
GRAPHS
CS 200 RECITATION 13

Before we start, we will do course evaluations

Graphs
Abstract data type with nodes and edges, kind of like a tree except that graphs do not have the hierarchy
that trees do. In general trees are viewed as a subset of graphs (they are a graph with extra rules). Graphs
look something like this:

Nodes and edges, like a tree, but with out any overall ordering. These edges have no direction, so this
graph is undirected. A directed graph’s edges have direction (indicated with an arrow), and can only be
traversed in the correct direction.

Terminology
• Adjacent - two vertices (nodes) are adjacent if they are directly connected by an edge

• Incident - an edge is incident on two nodes (the ones it touches)

• Degree - of a vertex, the number of edges incident upon it (how many edges connect to this vertex)

• Self Loop - an edge which connects a vertex to itself

• Simple Graph - no self loops, no two edges connect same vertex pair

• Multigraph - may have multiple edges between same vertex pair

• Psudograph - multigraph with self loops.

• Cycle - repeatable path through the graph.

Traversals
• Depth first search: go as deep as you can visiting nodes along the way, then backtrack to catch any
missed nodes.

1

– Psudocode:

– d f s (in v : Vertex)
s − s tack f o r keeping track o f a c t i v e v e r t i c e s
s . push (v)
mark v as v i s i t e d
whi l e (! s . isEmpty ()) {

i f (no unv i s i t ed v e r t i c e s ad jacent to the ver tex
on top o f the s tack) {

s . pop () \\ backtrack
e l s e {

s e l e c t unv i s i t ed ver tex u adjacent to ver tex on
top o f the s tack .
s . push (u)
mark u as v i s i t e d

}
}

• Breadth first search: visit every adjacent node, then go one level deeper and repeat

– Psudocode:

– b f s (in v : Vertex)
q − queue o f nodes to be
proces sed
q . enque (v)
mark v as v i s i t e d
whi l e (! q . isEmpty ()) {

w = q . dequeue ()
f o r (each unv i s i t ed ver tex u
adjacent to w) {

mark u as v i s i t e d
q . enqueue (u)

}
}

Implementation
3 ways to implement a graph ADT:

• Adjacency matrix

– use a matrix to store which nodes are connected by an edge.

–
first second

first 0 1
second 1 0

– first is connected to second
– and second is connected to first
– matrix[i][j] tells you if there is connection between i and j
– for today, the row label will be the ’from ’ node and the column label will be the ’to’ node. This

is not set in stone, but I had to pick one.

• Adjacency list

2

– each node keeps a list of outgoing edges (if undirected, it’s just a list of edges). This stores edge
data on the nodes as opposed to the above matrix which stores it independently of the nodes.

• Nodes and References (like out trees from before, not used much)

– variant of the adjacency list.

Exercise
Your exercise for today is to convert my skeleton code (from the course website) into a Graph data structure,
based on an adjacency matrix. Details of the skeleton:

• MainClass.java - the familiar main class, used for testing. I was not able to make a good random-
ization system so I had to hard code the testing a bit. Tries to build this graph:

–
– MainClass also has a method for you to make your own graph.

• GraphADT.java - is the graph class. It’s generic type T specifies what type of data the nodes store
(String in this example), T must implement the Comparable interface. Also stores a list of nodes
separate from the adjacency matrix.

– This list of nodes is used to build the matrix, and it’s indices match the matrix’s row and column
labels. So nodes[i] and matrix_row[i] refer to the same node (matrix_row is data gotten from
the matrix). This is a somewhat risky design decision on my part, since it invites programming
errors in the long run, but it is much simpler than the alternative.

• AdjacencyMatrix.java - the adjacency matrix used by GraphADT, is a Vector of Vectors (a 2d
Vector). Vector is a list type similar to ArrayList

I’ve tried to document the skeleton code a bit better, so it should be easier to figure out how to use it.

What you need to do:
• implement both versions of the addEdge method

• implement the DFS method, depth first search which traverses the whole tree

– hint: use java’s stack class

• implement the BFS method, breadth first search which traverses the whole tree

– hint: use a java’s linked list class, which implements the queue interface but the method names
are different: offer() is enqueue, poll() is dequeue, peek() is peek.

• implement the test2 method in MainClass to build and test your own tree (print it out, DFS, BFS)

3

Grading
• Sign the attendance

• turn in your code via checkin:

– Monday: ~cs200/bin/checkin R13L01 R13L01.tar
– Tuesday: ~cs200/bin/checkin R13L02 R13L02.tar
– Wednesday: ~cs200/bin/checkin R13L03 R13L03.tar
– Thursday: ~cs200/bin/checkin R13L04 R13L04.tar

• don’t worry if your not finished, just turn in what you have and add a readme file saying that you ran
out of time. This will not cost points.

Sample Output:

Graph ADT. Adjacency matrix :
denver boulder f o r t_ c o l l i n s durango grand_junction minturn

pueblo
denver [0 , 1 , 0 , 1 , 0 , 0 , 0]

boulder [0 , 0 , 1 , 0 , 1 , 0 , 0]
f o r t_ c o l l i n s [0 , 0 , 0 , 1 , 0 , 1 , 0]

durango [0 , 0 , 0 , 0 , 0 , 1 , 0]
grand_junction [0 , 0 , 0 , 0 , 0 , 0 , 0]

minturn [0 , 0 , 0 , 0 , 0 , 0 , 1]
pueblo [0 , 0 , 0 , 0 , 0 , 0 , 0]

Depth f i r s t search :
[denver , boulder , f o r t_ c o l l i n s , durango , minturn , pueblo , grand_junction]

Breadth f i r s t search :
[denver , boulder , durango , f o r t_c o l l i n s , grand_junction , minturn , pueblo]

graph c i t i e s {
denver −− boulder
denver −− durango
boulder −− f o r t_ c o l l i n s
boulder −− grand_junction
f o r t_ c o l l i n s −− durango
f o r t_ c o l l i n s −− minturn
durango −− minturn
minturn −− pueblo

}

t e s t 2 not implemented

4

