5(c),

and 1 for module 5(g).

DLC measure. Fig. 5 shows that DLC is not very sensitive to the di�erent number of connections

in the modules. In contrast to MC and LC, DLC does not distinguish between modules 5(a), 5(b), and

5(c). DLC �nds the weakest connection among module components. Finding the weakest connection is

important, because \for debugging, maintenance, and modi�cation purposes, a module behaves as if it were

only as strong as its weakest link" [19, p. 132]. Also, the DLC measure computed using a labeled IODG

(where dependence is classi�ed) provides more precise information about the relationship between output

components than the DFC measures. For example, consider a module with an input that is used by two

outputs. The DFC measures simply treat the input as an essential component for the outputs, while the DLC

measure classi�es the relationship between the two outputs into conditional, iterative, or communicational

relation using the classi�ed dependence information.

Among the MC, LC, and TC measures, TC is closest to DLC. In calculating DLC, the lowest cohesion

level of all pairs is the cohesion of the module. The module in Fig. 5(c) contains three pairs of outputs.

The lowest relation level is `coincidental', so the corresponding cohesion level of the module is coincidental.

TC is 0 for the module since there are no essential components | components that connect all outputs.

Whenever the DLC level for a module is `coincidental', the TC value is 0. If there is even one pair of outputs

whose relation level is `coincidental', there can be no component that connects all outputs. The reverse is,

however, not true. When module TC is 0, the cohesion level is not always coincidental, because there may

be some components that connect some portion of the outputs, and those components together connect all

outputs. When all outputs are connected, the DLC cohesion level is not coincidental.

Both DLC and TC are calculated using the most extreme cases. Thus, they generally correspond to each

other. This correspondence between these measures is in all modules of Fig. 5. In modules (a), (b), and (c)

of Fig. 5, the DLC levels are `coincidental' and the TC values are 0. In Figs. 5(d) and 5(e), the DLC levels

are `indirect' and the TC values are 1=6.

4.2.2 The e�ect of increasing the number of input-output components.

Fig. 6 shows how the DFC measures change as the number of input or output components are increased.

Each module in the �gure has equal DFC measures (MC, LC, and TC) which are represented as a single

DFC value.

If there is only one output in a module, DFC = 1 no matter how many inputs there are. The DLC

measure indicates functional cohesion.

If there are multiple outputs and every component is isolated, the DFC measures are 0 without regard

to the number of inputs and outputs in the module. In this case, The DLC indicates coincidental cohesion.

These correspondences between DFC and DLC are shown in Fig. 6 (a) and (b).

The DFC measures are sensitive to the relative number of isolated or essential components in a module.

As the relative number of isolated components in a module is increased (more components are not related
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Figure 5: The e�ect on the DFC and DLC measures of increasing the number of dependence connections.
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with each other), the DFC value decreases. Fig. 6 (c), (d), and (g) show that DFC decreases when the

relative number of isolated components is increased. Fig. 6(f) shows that when the relative number of

essential components in a module is increased, the DFC value increases. In cases 6(e) and 6(h), the relative

number of essential components are not changed, and the DFC values also show no change.

The IODG's in rows (d), (e), and (f) of Fig. 6 exhibit sequential DLC. The IODG's in rows (e) and (f)

all have DFC=1, while those in row (d) with more than 1 output show lower DFC values. All components

in the IODG's with DFC = 1 are linked to all outputs; the second output is computed only in terms of

the �rst output, which is computed using all inputs. The IODG's with lower DFC values have one or

more components linked to only one output. The second output makes use of input components that are

independent of the �rst output. The di�erences in DFC values re
ect the relative connectedness of the input

components. The DLC measure does not show this di�erence, because it is determined only by the weakest

relation, the sequential relation between the outputs.

Except for the cases with sequential DLC, the most notable di�erences in DFC values are for one output

IODG's versus two output IODG's. For example, see the �rst two IODG's in row (g). In the IODG displayed

in the �rst column one input is used to compute one output, while the second column shows an IODG with

one input that is used to compute two outputs. The two outputs may involve completely independent

computation on the input, and from the interface alone, we cannot tell if the two outputs really belong in

one procedure. Implementation details are needed to determine the actual degree of independence between

the three outputs. Thus, as shown in Fig. 5(d), the FC values may be higher or lower than the DFC values.

As we see in Fig. 6, the DLC measure does not capture di�erences in the relative number of cohesive

components. When the number of isolated or essential components is changed, the corresponding DLC levels

are not changed.

To summarize, the DFC measures MC, LC, and TC are sensitive to the relative number of dependence

connections, the relative number of isolated components, and the relative number of essential components,

respectively. The DLC measure is, however, not very sensitive to the relative number of connections, isolated,

and essential components in a module. However, the DLC measure always re
ects the weakest connection

among module components and this weakest connection determines the cohesion level. DLC also provides

more precise information characterizing the relationship between output components than the DFC measures.

Among the three DFC measures, the TC measure corresponds most closely to the DLC measure.

There is a fundamental di�erence between the DFC measure and the DLC measure. When calculating

a cohesion value, the DFC measures average the cohesion values of all components, while the DLC measure

�nds the most weakly connected relation. This di�erence is intentional. The generated data from both

measures should be interpreted di�erently.

5 Empirical Comparison of Cohesion Measures

In this section, we empirically test the relationship between the design-level functional cohesion (DFC)

measures and the functional cohesion (FC) measures, and the relationship between the DFC measures and

the design-level cohesion (DLC) measure.

We developed tools to automate the cohesion measures and collected a set of C programs. Using the

measurement tools, the collected programs have been processed to generate the cohesion data. The data

are tested statistically and analyzed to �nd relationships between cohesion measures. The empirical study

included the following tasks:

1. Cohesion Tool Development: We developed tools to measure FC, DFC, and DLC for C programs

using lex and yacc from the gcc compiler. This work included the conversion of scalar analysis problems

such as the reaching de�nition problem into monotone data 
ow systems, MDSs. We implemented the

iterative algorithm for each MDS [20]. As a simpli�cation, alias problems were ignored, since they

are rare in actual programs and thus have little a�ect on the cohesion measurements. The tools

process C programs in a UNIX workstation environment. They have been installed and tested for SUN

SPARCstatations running SUN-OS and IBM RS6000 systems running AIX.

2. Input Program Collection: We collected programs from two sites: (1) a collection of student

programs, and (2) UNIX system software. A total of 607 C functions have been collected: 390 C
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Table 1: Mean and Median of FC, DFC, and DLC measures for 607 C functions.
No. of No. of FC DFC

Average data tokens input-outputs WFC ADH SFC LC MC TC DLC

Mean 57.36 6.35 0.75 0.72 0.68 0.78 0.74 0.71 4.76

Median 30.00 4 1 1 1 1 1 1 6

Table 2: Mean and Median of FC, DFC, and DLC measures for 264 C functions after removing functions

having only one output.
No. of No. of FC DFC

Average data tokens input-outputs WFC ADH SFC LC MC TC DLC

Mean 83.77 8.98 0.42 0.36 0.27 0.50 0.41 0.33 3.16

Median 52 8 0.41 0.31 0.14 0.50 0.33 0.20 4

functions have been collected from �ve graduate students who major in computer science, and 217 C

functions from three UNIX system programs (FTP, PASSWD, and TALK).

3. Cohesion Data Generation: We generated the three FC measures (WFC, ADH, and SFC), three

DFC measures (LC, MC, and TC), and the DLC measure for the collected input programs.

4. Correlation Test and Analysis: We use the cohesion data to �nd relationships between FC and DFC

measures and between DFC and DLC measures. We test correlations between the related measures by

generating correlation coe�cient values and signi�cance values of each pair of corresponding measures

for each partition of programs, i.e., student and system programs, small, medium, and large programs,

and the entire set of programs.

A correlation coe�cient is always a number between -1.0, a perfect negative correlation and 1.0, a

perfect positive correlation. A high positive or low negative value of the correlation coe�cient for

two variables means that they have a strong association. The signi�cance value is the probability

of obtaining a particular sample result given the null hypothesis. In our correlation test, the null

hypothesis is that two corresponding measures are not correlated, i.e., they are independent from each

other. By convention, if the signi�cance value is less than 0.05, we call it statistically signi�cant.

5.1 Cohesion Measurement Data

Table 1 shows average cohesion values of the seven cohesion measures for all 607 C functions. We �nd

that 343 of the functions have only one output. Their DLC levels are 6 (functional cohesion) and their FC

and DFC values are 1. (For a given program, when its DLC is 6, its three FC measures and three DFC

measures are always 1.) To avoid this \ceiling e�ect", we remove the cases where the DLC level is 6 and use

the remaining 264 functions to �nd the relationship between cohesion measures. Table 2 shows the average

values for seven cohesion measures after removing the functions with only one output.

Table 2 shows that the WFC, ADH, and SFC values and LC, MC, and TC are ordered. This ordering is

consistent with ordering demonstrated analytically in Section 3: For a given program, WFC � ADH � SFC

and TC � MC � LC.

Table 2 also shows that for the all 264 programs, the following relationships hold: WFC < LC, ADH <
MC, and SFC < TC. These relations hold also for all partitioned groups, the student programs and system

programs, three groups of programs by program size.

The above relations occur because, on average, the distribution of data tokens are more `isolated' and

less `essential' when compared to the distribution of interface components. In other words, programs include

more isolated data tokens than isolated interface components. Fig. 7 shows graphically the relationship

between the six measures, represented by Table 2.

We �nd very few programs exhibiting the third DLC level, iterative cohesion. This does not mean there

are few iterative associations between output components. Actually, we �nd many iterative associations
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Figure 7: Relationship between FC and DFC measures: A graphical representation of the mean values of

FC and DFC in Table 2.

Table 3: Correlation Coe�cients of WFC and LC, ADH and MC, and SFC and TC for each partition of

collected programs.

No. of Mean & Median Correlation Coe�cient

Site/Size functions data tokens WFC-LC ADH-MC SFC-TC

Student Programs 141 95:36; 53 0.8412 0.8437 0.8526

System Programs 123 70:47; 51 0.9285 0.9418 0.9556

data token cnt � 50 129 25:51; 24 0.9535 0.9486 0.9565

50 < data token cnt � 100 69 73:61; 73 0.8286 0.8337 0.8720

100 < data token cnt 66 208:24; 172 0.8065 0.8242 0.8208

Total 264 83:77; 52 0.8896 0.8939 0.9043

in programs, however, when DLC cohesion level is determined, iterative associations are hidden by other

stronger or weaker associations.

5.2 Relationship between FC and DFC measures

Since each of DFC measures (LC, MC, and TC) was derived using an approach that parallels each of the

FC measures (WFC, ADH, and SFC), we expect that the DFC measures will correspond closely to the FC

measures. We showed analytically in Section 4.1 that a general correspondence between the FC and DFC

measures is expected. We also showed empirically the LC, MC, TC measures are greater than the WFC,

ADH, and SFC measures, respectively. In order to know how closely the measures are related, we test

correlations between WFC and LC measures, between ADH and MC measures, and between SFC and TC

measures.

We also consider the e�ects of program development environment and program size which are possible

extraneous variables. The entire set of C functions is partitioned into student programs and system programs,

and small size programs (data token count � 50), medium size programs (50 < data token count � 100),

and large size programs (100 < data token count). Table 3 shows correlation coe�cient values of each pair

of corresponding measures for each partition of programs. The signi�cance value for each pair is 0.0001.

We observe that

1. The FC and DFC measures are strongly correlated. The correlations between WFC and LC, between

ADH and MC, and between SFC and TC are all strong. There is a general correspondence between

the FC and DFC measures; if a program has a high MC value, then it is very likely that the program
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Table 4: Correlation Coe�cients of DLC and LC, DLC and MC, and DLC and TC for each partition of

collected programs.
No. of Mean & Median Correlation Coe�cient

Site/Size functions input-outputs DLC-LC DLC-MC DLC-TC

Student Programs 141 8:18; 6 0.6122 0.7593 0.8635

System Programs 123 9:89; 8 0.6753 0.8289 0.8715

1 < I-O cnt � 5 67 4:31; 4 0.8751 0.9325 0.9259

5 < I-O cnt � 9 112 7:11; 7 0.5597 0.7385 0.8814

9 < I-O cnt 85 15:12; 13 0.4845 0.6926 0.7852

Total 264 8:98; 7 0.6345 0.7884 0.8760

has a high ADH value too. It follows that we can predict FC values of a program from its DFC values

with an expected error range. In another words, cohesion of program code can be predicted during

design.

2. The correlation between the FC and DFC measures for the small programs is slightly stronger than

that for the large programs. This di�erence between small and large programs is due to the de�nitions

of FC and DFC measures. The FC measures are de�ned using module body information while the

DFC measures are de�ned using only module interface. The possible di�erence between a programs

FC values and DFC values increase as the number of data tokens in a program increases.

3. The correlation between the FC and DFC measures for the system programs is slightly stronger than

that for the student programs. The di�erence is due to outliers. Fig. 8 and 9 show scatter plots of

ADH and MC for student programs, and of ADH and MC for system programs, respectively. From the

�gures, we �nd more outliers for the student programs than for the system programs. A small number

of outliers can cause a large correlation coe�cient di�erence.

5.3 Relationship between DFC and DLC measures

The DLC measure �nds the weakest connection among module interface components, while the DFC measure

is de�ned as the degree of connectivity between module interface components. We showed analytically there

is fundamental di�erence between those measures though there is some correspondence between them.

In order to know how closely the measures are related with each other, we test correlations between

DLC and LC measures, between DLC and MC measures, and between DLC and TC measures. We also

consider the e�ects of program development environment and interface size which are possible extraneous

variables. The set of C functions is partitioned into student programs and system programs, and small

interface programs (input-output count � 5), medium interface programs (5 < input-output count � 9), and

large interface programs (9 < input-output count).

Since DLC is an ordinal scale measure, we use Spearman's rank correlation coe�cient. The test uses the

ranks of the values of variables rather than the values themselves. Table 4 shows the result of the correlation

test, where a signi�cance value corresponding to each correlation coe�cient value is 0.0001.

We make the following observations from the Table 4:

1. The DFC and DLC measures are correlated. The relationship between DLC and TC is stronger than

the relationship between DLC and MC, and the relationship between DLC and LC is the weakest. This

result matches our analytical study. When calculating a cohesion value, the DFC measures average the

cohesion values of all components, while the DLC measure �nds the most weakly connected relation.

2. The correlation between the DFC and DLC measures for the programs with small interfaces is stronger

than that of the programs with larger interfaces. This result is consistent with the analytical study

| DFC measures are sensitive to the number of interface components and the number of connections

between them, while DLC is not. Thus, as the number of interface components increase, the di�erence

between DFC values and DLC values will increase.

16



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
C

ADH

 

Figure 8: Scatter plotting of ADH and MC for student programs in Table 3.
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Figure 9: Scatter plotting of ADH and MC for system programs in Table 3.
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3. DLC is closest to TC among the three DFC measures (MC, LC, and TC). Again, this result matches

our analytical study. Both DLC and TC are calculated using the most extreme cases: DLC �nds the

weakest connection between interface components and TC captures only essential interface components.

5.4 Relationship between FC and DLC measures

We also have performed the correlation test between FC and DLC measures. From the test, we �nd that the

relationship between FC and DLC is very similar to that between DFC and DLC except that the correlation

between FC and DLC is weaker than that between DFC and DLC measures. For 216 C functions without

functions with more than one output, the correlation coe�cients of WFC-DLC, ADH-DLC, and SFC-DLC

are 0.6007, 0.7035, 0.8202, respectively, with a signi�cance value of 0.0001 for every case.

We can expect this result from the de�nitions of FC , DFC and DLC measures: DFC measures have

been derived from FC measures, and the comparison between DFC and DLC is one between design measures

while the comparison between FC and DLC is one between design and code measures.

6 Discussion

The results from our empirical study support the analytically developed relations between measures. We �nd

a general correspondence between the design-level functional cohesion (DFC) measures and the code-level

functional cohesion (FC) measures. Each code-level measure tends to exhibit lower cohesion values than the

corresponding design-level measure. However, each design-level measure correlates with the corresponding

code-level measure at the .0001 signi�cance level.

The strongest correlations were between DFC and FC of the sample of systems programs. Each of the

corresponding design/code-level pairs of measures exhibit correlations of more than .92. The correlation

of DFC to FC for student programs are less than that of systems programmers. However, all of these

correlations are at least .84.

Our results support the use of design-level cohesion measures as surrogates for code-level measures.. The

design-level measures can be obtained before code is written, and thus can be used to predict code-level

cohesion values.

All of the cohesion measures can be used to help identify poorly designed modules. These modules

may perform multiple functions that are disjoint or only weakly connected. Such poorly designed modules

are candidates for redesign and restructuring. The design-level DLC measure and the code-level FC-TC

measure can identify modules that are easy to decompose. They indicate the modules whose components

exhibit the greatest independence. The measurement of structural attributes such as cohesion provides a

mechanism for quantifying design improvements, and are thus a mechanism for use in restructuring designs

and implementations.

Restructuring can be accomplished through a series of functional restructuring (decomposition and com-

position) operations based on the IODG model and a set of objective criteria [7]. In addition to cohesion

measures, restructuring criteria can include coupling and other information. Modules with low DLC/DFC

values are located. The optimal DLC/DFC value will depend on the application, the required reusability,

readability, and maintainability of the software.

When displayed as a diagram, the IODG model provides a visual representation that complements the

quantitative information provided by the measures. The measures can help select candidate modules for

restructuring. Then, an engineer can view an IODG diagram to determine if and how a candidate module

should be restructured.

7 Conclusions

We have formalized the concept of design cohesion based on a graph model of a procedure interface, the input-

output dependence graph (IODG). We derived a design-level cohesion (DLC) measure using an association-

based approach similar to that used by Stevens et al [15], and design-level functional cohesion (DFC) measures

using the slice-based approach used to derive code-level functional cohesion (FC) measures [2]. All of these

18



measures have been implemented. We compared the cohesion measures both analytically and empirically

and evaluated potential applications of the IODG model and cohesion measures.

We �nd that:

1. Cohesion can be objectively de�ned and measured in terms of design-level entities. Our cohesion

measures are consistent with intuitive notions to satisfy the representation theorem of measurement [6].

2. Design-level cohesion measures correspond closely with code-level cohesion measures. Thus, design-

level cohesion measures can be used to predict cohesion at the code-level. Also design-level measures

can be used as surrogates for code level measures.

3. The design-level measures can be used to help locate poorly-designed modules, especially modules

that need to be restructured. The DLC measure always �nds the weakest connection among module

interface components while the DFC measures detect the the degree to which input-output components

are connected.

4. The IODGmodel provides a 
exible tool for a quantitative and qualitative characterization of a software

design. The IODG is the basis for all of the design-level measures. IODG models can also be readily

displayed as diagrams to provide a form of program visualization showing the functional structure

of a system. IODG can be generated from design information, or, during maintenance, they can be

generated directly from program code.

Design-level measures can be used to improve software quality by providing quantitative criteria for

comparing design alternatives. We plan to further evaluate the e�ectiveness of design measures for use in

software restructuring.

The generation of design information, such as IODG's, from code is a form of reverse engineering. A long

term objective is to learn how to generate software architectural structures from program code. Generating

IODG's from program code is a �rst step. Our focus now is on generating higher-level design structures

from IODG's. The software maintenance and software evolution community can clearly bene�t from such

reverse engineering technology.
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