
FINAL EXAM REVIEW
CS 200 RECITATIOIN 14

I don’t *think* the final is cumulative. Sangmi will say for sure during her review sessions. Either way,
keep in mind that this course’s material is naturally cumulative because later concepts often build upon
earlier ones. For example, graph traversals use stacks and queues and Dĳkstra’s algorithm commonly uses a
priority queue.

Table
A table is a value oriented abstract data type:

Student ID First Name Last Name Exam 1 Exam 2
001245 Jake Glen 67 89
001247 Parastoo Mahgreb 87 78
001256 Wayn Dwyer 90 96
012345 Bob Harding 95 97
022356 Richard Nixon 95 50

• Data is arranged by Search Key

– Student ID is the search key in this table
– Search key must be unique (it identifies a single record)
– Implementation designed to retrieve records using the search key
– Search key must not change once it is established

• Each column is a filed

• Each row is a record

• Possible implementations:

–

Search Add Remove
Sorted Array O(log n) O(n) O(n)

Unsorted Array O(n) O(1) O(n)
BST O(log n), [O(n)] O(log n), [O(n)] O(log n), [O(n)]

∗ values in square brackets are worst case costs

• Hashing techniques provide a better performing table implementation

• Used when someone needs to store a bunch of records, random access is important and they have a
piece of data suitable for use as a unique search key.

• Operations

– add a record
– retrieve a record
– delete a record
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Priority Queue
Another value oriented ADT.

• It’s a queue with one big difference: an element’s place in line is determined not by when it was added,
but by it’s priority value. Higher priority elements are higher in the queue and will be retrieved before
lower priority elements.

• Uses:

– Operating systems
∗ sometimes used when scheduling the processor

– Networks
∗ traffic is commonly assigned priorities, and network devices need to give higher priority traffic
a better place in line

• Implementations:

– Sorted array
∗ may need a lot of shifting of elements

– Sorted linked list
– Binary Search Tree
∗ Highest value is easily found (all the way to the right, has at most one child)

– Heap
∗ preferred in most cases

• Operations:

– enqueue
– dequeue
– peek

Heap
Yet another value oriented abstract data type.
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• Heaps are complete trees which follow the heap property

– root contains a key greater than or equal to the keys of it’s children
∗ This is a maxheap. A minheap has the same idea but the above inequality is inverted: root’s

key is less than or equal to the keys of it’s children.
– left and right sub trees are also heaps
– Heap property implications for a maxheap:
∗ root has the highest value in the heap
∗ values are in descending order along every path from root to a leaf

– Implications for a minheap are similar:
∗ root has the lowest value in the heap
∗ values are in ascending order along every path from root to a leaf

• NOT a Binary Search Tree! Just a regular, but complete, tree

• Can be stored in an array efficiently:

– because it’s a complete tree
– eliminates need for a separate ’node’ class, the location of parent and child nodes can be directly

computed.
– Think of concatenating each row into the array. Above tree is:
∗ [11, 8, 10, 5, 3, 7]

– Array may be longer than number of elements in the tree, simply keep track of where the last one
is. There will be no gaps.

– How to compute addresses (array indices) relative to node N, which is at index I:
∗ N’s left child: 2I + 1
∗ N’s right child: left child + 1 or: 2(I + 1)
∗ N’s parent node: b(I + 1)/2c, doing an integer division will accomplish that floor operation

nicely.
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– Root is always at index 0

• Operations

– insert: add new node, by storing it in the first open slot in the array.
∗ new node may be out of position (violating the heap property), swap with parent node as

necessary until it is in position.
∗ Usually called “percolating up”, or “trickling up”
∗ an added node may percolate up far enough to become the new root.

– delete: behaves much like a stack’s pop operation: root is removed from tree and returned. It’s
always the root because that is the only node that has an absolute position (the other nodes don’t
have to be in order, just less than the root)
∗ swap root with right-most leaf, then delete leaf. Much like tree deletes. This keeps the tree
complete and prevents the array from ever having to shift

∗ after swapping, the heap will no longer be a correct heap (it will be psudoheap), we need to
restore it’s heap property. This is done by swapping the root with it’s larger child as many
times as is needed until it ends up in the right place

• Complexity

–
average worst case

insert O(log n) O(log n)
delete O(log n) O(log n)

• Uses:

– priority queues!
– sorting

• Heapsort:

– store all elements to be sorted in a heap
– iteratively call delete on the heap until it is empty, elements will come out in sorted order
– can be done in place: use part of the array for the heap and the rest of it for the sorted list

Hashing
Hashing is is not a data type by itself, but a technique for building data types like hash maps and hash
tables. Recall the previous discussion of the Table ADT, its performance is generally a bit underwhelming
(OK, the sorted tree based implementation is not bad, but we can still do better).

•

Search Add Remove
Sorted Array O(log n) O(n) O(n)

Unsorted Array O(n) O(1) O(n)
BST O(log n), [O(n)] O(log n), [O(n)] O(log n), [O(n)]

Notice that the fundamental problem for a table is how to quickly find which record we want to operate on.
Enter hashing techniques, which are designed for exactly that:
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That magic box, a.k.a. the hash function, can convert a search key into an array index. And do it pretty
quickly. Inserting something in a table just got a lot easier:

• call the hash function with the record’s search key

• it returns an index

• store element at array[index]

Hash Functions
There are two main types of hash functions:

• Perfect: maps every possible search key to a unique value. Never has a collision, no empty space
necessary in the array.

– only practical if the entire domain of the search key is known beforehand. For example: credit
card and telephone numbers.

• Imperfect: maps search keys to addresses, but not necessarily unique ones. Collisions are possible, and
some empty space is needed in the array

– general purpose, these are the most common type of hash function.

Desirable properties of a hash function:

• easy and fast to compute

• values evenly distributed (over the array’s indices)

Example hash functions:

• choose some digits from the search key:
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– 001364825, fourth and last digit makes hash of: 35
– simple and fast, but does not spread values evenly

• folding

– sum all the digits of the key
– or group the digits and sum the groups

• modulo arithmetic

– x% table sizewhere x is the search key. Prime table sizes work the best

Strings can be hashed as well. They are usually converted to a number and then hashed with on of the
above hash functions

Collisions
A collision happens when an imperfect hash function tries to put two things in the same index. They are
pretty common actually, see the slides about the birthday problem. Dealing with collisions:

• technique 1: open addressing

– probe for an empty index
– linear probing: if location h is occupied, check h+1, h+2, etc... until and empty space is found.

Same technique used to search for an element.
∗ deleting can cause problems: if it removes an element that was previously in a solid block
(cluster) of elements, subsequent attempts at linear probing may be fooled into thinking the
empty space is the end of the cluster. This is usually solved by marking the index as deleted
in some way.

∗ susceptible to primary clustering: items tend to cluster together in the array. Large clusters
tend to grow.

– quadratic probing: if location h is occupied: check h+ 12, h+ 22, h+ 32, etc...
∗ eliminates primary clustering
∗ but causes secondary clustering because the search sequence is the same for every element

– double hashing: use a second hash function to choose a step (number of spaces) to use for probing

• technique 2: restructure the table

– make each location able to store multiple elements
– if array[i] is an array of fixed size, it’s called a bucket. Choosing a good bucket size can be tricky
– if array[i] is a linked list, you are using separate chaining. when a collision happens, simple add

the offending element to the end of the linked list in that location.

Performance
Performance of a hash table is dependent on how full it’s array is, called the load factor. it is simply the
ratio of full spaces to total space in the array. Smaller load factors are better. Most systems try to keep
their load factors below 2/3. In the following equations, αis the load factor:

• number of comparisons for a search:

– linear probing
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∗ successful: 1
2

[
1 + 1

1− α

]
∗ unsuccessful: 1

2

[
1 + 1

(1− α2)

]
– quadratic probing

∗ successful: −loge(1− α)
α

∗ unsuccessful: 1
1− α

– chaining

∗ successful: 1 + α

2
∗ unsuccessful: α

Relations
A relation aggregates members of a set into tuples according to some relationship (any one will do!) between
those members.

• {0, 1, 2, 3} is a set. Set is a list of elements in no particular order with no duplicates.

• (0, 2) (1, 3) are two tuples drawn from that set

• {(0, 2) , (1, 3) , (1, 1)} is a relation on that set (relationship = one I made up). Note that this is also a
set, a set of tuples.

Properties of Relations
• Reflexive

– (a, a) ∈ R for every element a ∈ R. That means that for every member X in the set, the relation
must have an (X,X) tuple

• Symmetric

– (b, a) ∈ R whenever (a, b) ∈ R. If my relation contains (1,2) it must also contain (2,1) to be
symmetric.

• Anti-symmetric

– if (b, a) ∈ R then (a, b) is not in R. a = b is a special case, (1,1) is a tuple which is both symmetric
and anti-symmetric

• Transitive

– if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R. If I have (1,2) and (2,3) I must also have (1,3) for it
to be transitive.

These properties are pretty much all-or-nothing. Either the entire relation is reflexive or it isn’t. A single
counter example is all that is necessary to remove one of these properties from a relation.
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Combining Relations
• Union

– R1 ∪R2. Both sets concatenated, duplicates removed

• Intersection

– R1 ∩R2. Set of elements in both relations

• Subtraction

– R1−R2. Removes elements common to both relations from R1.

• Composite

– R2 ◦ R1. Find tuples in R1 with second elements which are the same as first elements in tuples
from R2. Make a new tuple from the unused elements in this process. This new tuple may not
be present in R1 or R2, it can be completely new.

– {(1, 1) , (1, 4) , (2, 3) , (3, 1) , (3, 4)}= R1
– {(1, 0) , (2, 0) , (3, 1) , (3, 2) , (4, 1)}= R2
– {(1, 0) , (1, 1) , (2, 1) , (2, 2) , (3, 0) , (3, 1)}= R2 ◦R1

Representing Relations
• As a Matrix

– {(2, 1) , (3, 1) , (3, 2)} =

 0 0
1 0
1 1


– when a relation is expressed as a matrix, the composite can be computed using a technique similar

to matrix multiplication called the boolean product. We did not present this technique in class,
and you are not expected to know it. If you are given matrices, it is perfectly OK to convert them
back into list-of-tuples notation before doing the composite.

• As a Digraph, this is graph of {(1, 1) , (1, 3) , (2, 1) , (2, 3) , (2, 4) , (3, 1) , (3, 2) , (4, 1)} , though it looks
different than the book’s version (sorry)

• General form:

– {(a, b) | condition}
– (a,b) describes the format of the relation’s tuples
– | - the vertical bar is a separator here, not a logical OR
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– the condition specifies rules for building tuples in the relation. Multiple conditions can be used
with logical operators:
∗ {(a, b) | condition or condition2 and condition3}
∗ {(a, b) | a is odd and b is even}

– try to get all the conditions into one set of {} braces.

Closures
A closure on a relation means: add whatever tuples are necessary to make the relation have the specified
property. So a reflexive closure on a relation means add whatever tuples are necessary to that relation to
make it reflexive

Graphs
Abstract data type with nodes and edges, kind of like a tree except that graphs do not have the hierarchy
that trees do. In general trees are viewed as a subset of graphs (they are a graph with extra rules). Graphs
look something like this:

Nodes and edges, like a tree, but with out any overall ordering. These edges have no direction, so this
graph is undirected. A directed graph’s edges have direction (indicated with an arrow), and can only be
traversed in the correct direction.

Terminology
• Vertex - a location in the graph (usually containing data)

• Node - another name for a vertex

• Edge - connects vertices

• Adjacent - two vertices (nodes) are adjacent if they are directly connected by an edge

• Incident - an edge is incident on two nodes (the ones it touches)

• Degree - of a vertex, the number of edges incident upon it (how many edges connect to this vertex)

• Self Loop - an edge which connects a vertex to itself

• Simple Graph - no self loops, no two edges connect same vertex pair

• Multigraph - may have multiple edges between same vertex pair

• Psudograph - multigraph with self loops.

• complete graph - simple graph which contains exactly one edge between each pair of distinct vertices

• Cycle - repeatable path through the graph.

• Path - sequence of edges (or sequence of vertices in a simple graph)
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Traversals
• Depth first search: go as deep as you can visiting nodes along the way, then backtrack to catch any
missed nodes.

– Psudocode:

– d f s ( in v : Vertex )
s − s tack f o r keeping track o f a c t i v e v e r t i c e s
s . push (v )
mark v as v i s i t e d
whi l e ( ! s . isEmpty ( ) ) {

i f ( no unv i s i t ed v e r t i c e s ad jacent to the ver tex
on top o f the s tack ) {

s . pop ( ) \\ backtrack
e l s e {

s e l e c t unv i s i t ed ver tex u adjacent to ver tex on
top o f the s tack .
s . push (u)
mark u as v i s i t e d

}
}

• Breadth first search: visit every adjacent node, then go one level deeper and repeat

– Psudocode:

– b f s ( in v : Vertex )
q − queue o f nodes to be
proces sed
q . enque (v )
mark v as v i s i t e d
whi l e ( ! q . isEmpty ( ) ) {

w = q . dequeue ( )
f o r ( each unv i s i t ed ver tex u
adjacent to w) {

mark u as v i s i t e d
q . enqueue (u)

}
}

Implementation
3 ways to implement a graph ADT:

• Adjacency matrix

– use a matrix to store which nodes are connected by an edge.

–
first second

first 0 1
second 1 0

– first is connected to second
– and second is connected to first
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– matrix[i][j] tells you if there is connection between i and j
– for today, the row label will be the ’from ’ node and the column label will be the ’to’ node. This

is not set in stone, but I had to pick one.

• Adjacency list

– each node keeps a list of outgoing edges (if undirected, it’s just a list of edges). This stores edge
data on the nodes as opposed to the above matrix which stores it independently of the nodes.

• Nodes and References (like out trees from before, not used much)

– variant of the adjacency list.

Topological Sorting
Graphs are commonly used to describe some sort of precedence relationship between their nodes. The
example from the slides about Batman’s costume is a good analogy, he has to don his costume in the correct
order.

• DAG: directed acyclic graph. Is commonly used with topological sorting (cycles are bad...).

• A topological sort is a listing of nodes such that: if (a,b) is an edges, then a appears before b in the
list

• the sort is a path through the graph which illustrates the precedence of the nodes

• depth first search can be modified to do a topological sort:

• topSort2 ( in theGraph : Graph ) : L i s t
s . c r ea t eStack ( )
f o r ( a l l v e r t i c e s v in the graph theGraph )

i f ( v has no p r ede c e s s o r s )
s . push (v )
Mark v as v i s i t e d

whi l e ( ! s . isEmpty ( ) )
i f ( a l l v e r t i c e s ad jacent to the ver tex on top o f the
s tack have been v i s i t e d )

v = s . pop ( )
aL l i s t . add (1 , v )

e l s e
S e l e c t an unv i s i t ed ver tex u adjacent to ver tex on
top o f the s tack
s . push (u)
Mark u as v i s i t e d

return aL i s t

Shortest Path
Dĳkstra’s shortest path algorithm is pretty dominant. The main idea:

• maintain an array, d, of minimum distance estimates:

– initi it as:
– d[start] = 0
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– d[unvisited] = infinity

• make a priority queue of vertices not yet visited

• select minimum distance vertex (delete from the queue), visit it, and update distances to it’s neighbors

• for each vertex, store a pointer which tells you the vertex from which you arrived. By traversing
backwards along these pointers, kinda like a linked list, you can get the path

We want to compute the shortest path from our start vertex to every other vertex in the graph. Usually
described by showing successive states of the array d for each step in the algorithm:

a b c d e
0 – – – –
0 10/a 5/a – –
0 8/c 5/a 7/c 14/c
0 8/c 5/a 7/c 11/d

Spanning Trees
Remember that a tree is a also a graph, it is an undirected connected graph with no simple circuits.
• Spanning tree: A sub graph of a connected undirected graph G that contains all of G’s vertices and
just enough edges to form a tree

– remove edges until you have a tree
– add back any edges necessary to make it reach all vertices

Minimum Spanning Tree
A spanning tree which minimizes the total edge weight of all edges in the tree. Note that these do not
guarantee shortest paths, in fact they can make some stupid paths, but they will give you the minimum
units of edge weight necessary to connect all vertices. Helpful if you are planning a physical network, like
sewer pipes, and construction is expensive; You would want to minimize the total amount of pipe needed.
• Prim’s algorithm:

– weighted graph
– start at arbitrary vertex, or user’s vertex
– keep list of visited vertices, and a list of visited edges
– loop until visited list contains the whole graph:
∗ Look at all the edges which connect any visited vertex to any unvisited vertex
∗ Choose the edge in the above set with the smallest weight
∗ add that edge to the list of edges, and the vertex it connects to to the list of visited vertices

– output the list of visited vertices and the list of visited edges. The list of vertices should contain
all vertices in the graph, the list of edges need not contain all edges in the graph.

Other resources:
• answers and solutions to the recitation exercises are available on the RamCT discussion board.

• recitation worksheets are intended as practice and study aids, look up the answers to them if you
haven’t already

• look over the written assignments and quizzes, they have good example problems

• I think Sangmi is planning to post a study guide

• Lectures this week will be review
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Grading:
Attendance only, come sign the sheet.
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