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ABSTRACT 
Retransmission can be used for loss recovery in continuous 
media applications but the number of retransmission 
attempts is bounded by the size of the playout buffer. For 
efficient recovery, a protocol must attempt as many 
retransmissions as possible but avoid late retransmissions. 
This typically requires that the playout buffer be sized in 
round-trip time (RTT) multiples plus some margin for 
error. RTT-based timers are then used to trigger 
retransmissions. However, this approach is problematic 
due to (i) the high variation in RTT commonly encountered 
in the Internet, which makes accurate estimation difficult, 
and (ii) the granularity of timers typically used prevents 
precise control. 
We present two new retransmission-based protocols, for 
unicast and multicast respectively, which eliminate RTT 
estimation and timer-triggered events. As a result, our 
protocols are immune to errors due to jitter and timer 
granularity and recover more losses, while better 
suppressing unnecessary retransmission requests and 
retransmissions than timer-based protocols. At the same 
time, our protocols are simpler to implement and degrade 
more gracefully than timer-based protocols. 

1. INTRODUCTION 
Continuous media (CM) are characterized by the need for 
timely delivery of data to the destination, usually overriding 
the need for 100% reliability. However, due to the best-
effort nature of the Internet a loss recovery mechanism is 
required to correct as many errors as possible without 
violating the timing constraints of the application. 
Traditional Go-Back-N ARQ [1] is not suitable because 
such methods are designed for 100% reliability and thus 
may violate the timely delivery of data.  

In order to eliminate jitter introduced by the network, CM 

applications use a playout buffer to smooth playback. While 
data is held in the playout buffer a limited number of 
retransmissions may be attempted. For example in [2], one 
retransmission is attempted per lost frame. Depending on 
the allowable size of the playout buffer multiple attempts 
may be possible. 

A simple approach to generate multiple retransmissions is 
to estimate the round-trip time (RTT) and use timers to 
trigger retransmissions. We call this a timer-based protocol. 
Solutions based on timers, however, are hard due to the 
following two reasons: (i) the high variation in round-trip 
times (RTTs) commonly encountered in the Internet, and 
(ii) the coarse granularity of timers typically used in 
protocol implementations. For example, TCP 
implementations make use of two timers, FASTTIMO and 
SLOWTIMO, which have a granularity of 200 ms and 500 
ms respectively. In this paper we present two new protocols 
that generate multiple retransmissions and do not require 
RTT estimation or timer-triggered events. We call these 
timerless protocols. We show that these protocols are able 
to generate more retransmission requests within the 
available period than a timer-based alternative. At the same 
time, timerless protocols are better at suppressing 
unnecessary retransmission requests and retransmissions. 

The rest of the paper is organized as follows. In Section 2 
we present background and related work. In Section 3 we 
present the unicast version of our recovery protocol, while 
in Section 4 we present the multicast version. In Section 5 
we present performance results of our unicast 
implementation. Evaluation of the multicast protocol is left 
for future work. Finally, we conclude in Section 6. 

2. BACKGROUND 
In this section, we briefly survey existing methods of loss 
recovery in CM. Perkins et al. [12] define a taxonomy of 
sender-based methods of loss repair, including interleaving 
(which is a form of concealment) and Forward Error 
Correction (FEC). FEC techniques are well established and 
have been found to perform well [3]. However, there is a 
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trade-off between FEC and ARQ in terms of the bandwidth 
used and the delay experienced in loss correction. FEC 
tends to be less bandwidth-efficient than ARQ, though it is 
typically able to recover loss in less than an RTT. There are 
well-established arguments for using FEC [4] or ARQ [5] 
under different conditions, as well as hybrid ARQ/FEC 
schemes [6]. For brevity, we do not repeat those arguments 
here. Retransmission-based error recovery in CM has also 
been dubbed Soft ARQ [7]. 

In retransmission-based schemes upon detection of a gap, 
the receiver decides whether to send a negative 
acknowledgement (NACK) based on the current estimate of 
RTT and the playout time of the missing frame [2]. 
However, in order to make multiple attempts, the protocol 
requires some means of detecting the loss of a request or a 
retransmission. The simplest way to achieve this is with a 
timer set to expire soon after the current RTT estimate, if 
the retransmission is not received. For this an accurate 
estimate of the RTT is critical and current retransmission 
time-out (RTO) estimation techniques [9] may not be 
adequate [8]. 

The protocols we present in this paper do away with timers 
such as those used in RTT estimation and therefore avoid 
one of the hardest problems with retransmission for CM. 

3. TIMERLESS UNICAST RECOVERY 
Instead of using timers to trigger multiple retransmissions, 
we exploit the continuous flow of packets from the sender 
to deliver information about which retransmissions have 
been sent. The inter-packet duration is typically small 
enough to minimize detection latency. 

We call the unicast version of our timerless protocol MR-
UNI (for Multiple Retransmissions for Unicast). In addition 
to the sequence numbers normally used to number frames, 
MR-UNI uses a second sequence number, which labels 
NACKs. The first sequence space is used to number and 
detect loss of original transmissions. The second sequence 
space detects lost retransmissions and NACKs. In the 
following discussion, “sender” and “receiver” refer to the 
CM producer and consumer respectively. 
In MR-UNI, each NACK carries a NACK sequence number 
(NACKSEQ) and the sequence number (SEQ) of the lost 
frame. Each data frame from the sender carries its frame 
sequence number (SEQ) as usual, and also the highest 
NACKSEQ serviced by the sender until that moment. 

The rules for assigning and servicing NACK sequence 
numbers are as follows: 

1. The receiver increments a counter for every 
distinct NACK it sends and numbers the NACK 
with the value of this counter. 

2. The receiver may send duplicate copies of a 
NACK, but these have the same NACK sequence 
number, and are not considered “distinct” NACKs. 

3. The sender services each distinct NACKSEQ only 
once; duplicate NACKs are ignored. 

4. The receiver may assign a new number to a NACK 
sent previously. This creates a fresh NACK, 
numbered according to rule 1. 

5. The sender must service each distinct NACKSEQ 
it sees, regardless of whether the frame being 
requested has been retransmitted before. 
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Figure 1: Operation of MR-UNI. 

 

On detecting a gap in the NACKSEQ stream the receiver 
concludes that there was a retransmission failure (due to the 
loss of NACKs or retransmissions). If there is sufficient 
time to attempt another retransmission, the receiver 
generates a new NACK with distinct NACKSEQs. On 
receiving this new NACK the sender retransmits the 
requested data. 

Figure 1 shows an example timeline for the operation of the 
MR-UNI protocol. The notation x/y indicates 
SEQ/NACKSEQ. For packets from the sender to the 
receiver this indicates the current frame sequence number 
and the highest NACK sequence number serviced so far. 
For packets from the receiver to the sender (i.e., NACKs), it 
indicates the sequence number of the missing frame and the 
sequence number of the NACK. The symbol “#” indicates 



null information. Losses are shown as truncated arrows. 
The NACKs generated at T6 and T9 are the result of a 
discontinuity in the regular frame sequence numbers while 
those generated at T12 and T17 are the result of a 
discontinuity in the NACK sequence number. Note that this 
second type of discontinuity can arise either due to loss of a 
retransmission (detected at T12) or due to loss of a NACK 
(detected at T17). 
The last statement highlights a significant difference 
between the two sequence number streams from the sender 
(SEQ and NACKSEQ). While the first changes as new data 
is generated and transmitted, the second changes only when 
loss occurs. Thus, the protocol detects lost retransmissions 
but may miss lost NACKs. For example, in Figure 1, the 
loss of NACK 5/2 (time T9) would go undetected if frame 
2/1 were not lost (time T8). 

To deal with NACK loss, we repeat NACKs periodically. 
In addition, we make NACKs cumulative, listing all 
NACKSEQs pending at the receiver. 

4. TIMERLESS MULTICAST RECOVERY 
In this section we describe a multiple retransmission 
scheme for multicast that is based on the same principles as 
the unicast scheme (MR-UNI) described above. As with 
MR-UNI, the distinguishing feature of this protocol is that 
it does not rely on timers, but uses supplemental 
information from the sender about the retransmissions made 
so far to enable the receivers to trigger multiple 
retransmissions. 

A naïve implementation would use multiple instances of the 
MR-UNI protocol, one per receiver. This is not efficient 
since the sender must keep track of the NACK sequence 

number state for each receiver and may potentially send 
duplicate retransmissions if many receivers request the 
same packet. It would be more efficient to use a common 
sequence space for retransmissions. 

We propose a multiple retransmission protocol for multicast 
(MR-MCAST), with the following features: 

• Sender naming. With each original frame the 
sender includes information about which frames 
were retransmitted in the past and how many times 
they were retransmitted. There is no second 
sequence number space as in MR-UNI. We call 
this sender naming because the receiver no longer 
numbers (names) NACKs. 

• NACK cycling. At a given time, the sender may 
have information about several retransmissions. If 
the number grows large, the sender may distribute 
this information across N consecutive frames. We 
call this sender-side process NACK cycling. The 
number N is chosen keeping in mind the minimum 
path MTU in the multicast group, in order to avoid 
fragmentation of packets. 

In MR-MCAST, NACKs are unicast to the sender but 
retransmissions are multicast to all receivers.  The protocol 
suppresses unnecessary responses to multiple NACKs for 
the same frame. NACK implosion at the sender is, however, 
an issue. We do not include explicit implosion controls to 
avoid the latency overhead included with most implosion 
control mechanisms. Low recovery latency is typically 
important in interactive groups, and we expect such groups 
to be small, such that NACK implosion will not become a 
problem. If, however, it becomes necessary to deal with 
NACK implosion, it is possible to employ a hierarchical 
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Figure 2: Operation of MR-MCAST 



scheme to suppress redundant NACKs at aggregation points 
between the sender and the receivers. Such schemes have 
been well studied and documented in the reliable multicast 
literature [10][11]. 

We now describe the MR-MCAST protocol in more detail. 
In addition to the sequence number of the data, each frame 
from the sender contains a vector. Each element of the 
vector is composed of two fields – PASTSEQ, the sequence 
number of a frame retransmitted in the past, and 
PASTREPS, the number of times this frame has been 
retransmitted. PASTSEQ is in the same sequence space as 
the original data. Receivers request retransmissions not only 
by identifying the sequence number desired, but also by 
specifying a repetition (REPS) count. This number serves 
to suppress unnecessary retransmissions at the sender by 
identifying NACKs requesting the same data. 

Figure 2 shows a timeline for an exchange between a sender 
and two receivers (R1 and R2). We take the case of N=1. 
Frames from the sender are denoted by SEQ/(PASTSEQ, 
PASTREPS), and NACKs by (SEQ/REPS). The following 
are the events of interest in the figure: 

• Both receivers lose the frame with sequence 
number 2, sent at T2. 

• Both receivers generate a NACK at T5. The 
NACKs are unicast. 

• R2’s NACK is lost. 

• R1’s NACK arrives at the sender at T7 and the 
sender immediately multicasts a retransmission.  

• The retransmission is received by R2 at T9, 
despite the fact that R2’s NACK was lost. 

• The retransmission is lost for R1. 

• A new NACK is generated by R1 at T10. 

• The NACK arrives at the sender at T12 and a new 
retransmission is multicast. 

In MR-MCAST, the sender responds to a NACK only if it 
has the frame in its buffer and the NACK’s REPS number 
exceeds the number of retransmissions that have been made 
for this frame. The fact that retransmissions are multicast 
suppresses unnecessary retransmissions for the same frame 
by rejecting NACKs with a REPS count that is too low. For 
example, in the previous figure if the T5 NACKs from both 
R1 and R2 did arrive at the sender, only the first would be 
serviced, because they both bear the same REPS count. 
Receivers discover the current value of REPS from 
information contained in the stream of original frames. 
When a receiver discovers that its request was serviced but 
the retransmission did not arrive, the receiver increments 
the REPS count and sends a new NACK, as is illustrated for 
receiver R1 at time T10. 

Note that the loss of a NACK in MR-MCAST is still an 
issue – the loss of a NACK may not be detected without 
further losses. For this reason, we still need the protective 
redundancy mechanisms of MR-UNI. However, there is 
already some redundancy built into MR-MCAST with 
respect to NACK generation – when multiple receivers 
experience the same loss, each of them generates a NACK 
which is unicast to the sender. Only one of these NACKs 
needs to successfully arrive at the sender in order to trigger 
a retransmission. As illustrated in the figure, R2 receives its 
retransmission despite the loss of its NACK since R1’s 
NACK successfully arrived at the sender. 

5. EVALUATION 
In this section we evaluate the performance of MR-UNI 
described above, comparing it with a unicast timer-based 
method. To do so we implemented both protocols and 
tested them in lab experiments. We have not yet 
implemented the multicast version. This is left for future 
work. 

Since there are no well-established RTO calculation 
algorithms for CM, we used the TCP RTO calculation and 
exponential backoff for the timer-based protocol. This is a 
well-established mechanism, so we used it as our reference. 
While this mechanism performs well in TCP for non-
latency-sensitive applications, it is not clear how well it will 
perform in latency-sensitive continuous media applications. 

5.1 Analysis 
We can obtain the theoretical correction probability by 
assuming that packet losses are independent and occur with 
some fixed probability. If the packet loss probability is p, 
the probability that a retransmission attempt will be 
successful is (1-p)2, because that event is the successful 
transmission of both the NACK and the retransmission. 
Thus, given that a loss has occurred, the number of 
retransmission attempts required to recover the lost packet 
is a geometrically distributed random variable with 
parameter (1-p)2. The expected number of retransmission is 
1/r, where r=(1-p)2. If the maximum number of attempts 
allowed is x, the probability of correcting a loss is 1-(1-r)x. 
Conversely, if we want a loss correction probability of at 
least q, we should allow at least ln(1-q)/ln(1-r) attempts. 

5.2 Experimental Setup 
 

 
Figure 3: Experimental setup. 



We implemented both protocols as a loss-recovery layer 
over a fixed-rate dummy CM streaming application. Unlike 
standard implementations of timer-based protocols that use 
timers with resolution of 200 – 500 ms, our timer-based 
protocol used accurate timers with a resolution of a few 
milliseconds. Also, the actions indicated by timer expiration 
are executed as soon as the timer expires, rather than being 
deferred or batched. This was done to ensure we give the 
timer-based protocol the best chance of recovery. 

Figure 3 shows the setup used for our lab experiments. The 
constant-rate UDP stream runs from udp-sndr to udp-
rcvr across a PC router that uses NistNet [14] to emulate 
network loss and delay. HTTP traffic between tcp-sndr 
and tcp-rcvr is used to emulate background traffic. This 
traffic competes with the UDP traffic, introducing jitter 
between udp-sndr and udp-rcvr. HTTP traffic is 
implemented as a Poisson process that requests a 20 KB file 
served by tcp-sndr. The average rate of the Poisson 
process is varied to obtain varying traffic volumes. In 
experiments where it was not necessary to vary the amount 
of competing traffic, we used TCP traffic consisting of 
three independent Iperf [13] flows, each achieving 1 Mbps 
throughput under steady conditions without the UDP traffic. 

The RTT between udp-sndr and udp-rcvr was set to 
30 ms. The RTT for the HTTP traffic was also set to 30 ms 
using NistNet. The UDP stream consists of 1516-byte 
packets sent at 536 packets/s, which results in a throughput 
of 6.5 Mbps. The UDP stream also experiences loss due to 
NistNet. In the discussion that follows, forward and reverse 
loss refer to the packet loss percentage on the forward and 
reverse UDP paths, request rate is the average rate of the 
Poisson process of HTTP requests and buffer size is the size 
of the playout buffer on the UDP receiver, which is equal to 
the size of the buffer on the sender, specified in 
milliseconds. 

 

Table 1 Experiments conducted. 
I. Vary forward and reverse loss; buffer size = 240 ms; 

competing traffic using Iperf. 

II. Vary forward loss; reverse loss = 0; buffer size = 240 
ms; competing traffic using Iperf. 

III. Vary buffer size; forward loss = reverse loss = 5%; 
competing traffic using Iperf. 

IV. Vary HTTP request rate; forward loss = reverse loss 
= 5%; buffer size = 240 ms; competing traffic using 
HTTP. 

 

Table 1 lists the conditions for each experiment we 
conducted. For each set of parameters, we conducted five 
20-minute runs with each protocol. In the following graphs, 
each point plots the mean of the results from the five 

experiments, with the standard deviation shown as vertical 
error bars. 

5.3 Results 
Figure 4 through Figure 7 show the percentage of losses 
recovered by the timerless and timer-based protocols in the 
experiments listed in Table 1. We see that the timerless 
protocol consistently outperforms the timer-based protocol. 
This is due to the fact that accurate RTT estimation and 
timely RTT-based triggers are indeed a problem under the 
modest background load considered in our experiments. 
Figure 4 and Figure 5 show the results when the percentage 
of lost UDP packets is varied. Although sustained losses at 
some of the levels considered are unlikely to occur in the 
Internet, these experiments stress the protocols in order to 
reveal hidden trends in their behavior. We can see that the 
timerless protocol degrades much more gracefully with 
increasing loss than the timer-based protocol, whose curve 
descends sharply. Figure 6 and Figure 7 show that the 
performance improvements of the timerless protocol 
continue over a range of playout buffer sizes and 
background traffic volumes. The latter contributes to 
variability in the RTT. 
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Figure 4: Effect of loss rate (bidirectional loss). 
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Figure 5: Effect of loss rate (unidirectional loss). 
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Figure 6: Effect of playout buffer size. 
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Figure 7: Effect of traffic volume. 

 

6. CONCLUSIONS 
In this paper we proposed two new retransmission-based 
error recovery protocols, one for unicast and another for 
multicast that do not rely on timers to perform multiple 
retransmissions. We motivated our designs by describing 
the problems with timer-based protocols, which include 
difficulties in maintaining accurate RTT estimates and 
timeouts in the face of jitter and the coarse granularity of 
timers typically used to implement protocol timers. 

The unicast version of our protocol employs a second 
sequence space used for retransmissions, which allows 
speedy loss detection. The receiver is in control of this 
space, leading to receiver naming of lost data. In the 
multicast version, however, using a separate space for each 
receiver is inefficient, so we number retransmission 
attempts to help detect lost retransmissions. The sender is 
responsible for numbering retransmissions, which results in 
sender naming of lost data. 

We have implemented the unicast version of our timerless 
protocol and evaluated its performance by comparing it to a 
timer-based protocol (which we also implemented). We 
demonstrated through lab experiments that our technique 

performs better than timer-based implementations even 
when accurate timers are used. We showed that the 
performance of the timer-based protocol drops sharply with 
increasing loss probability, while the timerless protocol 
degrades more gracefully. In addition, the timerless 
protocol maintains an advantage over a range of playout 
delays. While the performance difference between the two 
protocols is not dramatic, it is important since any packet 
loss degrades the playback quality. Moreover, we believe 
that our timerless protocols are simpler, and thus easier to 
implement than timer-based protocols. 

We plan to evaluate the multicast version of our protocol in 
future work. 
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