Problem 1 ~ 10: 5 pts each

1) In an unsorted array-based implementation of a table, a new item is inserted at location \qquad _.
a) items[\# of items]
b) items[\# of items -1]
c) items[\# of items +1]
d) items[\# of items +2]
2) A priority queue orders its items by their \qquad .
a) Position
b) value
c) priority value
d) size
3) A heap is a \qquad .
a) general tree
b) binary search tree
c) full binary tree
d) complete binary tree
4) In an array-based implementation of a heap, the heapDelete (delete and adjust) operation is \qquad
a) $\mathrm{O}(1)$
b) $\mathrm{O}(\mathrm{n})$
c) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
d) $\mathrm{O}(\log n)$
5) The heapsort is \qquad in the average case.
a) $\mathrm{O}(1)$
b) $\mathrm{O}(\mathrm{n})$
c) $O(\log n)$
d) $O(n \log n)$
6) The mergesort is more efficient than the heapsort in the worst case.
(True/False)
7) A sorted implementation of a table can insert a new item into any convenient location.
(True/False)
8) The search key of an item must not change for as long as the item is stored in a table.
(True/False)
9) What are the differences between a heap and a binary search tree?
10) What is a collision in hashing?
11) A subset of a graph's vertices and edges is known as a \qquad .
a) bar graph
b) line graph
c) subgraph
d) circuit
12) A graph is \qquad if each pair of distinct vertices has a path between them.
a) Complete
b) disconnected
c) connected
d) full
13) A complete graph has a(n) \qquad between each pair of distinct vertices.
a) Edge
b) path
c) cycle
d) circuit
14) An iterative DFS traversal algorithm uses a(n) \qquad .
a) List
b) array
c) queue
d) stack
15) An iterative BFS traversal algorithm uses a(n) \qquad .
a) List
b) array
c) queue
d) stack
16) All paths begin and end at the same vertex.
17) All complete graphs are connected.
18) The adjacency matrix for an undirected graph is symmetrical.
19) In a digraph, there can be only one edge between a pair of vertices.
20) What are the two most common implementations of a graph?
