
An Adaptive Multiple Retransmission Technique for
Continuous Media Streams

Rishi Sinha

University of Southern California
3737 Watt Way, PHE 335
Los Angeles, CA 90089

+01-213-740-1604

rishisin@usc.edu

Christos Papadopoulos
University of Southern California

941 W. 37th Place, SAL 238
Los Angeles, CA 90089

+01-213-740-4780

christos@imsc.usc.edu

ABSTRACT
Retransmission can be used for loss recovery in continuous
media applications but the number of retransmission
attempts is bounded by the size of the playout buffer. For
efficient recovery, a protocol must attempt as many
retransmissions as possible but avoid late retransmissions.
This typically requires that the playout buffer be sized in
round-trip time (RTT) multiples plus some margin for
error. RTT-based timers are then used to trigger
retransmissions. However, this approach is problematic
due to (i) the high variation in RTT commonly encountered
in the Internet, which makes accurate estimation difficult,
and (ii) the granularity of timers typically used prevents
precise control.
We present two new retransmission-based protocols, for
unicast and multicast respectively, which eliminate RTT
estimation and timer-triggered events. As a result, our
protocols are immune to errors due to jitter and timer
granularity and recover more losses, while better
suppressing unnecessary retransmission requests and
retransmissions than timer-based protocols. At the same
time, our protocols are simpler to implement and degrade
more gracefully than timer-based protocols.

1. INTRODUCTION
Continuous media (CM) are characterized by the need for
timely delivery of data to the destination, usually overriding
the need for 100% reliability. However, due to the best-
effort nature of the Internet a loss recovery mechanism is
required to correct as many errors as possible without
violating the timing constraints of the application.
Traditional Go-Back-N ARQ [1] is not suitable because
such methods are designed for 100% reliability and thus
may violate the timely delivery of data.

In order to eliminate jitter introduced by the network, CM

applications use a playout buffer to smooth playback. While
data is held in the playout buffer a limited number of
retransmissions may be attempted. For example in [2], one
retransmission is attempted per lost frame. Depending on
the allowable size of the playout buffer multiple attempts
may be possible.

A simple approach to generate multiple retransmissions is
to estimate the round-trip time (RTT) and use timers to
trigger retransmissions. We call this a timer-based protocol.
Solutions based on timers, however, are hard due to the
following two reasons: (i) the high variation in round-trip
times (RTTs) commonly encountered in the Internet, and
(ii) the coarse granularity of timers typically used in
protocol implementations. For example, TCP
implementations make use of two timers, FASTTIMO and
SLOWTIMO, which have a granularity of 200 ms and 500
ms respectively. In this paper we present two new protocols
that generate multiple retransmissions and do not require
RTT estimation or timer-triggered events. We call these
timerless protocols. We show that these protocols are able
to generate more retransmission requests within the
available period than a timer-based alternative. At the same
time, timerless protocols are better at suppressing
unnecessary retransmission requests and retransmissions.

The rest of the paper is organized as follows. In Section 2
we present background and related work. In Section 3 we
present the unicast version of our recovery protocol, while
in Section 4 we present the multicast version. In Section 5
we present performance results of our unicast
implementation. Evaluation of the multicast protocol is left
for future work. Finally, we conclude in Section 6.

2. BACKGROUND
In this section, we briefly survey existing methods of loss
recovery in CM. Perkins et al. [12] define a taxonomy of
sender-based methods of loss repair, including interleaving
(which is a form of concealment) and Forward Error
Correction (FEC). FEC techniques are well established and
have been found to perform well [3]. However, there is a

This research has been funded (or funded in part) by the Integrated Media
Systems Center, a National Science Foundation Engineering Research
Center, Cooperative Agreement No. EEC-9529152. Any opinions,
findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect those of the
National Science Foundation.

trade-off between FEC and ARQ in terms of the bandwidth
used and the delay experienced in loss correction. FEC
tends to be less bandwidth-efficient than ARQ, though it is
typically able to recover loss in less than an RTT. There are
well-established arguments for using FEC [4] or ARQ [5]
under different conditions, as well as hybrid ARQ/FEC
schemes [6]. For brevity, we do not repeat those arguments
here. Retransmission-based error recovery in CM has also
been dubbed Soft ARQ [7].

In retransmission-based schemes upon detection of a gap,
the receiver decides whether to send a negative
acknowledgement (NACK) based on the current estimate of
RTT and the playout time of the missing frame [2].
However, in order to make multiple attempts, the protocol
requires some means of detecting the loss of a request or a
retransmission. The simplest way to achieve this is with a
timer set to expire soon after the current RTT estimate, if
the retransmission is not received. For this an accurate
estimate of the RTT is critical and current retransmission
time-out (RTO) estimation techniques [9] may not be
adequate [8].

The protocols we present in this paper do away with timers
such as those used in RTT estimation and therefore avoid
one of the hardest problems with retransmission for CM.

3. TIMERLESS UNICAST RECOVERY
Instead of using timers to trigger multiple retransmissions,
we exploit the continuous flow of packets from the sender
to deliver information about which retransmissions have
been sent. The inter-packet duration is typically small
enough to minimize detection latency.

We call the unicast version of our timerless protocol MR-
UNI (for Multiple Retransmissions for Unicast). In addition
to the sequence numbers normally used to number frames,
MR-UNI uses a second sequence number, which labels
NACKs. The first sequence space is used to number and
detect loss of original transmissions. The second sequence
space detects lost retransmissions and NACKs. In the
following discussion, “sender” and “receiver” refer to the
CM producer and consumer respectively.
In MR-UNI, each NACK carries a NACK sequence number
(NACKSEQ) and the sequence number (SEQ) of the lost
frame. Each data frame from the sender carries its frame
sequence number (SEQ) as usual, and also the highest
NACKSEQ serviced by the sender until that moment.

The rules for assigning and servicing NACK sequence
numbers are as follows:

1. The receiver increments a counter for every
distinct NACK it sends and numbers the NACK
with the value of this counter.

2. The receiver may send duplicate copies of a
NACK, but these have the same NACK sequence
number, and are not considered “distinct” NACKs.

3. The sender services each distinct NACKSEQ only
once; duplicate NACKs are ignored.

4. The receiver may assign a new number to a NACK
sent previously. This creates a fresh NACK,
numbered according to rule 1.

5. The sender must service each distinct NACKSEQ
it sees, regardless of whether the frame being
requested has been retransmitted before.

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22

Sender Receiver

Figure 1: Operation of MR-UNI.

On detecting a gap in the NACKSEQ stream the receiver
concludes that there was a retransmission failure (due to the
loss of NACKs or retransmissions). If there is sufficient
time to attempt another retransmission, the receiver
generates a new NACK with distinct NACKSEQs. On
receiving this new NACK the sender retransmits the
requested data.

Figure 1 shows an example timeline for the operation of the
MR-UNI protocol. The notation x/y indicates
SEQ/NACKSEQ. For packets from the sender to the
receiver this indicates the current frame sequence number
and the highest NACK sequence number serviced so far.
For packets from the receiver to the sender (i.e., NACKs), it
indicates the sequence number of the missing frame and the
sequence number of the NACK. The symbol “#” indicates

null information. Losses are shown as truncated arrows.
The NACKs generated at T6 and T9 are the result of a
discontinuity in the regular frame sequence numbers while
those generated at T12 and T17 are the result of a
discontinuity in the NACK sequence number. Note that this
second type of discontinuity can arise either due to loss of a
retransmission (detected at T12) or due to loss of a NACK
(detected at T17).
The last statement highlights a significant difference
between the two sequence number streams from the sender
(SEQ and NACKSEQ). While the first changes as new data
is generated and transmitted, the second changes only when
loss occurs. Thus, the protocol detects lost retransmissions
but may miss lost NACKs. For example, in Figure 1, the
loss of NACK 5/2 (time T9) would go undetected if frame
2/1 were not lost (time T8).

To deal with NACK loss, we repeat NACKs periodically.
In addition, we make NACKs cumulative, listing all
NACKSEQs pending at the receiver.

4. TIMERLESS MULTICAST RECOVERY
In this section we describe a multiple retransmission
scheme for multicast that is based on the same principles as
the unicast scheme (MR-UNI) described above. As with
MR-UNI, the distinguishing feature of this protocol is that
it does not rely on timers, but uses supplemental
information from the sender about the retransmissions made
so far to enable the receivers to trigger multiple
retransmissions.

A naïve implementation would use multiple instances of the
MR-UNI protocol, one per receiver. This is not efficient
since the sender must keep track of the NACK sequence

number state for each receiver and may potentially send
duplicate retransmissions if many receivers request the
same packet. It would be more efficient to use a common
sequence space for retransmissions.

We propose a multiple retransmission protocol for multicast
(MR-MCAST), with the following features:

• Sender naming. With each original frame the
sender includes information about which frames
were retransmitted in the past and how many times
they were retransmitted. There is no second
sequence number space as in MR-UNI. We call
this sender naming because the receiver no longer
numbers (names) NACKs.

• NACK cycling. At a given time, the sender may
have information about several retransmissions. If
the number grows large, the sender may distribute
this information across N consecutive frames. We
call this sender-side process NACK cycling. The
number N is chosen keeping in mind the minimum
path MTU in the multicast group, in order to avoid
fragmentation of packets.

In MR-MCAST, NACKs are unicast to the sender but
retransmissions are multicast to all receivers. The protocol
suppresses unnecessary responses to multiple NACKs for
the same frame. NACK implosion at the sender is, however,
an issue. We do not include explicit implosion controls to
avoid the latency overhead included with most implosion
control mechanisms. Low recovery latency is typically
important in interactive groups, and we expect such groups
to be small, such that NACK implosion will not become a
problem. If, however, it becomes necessary to deal with
NACK implosion, it is possible to employ a hierarchical

���

���

���

	�

��

���

���

���

���

�����

�����

�����

�����

��� �

�!�

�"�

���

���

�"#

��$

��%

��&

��'

�����

�����

�����

�����

��� �

����#

����$

(�)+*-,+)+. /1032 014 5-0+67/98

:�;

: 8

:�<

:�=

:�>

:�?

:�@

:�A

:�B

:�;�C

:�;3;

:�; 8

:�;�<

:�; =

:�;�>

:�;�?

/1032 014 5-0+67/ ;

:�;�>

Figure 2: Operation of MR-MCAST

scheme to suppress redundant NACKs at aggregation points
between the sender and the receivers. Such schemes have
been well studied and documented in the reliable multicast
literature [10][11].

We now describe the MR-MCAST protocol in more detail.
In addition to the sequence number of the data, each frame
from the sender contains a vector. Each element of the
vector is composed of two fields – PASTSEQ, the sequence
number of a frame retransmitted in the past, and
PASTREPS, the number of times this frame has been
retransmitted. PASTSEQ is in the same sequence space as
the original data. Receivers request retransmissions not only
by identifying the sequence number desired, but also by
specifying a repetition (REPS) count. This number serves
to suppress unnecessary retransmissions at the sender by
identifying NACKs requesting the same data.

Figure 2 shows a timeline for an exchange between a sender
and two receivers (R1 and R2). We take the case of N=1.
Frames from the sender are denoted by SEQ/(PASTSEQ,
PASTREPS), and NACKs by (SEQ/REPS). The following
are the events of interest in the figure:

• Both receivers lose the frame with sequence
number 2, sent at T2.

• Both receivers generate a NACK at T5. The
NACKs are unicast.

• R2’s NACK is lost.

• R1’s NACK arrives at the sender at T7 and the
sender immediately multicasts a retransmission.

• The retransmission is received by R2 at T9,
despite the fact that R2’s NACK was lost.

• The retransmission is lost for R1.

• A new NACK is generated by R1 at T10.

• The NACK arrives at the sender at T12 and a new
retransmission is multicast.

In MR-MCAST, the sender responds to a NACK only if it
has the frame in its buffer and the NACK’s REPS number
exceeds the number of retransmissions that have been made
for this frame. The fact that retransmissions are multicast
suppresses unnecessary retransmissions for the same frame
by rejecting NACKs with a REPS count that is too low. For
example, in the previous figure if the T5 NACKs from both
R1 and R2 did arrive at the sender, only the first would be
serviced, because they both bear the same REPS count.
Receivers discover the current value of REPS from
information contained in the stream of original frames.
When a receiver discovers that its request was serviced but
the retransmission did not arrive, the receiver increments
the REPS count and sends a new NACK, as is illustrated for
receiver R1 at time T10.

Note that the loss of a NACK in MR-MCAST is still an
issue – the loss of a NACK may not be detected without
further losses. For this reason, we still need the protective
redundancy mechanisms of MR-UNI. However, there is
already some redundancy built into MR-MCAST with
respect to NACK generation – when multiple receivers
experience the same loss, each of them generates a NACK
which is unicast to the sender. Only one of these NACKs
needs to successfully arrive at the sender in order to trigger
a retransmission. As illustrated in the figure, R2 receives its
retransmission despite the loss of its NACK since R1’s
NACK successfully arrived at the sender.

5. EVALUATION
In this section we evaluate the performance of MR-UNI
described above, comparing it with a unicast timer-based
method. To do so we implemented both protocols and
tested them in lab experiments. We have not yet
implemented the multicast version. This is left for future
work.

Since there are no well-established RTO calculation
algorithms for CM, we used the TCP RTO calculation and
exponential backoff for the timer-based protocol. This is a
well-established mechanism, so we used it as our reference.
While this mechanism performs well in TCP for non-
latency-sensitive applications, it is not clear how well it will
perform in latency-sensitive continuous media applications.

5.1 Analysis
We can obtain the theoretical correction probability by
assuming that packet losses are independent and occur with
some fixed probability. If the packet loss probability is p,
the probability that a retransmission attempt will be
successful is (1-p)2, because that event is the successful
transmission of both the NACK and the retransmission.
Thus, given that a loss has occurred, the number of
retransmission attempts required to recover the lost packet
is a geometrically distributed random variable with
parameter (1-p)2. The expected number of retransmission is
1/r, where r=(1-p)2. If the maximum number of attempts
allowed is x, the probability of correcting a loss is 1-(1-r)x.
Conversely, if we want a loss correction probability of at
least q, we should allow at least ln(1-q)/ln(1-r) attempts.

5.2 Experimental Setup

Figure 3: Experimental setup.

We implemented both protocols as a loss-recovery layer
over a fixed-rate dummy CM streaming application. Unlike
standard implementations of timer-based protocols that use
timers with resolution of 200 – 500 ms, our timer-based
protocol used accurate timers with a resolution of a few
milliseconds. Also, the actions indicated by timer expiration
are executed as soon as the timer expires, rather than being
deferred or batched. This was done to ensure we give the
timer-based protocol the best chance of recovery.

Figure 3 shows the setup used for our lab experiments. The
constant-rate UDP stream runs from udp-sndr to udp-
rcvr across a PC router that uses NistNet [14] to emulate
network loss and delay. HTTP traffic between tcp-sndr
and tcp-rcvr is used to emulate background traffic. This
traffic competes with the UDP traffic, introducing jitter
between udp-sndr and udp-rcvr. HTTP traffic is
implemented as a Poisson process that requests a 20 KB file
served by tcp-sndr. The average rate of the Poisson
process is varied to obtain varying traffic volumes. In
experiments where it was not necessary to vary the amount
of competing traffic, we used TCP traffic consisting of
three independent Iperf [13] flows, each achieving 1 Mbps
throughput under steady conditions without the UDP traffic.

The RTT between udp-sndr and udp-rcvr was set to
30 ms. The RTT for the HTTP traffic was also set to 30 ms
using NistNet. The UDP stream consists of 1516-byte
packets sent at 536 packets/s, which results in a throughput
of 6.5 Mbps. The UDP stream also experiences loss due to
NistNet. In the discussion that follows, forward and reverse
loss refer to the packet loss percentage on the forward and
reverse UDP paths, request rate is the average rate of the
Poisson process of HTTP requests and buffer size is the size
of the playout buffer on the UDP receiver, which is equal to
the size of the buffer on the sender, specified in
milliseconds.

Table 1 Experiments conducted.
I. Vary forward and reverse loss; buffer size = 240 ms;

competing traffic using Iperf.

II. Vary forward loss; reverse loss = 0; buffer size = 240
ms; competing traffic using Iperf.

III. Vary buffer size; forward loss = reverse loss = 5%;
competing traffic using Iperf.

IV. Vary HTTP request rate; forward loss = reverse loss
= 5%; buffer size = 240 ms; competing traffic using
HTTP.

Table 1 lists the conditions for each experiment we
conducted. For each set of parameters, we conducted five
20-minute runs with each protocol. In the following graphs,
each point plots the mean of the results from the five

experiments, with the standard deviation shown as vertical
error bars.

5.3 Results
Figure 4 through Figure 7 show the percentage of losses
recovered by the timerless and timer-based protocols in the
experiments listed in Table 1. We see that the timerless
protocol consistently outperforms the timer-based protocol.
This is due to the fact that accurate RTT estimation and
timely RTT-based triggers are indeed a problem under the
modest background load considered in our experiments.
Figure 4 and Figure 5 show the results when the percentage
of lost UDP packets is varied. Although sustained losses at
some of the levels considered are unlikely to occur in the
Internet, these experiments stress the protocols in order to
reveal hidden trends in their behavior. We can see that the
timerless protocol degrades much more gracefully with
increasing loss than the timer-based protocol, whose curve
descends sharply. Figure 6 and Figure 7 show that the
performance improvements of the timerless protocol
continue over a range of playout buffer sizes and
background traffic volumes. The latter contributes to
variability in the RTT.

 88

 90

 92

 94

 96

 98

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

ov
er

y
(%

)

Loss in each direction (%)

Effect of loss (forward and reverse) on loss recovery

Timerless
Timer-based

Figure 4: Effect of loss rate (bidirectional loss).

 88

 90

 92

 94

 96

 98

 100

 1 2 3 4 5 6 7 8 9 10

R
ec

ov
er

y
(%

)

Forward loss (%)

Effect of forward loss on loss recovery

Timerless
Timer-based

Figure 5: Effect of loss rate (unidirectional loss).

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 3 4 5 6 7 8

R
ec

ov
er

y
(%

)

Ratio of buffer size to base RTT = 30 ms

Effect of buffer size on loss recovery

Timerless
Timer-based

Figure 6: Effect of playout buffer size.

 75

 80

 85

 90

 95

 100

 1 2 3 4 5 6 7 8 9 10 11 12

R
ec

ov
er

y
(%

)

Average rate of HTTP requests (requests/s)

Effect of background traffic on loss recovery

Timerless
Timer-based

Figure 7: Effect of traffic volume.

6. CONCLUSIONS
In this paper we proposed two new retransmission-based
error recovery protocols, one for unicast and another for
multicast that do not rely on timers to perform multiple
retransmissions. We motivated our designs by describing
the problems with timer-based protocols, which include
difficulties in maintaining accurate RTT estimates and
timeouts in the face of jitter and the coarse granularity of
timers typically used to implement protocol timers.

The unicast version of our protocol employs a second
sequence space used for retransmissions, which allows
speedy loss detection. The receiver is in control of this
space, leading to receiver naming of lost data. In the
multicast version, however, using a separate space for each
receiver is inefficient, so we number retransmission
attempts to help detect lost retransmissions. The sender is
responsible for numbering retransmissions, which results in
sender naming of lost data.

We have implemented the unicast version of our timerless
protocol and evaluated its performance by comparing it to a
timer-based protocol (which we also implemented). We
demonstrated through lab experiments that our technique

performs better than timer-based implementations even
when accurate timers are used. We showed that the
performance of the timer-based protocol drops sharply with
increasing loss probability, while the timerless protocol
degrades more gracefully. In addition, the timerless
protocol maintains an advantage over a range of playout
delays. While the performance difference between the two
protocols is not dramatic, it is important since any packet
loss degrades the playback quality. Moreover, we believe
that our timerless protocols are simpler, and thus easier to
implement than timer-based protocols.

We plan to evaluate the multicast version of our protocol in
future work.

7. REFERENCES
[1] S. Lin, D. J. Costello Jr. and M. J. Miller. Automatic-Repeat-

Request Error-Control Schemes. IEEE Communications Magazine,
vol. 22, no. 12, December 1984.

[2] C. Papadopoulos and G. M. Parulkar. Retransmission-based Error
Control for Continuous Media Applications. Proc. 6th International
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), April 1996.

[3] V. Hardman, M. A. Sasse, M. Handley, and A. Watson. Reliable
Audio for Use over the Internet. Proc. Internet Society's International
Networking Conference (INET), June 1995.

[4] J.-C. Bolot and A. V. Garcia. The Case for FEC-based Error Control
for Packet Audio in the Internet. ACM Multimedia Systems, 1997.

[5] M. Zorzi. Performance of FEC and ARQ Error Control in Bursty
Channels under Delay Constraints. Proc. IEEE Veh. Technol.
Conference, 1998.

[6] R. H. Deng and M. L. Lin. A Type I Hybrid ARQ System with
Adaptive Code Rates. IEEE Transactions on Communications, vol.
43, no. 2/3/4, 1995.

[7] M. Podolsky, S. McCanne, and M. Vetterli. Soft ARQ for Layered
Streaming Media. Journal of VLSI Signal Processing Systems for
Signal, Image and Video Technology, Special Issue on Multimedia
Signal Processing, Kluwer Academic Publishers, April 2000.

[8] D. Loguinov and H. Radha. On Retransmissions Schemes for Real-
time Streaming in the Internet. Proc. of IEEE INFOCOM, May
2001.

[9] V. Jacobson. Congestion Avoidance and Control. Computer
Communication Review, vol. 18, no. 4, August 1988.

[10] J. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol.
Proc. IEEE INFOCOM, March 1996.

[11] C. Papadopoulos, G. Parulkar and G. Varghese. LMS: A Router-
Assisted Scheme for Reliable Multicast. To appear, IEEE/ACM
Transactions on Networking.

[12] C. Perkins, O. Hodson and V. Hardman. A Survey of Packet Loss
Recovery Techniques for Streaming Media. IEEE Network
Magazine, September/October 1998.

[13] Iperf. http://dast.nlanr.net/Projects/Iperf/

[14] NistNet. http://snad.ncsl.nist.gov/nistnet/

