
BIG O PRACTICE
CS 200 RECITATION 4

One more thing about interfaces
Forgot to mention this last week, sorry.

• Java interfaces cannot specify constructor methods! This is because an interface can be imple-
mented by multiple classes, and constructors are specific to a single class.

– If you want to control class construction with an interface (maybe to require specific constructor
arguments or something), you have to do it another way.

– Methods which return an instance of the same class behave much like a constructor (especially if
they are static). An interface can specify such a method as a way of controlling class construction.

– This is why there was a create() method in the PA1 skeleton files.
– Methods which exist to build class instances are often said to be using the Factory Method design

pattern. Though strictly speaking, a factory method is a method which constructs a range of
possible classes depending on the situation (often with the actual constructor declared as protected
scope, so external uses must call the factory method).

– I should also mention the Singleton design pattern. Where a Factory Method is used to maintain
only a single instance of a class. The Factory Method will construct the class if no instance exists;
If an instance exists, it will return that instance instead of building a new one. This can be used
to store global state in a program.

Tip Of The Week
Handling the output of terminal commands, you can do more that just look at it on the screen. Two broad
categories:

• Redirect the output to a file. Add “> filename” to the end of the command where filename is
the name of a file (will be created if necessary). This example stores the output of ls in a file called
dir_list.txt

corn> l s > d i r_ l i s t . txt

• Pipes connect the output of one command to the input of another. The “|” character is
called a pipe when it is used in the terminal. Using pipes, you can chain several commands together.
This example counts the number of things in a directory by calling ls and piping it’s output to wc -l
(word count, setup to count lines)

corn> l s | wc − l
52

1

More on Big O notation

Eyeballing code
The process of Looking at a piece of code and determining it’s Big O complexity is more intuitive than
mechanical. Generally you should look for where most of the work is being done, and/or for code that runs
many times. Next you should think about how many times the code will run for input of a given size (n),
and maybe trace out a small example. This should give you an idea of how to express the number of code
cycles in terms of the size of it’s input.

As an example, lets look at the traveling salesman problem. Finding the shortest route for a salesman to
visit n cities. Each city is visited only once, and they can be visited in any order. Brute force computation of
this problem is to compute all possible routes and then find the lowest distance. Adding up distance between
cities is a constant time operation, so we will focus on enumerating all possible routes:

// arguments are two l i s t s o f c i t i e s
method t rav_sa l e s (v i s i t e d , no tV i s i t ed){

i f (no tV i s i t ed i s empty)
re turn v i s i t e d ;

l i s t r e s u l t s ;
f o r (x i s a c i t y in no tV i s i t ed){

l i s t temp = v i s i t e d + x ;
l i s t notV = remove x from notVi s i t ed ;
r e s u l t s . append (t rav_sa l e s (temp , notV)) ; // r e c u r s i v e c a l l

}
re turn r e s u l t s ;

}

Here we have a loop which contains a recursive call.

• Loop runs n times. After 1 recursion, loop runs n-1 times. After two recursions loop runs n-2 times,
etc...

• First time through the loop, n recursive calls are made. Each one has a n-1 loop, so it is n-1 operations
done n times. You can think of it as a nested loop (where the inner loop skips an element) if you want.

• So far it looks like n · (n− 1) · (n− 2) · . . . · 1, which is n factorial (n!). This makes a bit of sense, since
every time a city is visited, there are fewer cities which still need to be visited.

• I tried a few small inputs. For n=3, there were 6 routes (3! = 6). For n=4 there were 24 routes (4! =
24). So n! does seem to be a good representation of how much looping it does. Since it does not do
much else, it’s probably O(n!).

• I looked this one up, brute force solutions to the traveling salesman problem really are O(n!).

Proofs
Other problems ask us to prove that f(x) is O(g(x)), where f and g are mathematical functions. Remember
the official definition for big O: |f(x)| ≤ C|g(x)|, whenever x > k. I actually like the book’s technique for
this, so here is an example:

Show that 6x2 + 2x+ 3 is O(x3)
Start by writing down f(x) ≤ f(x). no, really. Stay with me, we get:

6x2 + 2x+ 3 ≤ 6x2 + 2x+ 3
Now, we want to make the right hand side look as much like g(x) as we can. To do this, we make some
observations. Specifically, one about each term in the original function, relating it to g(x):

6x2 ≤ x3, for x > 6.

2

2x ≤ x3, for x > 2.
3 ≤ x3, for x > 2.

How did I find these? Plotted them in Wolfram|Alpha, looked for lowest integer where x3 was bigger. That
number is the bound on x above. Based on these observations, when x is greater than 6 every term in the
original function is less than x3. So we can rewrite the original in equality as:

6x2 + 2x+ 3 ≤ 6x3 + 2x3 + 3x3

I literally just made every term in the right side an x3 term! In fact, we can remove the coefficients on the
right side, the inequality still holds:

6x2 + 2x+ 3 ≤ x3 + x3+x3

6x2 + 2x+ 3 ≤ 3x3

This now looks a lot like the definition, |f(x)| ≤ C|g(x)|, with c = 3 and k = 6 (these are the witness
variables). C from previous equations, and K is highest bound on x from our observations above. We can
now say that:

6x2 + 2x+ 3 is O(x3) with witness: c=3 and k=6.

Exercise
Worksheet again, sorry.

• problems from the book (mostly Rosen book 6th ed, one from Prichard 3rd ed)

• I picked odd numbers again, so answers are in the back. I will also post answers to the overhead toward
the end of the period and to RamCt after Thursday’s recit.

• Grading: attendance and doing the work, just as before.

• When you are done, show me your worksheet and I will record your attendance. You may keep the
worksheet.

3

