CS 200 Recitation 4 Worksheet

Name:
Problems on this sheet are from Discrete Mathematics and Its Applications, by Rosen 6th ed. \#4 is from Data Abstraction and Problem Solving with Java, by Prichard. Of course, there is not much work space here, I've got plenty of extra paper if you want it (recommended).
Problem 1: pp191, \#11. Show that $3 x^{4}+1$ is $O\left(\frac{x^{4}}{2}\right)$ and that $\frac{x^{4}}{2}$ is $O\left(3 x^{4}+1\right)$:
Hint for 2nd part: under what conditions is $\frac{x^{4}}{2} \leq 3 x^{4}+1$?

Problem 2: pp191, $\# 5$. Show that $\frac{\left(x^{2}+1\right)}{(x+1)}$ is $O(x)$:

Problem 3: pp199m \#7. psudocode for evaluating polynomials $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ at $\mathrm{x}=\mathrm{c}$ is given:

```
procedure polynomial(c, a0, a1, ..., aN: are real numbers){
    power = 1;
    y = a0;
    for(i = 1 to N){
        power = power * c;
        y = y + ai * power //ai = ith a value
    }
    return y;
}
```

Exactly how many multiplications and additions are used to evaluate a polynomial of degree N at $\mathrm{x}=\mathrm{c}$? (do not count loop increments), Also can you express this in Big O notation?
Problem 4: Prichard pp 553 \#1. How many comparisons of array items do the following loops contain? Can you express that in Big O notation?

```
int temp;
for(j = 1; j <= n-1; ++j){
    i = j + 1;
    do {
        if(theArray[i] < theArray[j]) {
            temp = theArray[i];
            theArray[i] = theArray[j];
            theArray[j] = temp;
        } //end if
    } while( i <=n );
} //end for
```

