
Programming Assignment #3 CS 200 Algorithms and Data Structures

 1

Programming Assignment #3
 Managing and multiple users with a Binary Search Tree

Due date: March 27, Tuesday 2:00PM
URL: http://www.cs.colostate.edu/~cs200

A. Objective

In this assignment, you will build methods to manage multiple users with a binary search
tree. Your system should allow the following capabilities: inserting a new member,
deleting a member, and retrieving information about a member.

B. Description of Task: maintaining a BST for the members

Members are searched and sorted using a binary search tree. The user’s ID is the key
that will be used to sort and search. Your software should sort the user IDs
lexicographically. To build a BST, start with the algorithm as outlined in the textbook
(Prichard).

a. Create classes MemberNode and MemberTree.

b. Implement methods of the MemberNode Class.

The MemberNode class contains information about a member and references to its
children nodes, and should provide the following public methods:

Member getItem();
MemberNode getLeftChild();
MemberNode getRightChild();

void setItem(Member _thisItem);
void setLeftChild(MemberNode _leftChild); // _leftChild can be null
void setRightChild(MemberNode _rightChild); // _rightChild can be null

Programming Assignment #3 CS 200 Algorithms and Data Structures

 2

c. Implement methods of the MemberTree Class
The class MemberTree should provide the following public methods:

boolean isEmpty();
MemberNode setRoot(MemberNode _rootNode);
MemberNode getRoot();
MemberNode searchMember(String userID MemberNode startnode);
void insertMember(Member _newMember);
MemberNode removeMember(String userID MemberNode startnode);
MemberNode retrieveMemberInfo(String userID, MemberNode startnode);
LinkedList<Member> getMemberTreeInOrder(MemberNode startnode);
LinkedList<Member> getMemberTreePreOrder(MemebrNode startnode);
LinkedList<Member> getMemberTreePostOrder(MemberNode startnode);

The searchMember method searches a MemberNode object that has the same
userID. The searching process will start from the startnode. If it cannot locate the
memberNode, it will return null.

The deleteMember method deletes a MemberNode object that has the same userID.
This method will start to search the item to delete from startnode. If your
deleteMember method was successfully processed, your method should return the
MemberNode you deleted. Otherwise, it should return null.

The retriveMemberInfo() method retrieves a MemberNode object that has the same
userID .This method will start to search the item to retrieve from startnode. If the
member does not exist, return null.

Provide a public method, getMemberTreeInOrder(). This method should return a
LinkedList of members from your member tree following the in-order tree traversal
algorithm. The traversal process starts from the startnode. Similarly, methods
getMemberTreePreOrder and getMemberTreePostOrder return LinkedLists of
members following the Pre-Order and Post-Order tree traversal algorithms. The traversal
process starts from the startnode.

You may add one or more methods in this class.

C. Parsing Information of multiple users

Your example file contains 15 members and their edges. Modify your current
InformationParser to read multiple users’ information. Please note that some users
might not have any edges yet.

public static MemberTree parseMultipleInfo(String input)

[Note] An input file contains information of multiple users.

D. Using Skeleton Files
You can modify your classes from PA1 and PA2. Additional skeletons are provided.
Please note that using these skeleton files is OPTIONAL. You are encouraged to build

Programming Assignment #3 CS 200 Algorithms and Data Structures

 3

your software based on your own design. PA3.java will be provided but please do not
change its main() method. Example data will also be provided.

D. Requirements/Test Cases

The test cases listed below are provided to assist you in verifying the correctness of your
software. You are also required to test your software with different test cases that you
will build yourself. Actual grading will be done by test cases using the same commands;
however, the values that the specified input arguments take will be different.

(1) Test case 1

Objective:
Build a tree from the provided example dataset, and print your tree using the In-order
traversal algorithm. In this test case, print only userID and separate userIDs with a
space. For the test case 1,2 and 3, use the command line syntax,

java PA3 [input_file] build_tree [1|2|3]

Here, the last argument “1” is for In-order, “2” is for Pre-order, and “3” s for Post-order.

Command: java PA3 PA3_input.txt build_tree 1
Output: 1372William ar3090 bettyfriedan dh3136 eh0721 epyle jambs lf8203
mtwain nhawth remerson sinclair theodore1 theodore789 willr

(2) Test case 2

Objective:
Build a tree from the provided example dataset, and print out your tree using the Pre-
order traversal algorithm. In this test case, print only userID and separate userIDs with a
space.

Command: java PA3 PA3_input.txt build_tree 2
Output: eh0721 bettyfriedan 1372William ar3090 dh3136 jambs epyle
remerson nhawth mtwain lf8203 sinclair theodore789 theodore1 willr

(3) Test case 3

Objective:
Build a tree from the provided example dataset, and print out your tree using the Post-
order traversal algorithm.

Command: java PA3 PA3_input.txt build_tree 3

Programming Assignment #3 CS 200 Algorithms and Data Structures

 4

Output: ar3090 1372William dh3136 bettyfriedan epyle lf8203 mtwain
nhawth theodore1 willr theodore789 sinclair remerson jambs eh0721

(4) Test case 4

Objective: After you build a tree from the example file, add a member to your tree
without any edge, and print out your tree using the In-order traversal algorithm (userID
only).

Command: java PA3 PA3_input.txt add_member be1376 Black Elk
Output: 1372William ar3090 be1376 bettyfriedan dh3136 eh0721 epyle jambs
lf8203 mtwain nhawth remerson sinclair theodore1 theodore789 willr

(5) Test case 5

Objective: After you build a tree from the example file, delete a member from your tree
and print out your tree using the In-order traversal algorithm (userID only). The deleted
member is specified with its userID.

Command: java PA3 PA3_input.txt remove_member bettyfriedan
Output: 1372William ar3090 dh3136 eh0721 epyle jambs lf8203 mtwain
nhawth remerson sinclair theodore1 theodore789 willr

(6) Test case 6

Objective: After you build a tree from the example file, retrieve a member’s information
from your tree and print out the first name and last name.

Command: java PA3 PA3_input.txt retrieve_memberInfo jambs
Output: James Baldwin

PA3 file, input file, and submission instructions will be posted on the class web site along
with this document. DO NOT MODIFY the main() of the PA3.java that has been
provided to you.

E. Grading
This assignment will account for 5% of your final grade. The grading itself will be done
on a 50 point scale.

G. Late Policy
Please check the late policy available from the course web page.

