

Outline

- Relations and Their Properties
- n-ary Relations and Their Applications
- Representing Relations

Relations on a Set

- A relation on a set A defines a relationship between elements of A
- Example: relations on the set of integers $R_{I} = \{(a,b) \mid a \le b\}$ $R_{2} = \{(a,b) \mid a > b\}$

 $R_3 = \{(a,b) \mid a = b + 1\}$

Relations on a Set as Graphs

- Consider the relation *R* on cities:
 R = {(*a*,*b*) | *a*, *b* are cities such that the population of *a* is smaller than that of *b*}
- We can represent *R* as a **directed graph** where there is an edge from *a* to *b* if (*a*,*b*) is in *R*.

Binary Relations

Example 1

- A set of students
- B set of courses
- R pairs (a,b) such that student a is enrolled in course b R = {(chris, cs200), (mike, cs520),...}

Example 2

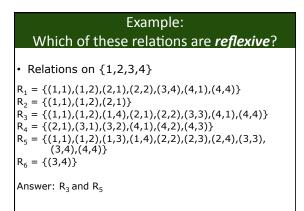
- A set of cities B set of US states
 - R (a,b) such that city a is in state b $% \left(a,b\right) =\left(a,b\right) \left(a,b\right) \left($
 - $\mathsf{R} = \{(\mathsf{Denver}, \mathsf{CO}), (\mathsf{Laramie}, \mathsf{WY}), ...\}$

Binary Relations

- A binary relation from a set A to a set B is a set R of ordered pairs (a,b)where $a \in A$ and $b \in B$.
- The notation aRb denotes $(a,b) \in R$
- Example: A = {0,1,2}, B = {a,b} and R={(0,a),(0,b),(1,a),(2,b)}

Relations and Cartesian Products

- Let *A*,*B* be sets
- The cartesian product of *A* and *B* is denoted by *A* x *B* and is equal to:


 $\{ (a,b) \mid a \in A \text{ and } b \in B \}$

- A binary relation from A to B is a subset of $A \ge B$
- Given sets A and B with sizes n and m respectively

 The number of elements in A x B is n x m and
 - The number of elements in $A \times B$ is $n \times m$ and - The number of binary relations from A to B is 2^{nm}

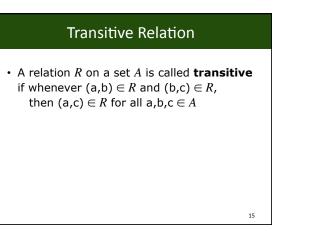
Reflexive relation

• A relation R on a set A is called **reflexive** if $(a,a) \in R$ for every element $a \in A$.

Example • On a set S of n elements, how many of reflexive relations are there?

Symmetric relation

- A relation R on a set A is called **symmetric** if $(b,a) \in R$ whenever $(a,b) \in R$, for all $a, b \in A$.
- A relation R on a set A such that for all a,b ∈ A, if (a,b) ∈ R and (b,a) ∈ R, then a = b is called **antisymmetric**


11

• Relations on $\{1,2,3,4\}$ R₁ = {(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)} R₂ = {(1,1),(1,2),(2,1)} R₃ = {(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1), (4,4)} R₄ = {(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)} R₅ = {(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4), (3,3),(3,4),(4,4)} R₆ = {(3,4)} Answer: R₂ and R₃

Which of these relations are symmetric?

Example	
 On a set S of n elements, how many of symmetric relations are there? 	
	13

Which of these relations are			
antisymmetric?			
 Relations on {1,2,3,4} 			
$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$			
$R_2 = \{(1,1), (1,2), (2,1)\}$			
$R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1$			
(4,4)}			
$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$			
$R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), $			
(3,3),(3,4),(4,4)}			
$R_6 = \{(3,4)\}$			
Answer: $R_4 R_5$ and R_6			
	ŧ		

Which of the relations are transitive?
 Relations on {1,2,3,4}
$R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$ $R_2 = \{(1,1), (1,2), (2,1)\}$
$R_{3} = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$
$R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$
$R_{5} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4), \\ (3,3),(3,4),(4,4)\}$
$R_6 = \{(3,4)\}$
Answer: $R_4 R_5$ and R_6

Combining Relations

Let
$$A = \{1,2,3\}$$
 and $B = \{1,2,3,4\}$.
The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and
 $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be
combined to obtain:
 $R_1 \cup R_2 =$
 $R_1 \cap R_2 =$

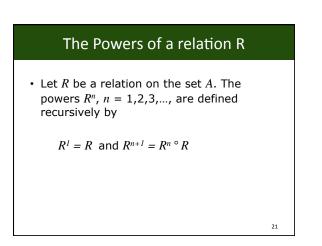
$$n_1 + n_2 - n_2$$

$$R_1 - R_2 =$$

 $R_2 - R_1 =$

17

Combining Relations


Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1),(2,2),(3,3)\}$ and $R_2 = \{(1,1),(1,2),(1,3),(1,4)\}$ can be combined to obtain: $R_1 \cup R_2 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\}$ $R_1 \cap R_2 = \{(1,1)\}$ $R_1 - R_2 = \{(2,2),(3,3)\}$ $R_2 - R_1 = \{(1,2),(1,3),(1,4)\}$ 18

Composite of relations

- Let *R* be a relation from a set *A* to a set *B* and *S* be a relation from *B* to a set *C*.
- The **composite** of *R* and *S* is the relation consisting of ordered pairs (a,c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$.
- We denote the composite of *R* and *S* by *S* ° *R*.

Example

- What is the composite of the relation Rand S, where R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R = \{(1,1),$ $(1,4),(2,3),(3,1),(3,4)\}$ and S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ with S $= \{(1,0),(2,0),(3,1),(3,2),(4,1)\}$?
- Solution: $S^{\circ}R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$

Example

• Let $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Find the powers R^n , n = 2,3,4...

Solution:

 $R^{2} = R^{\circ}R, \quad R^{2} = \{(1,1),(2,1),(3,1),(4,2)\}$ $R^{3} = R^{2} \circ R, \quad R^{3} = \{(1,1),(2,1),(3,1),(4,1)\}$

22

24

20

Theorem 9-1

• The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n = 1, 2, 3, ...

Proof

Outline

- Relations and Their Properties
- *n*-ary Relations and Their Applications
- Representing Relations

n-ary Relations

Definition: Let A_1, A_2, \ldots, A_n be sets. An *n*-ary relation on these sets is a subset of

 $A_1 \ge A_2 \ge \dots \ge A_n$.

The sets A_1, A_2, \ldots, A_n are called the *domains* of the relation, and *n* is called its *degree*.

Example: The *between* relation consisting of triples (a,b,c) where a,b,c are integers such that a < b < c

Example			
Relation R: Person X supports that Person Y helps Person Z			
Person X	Person Y	Person Z	
Alice	Bob	Denise	
Charles	Alice	Bob	
Charles	Charles	Charles	
Denise	Denise	Denise	

n-Tuples

• An ordered n-tuple is a sequence of n objects

 $(x_1, x_2, ..., x_n)$ First component is x_1

... n-th component is x_n

- An ordered pair: 2-tuple (x, y)
- An ordered triple: 3-tuple (x, y, z)

Tuples vs Sets

- Two tuples are equal iff they are equal coordinate-wise $\begin{aligned} (x_1,\,x_2,\,...,\,x_n) &= (y_1,\,y_2,\,...,\,y_n) \text{ iff} \\ x_1 &= y_1,\,x_2 &= y_2,\,...,\,x_n &= y_n \end{aligned}$
- $(2, 1) \neq (1, 2)$, but $\{2, 1\} = \{1, 2\}$
- $(1, 2, 1) \neq (2, 1)$, but $\{1, 2, 1\} = \{2, 1\}$

Databases and Relations

What can be the primary keys?				
Students				
StudentName	IDnumber	Major	GPA	
Ackermann	231455	Computer Science	3.88	
Adams	888323	Physics	3.45	
Chou	102147	Computer Science	3.49	
Goodfriend	453876	Mathematics	3.45	
Rao	678543	Mathematics	3.90	
Stevens	786576	Psychology	2.99	
Databases defined by relations are called relational databases				

Operations on n-ary Relations

- Form new n-ary relations.
 - Determining all n-tuples in the n-ary relation that satisfy certain conditions
 - Find all students who have a grade point average above 3.5

Selection Operator

- Let *R* be an *n*-ary relation and *C* a condition that elements in *R* may satisfy.
- Then the selection operator S_c maps the *n*ary relation *R* to the *n*-ary relation of all ntuples from *R* that satisfy the condition *C*.

31

Projections

• The projection P_{i1i2}, \dots, m , where $i_1 < i_2 2 < \dots < i_m$, maps the n-tuple (a_1, a_2, \dots, a_n) to the m-tuple (a_1, a_2, \dots, a_m) where $m \le n$.

Example					
Students					
StudentName	IDnumber	Major	GPA		
Ackermann	231455	Computer Science	3.88		
Adams	888323	Physics	3.45		
Chou	102147	Computer Science	3.49		
Goodfriend	453876	Mathematics	3.45		
Rao	678543	Mathematics	3.90		
Stevens	786576	Psychology	2.99		
What relation results when the projection P1,4 is applied to this relation? 33					

Example			
Students			
StudentName	GPA		
Ackermann	3.88		
Adams	3.45		
Chou	3.49		
Goodfriend	3.45		
Rao	3.90		
Stevens	2.99		
Column 2 and 3 a	re deleted.		
		34	

Outline

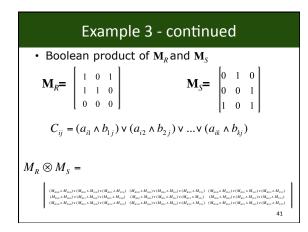
- Relations and Their Properties
- n-ary Relations and Their Applications
- Representing Relations

Representing Relations Using Matrices

- A relation between finite sets can be represented using a zero-one matrix.
- *R* is a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}$
- Using Matrix $\mathbf{M}_{R} = [m_{ij}]$, where

$$\int 1 \text{ if } (\mathbf{a}_i, b_j) \in \mathbb{R}$$

 $m_{ij} =$


35

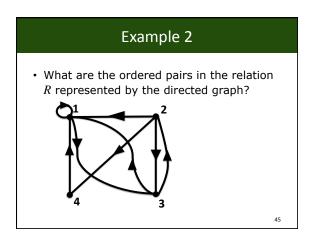
 $\begin{bmatrix} 0 & \text{if } (a_i, b_i) \notin R \end{bmatrix}$

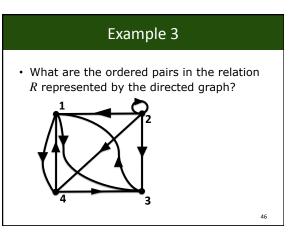
Example 1	Example 2
$A = \{1,2,3\}$ $B = \{1,2\}$ Relation <i>R</i> from <i>A</i> to <i>B</i> containing (<i>a</i> , <i>b</i>) if $a \in A, b \in B$, and $a > b$. What is the matrix representing R if $a_1 = 1$, $a_2 = 2$ and $a_3 = 3$ and $b_1 = 1$ and $b_2 = 2$?	• Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, \dots, b_5\}$ Which ordered pairs are in the relation represented by the matrix, $\begin{bmatrix} 0 & 1 & 0 & 0 & 0\\ 1 & 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

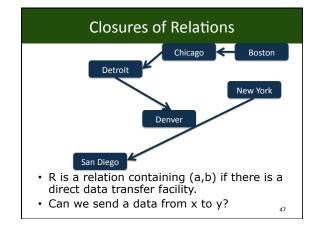
Reflexive? Symmetric? Antisymmetric?				
M _R =	1 1 0	1 1 1	0 1 1	
				39

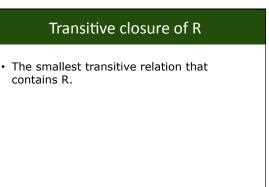
Example 3				
	he matrix representing where the matrices rep are,			
M _{<i>R</i>} =	$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{M}_{S} =$	$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{array}\right]_{40}$		

Representing Relations Using Digraphs


• Each element of the set is represented by a point, and each ordered pictorial represented using an arc with its direction indicated by an arrow.


Directed Graph


- A directed graph, or digraph, consists of a set V of *vertices* (or nodes) together with a set E of ordered pairs of elements of V called *edges* (or arcs).
 - The vertex a is called the *initial vertex* of the edge (a,b) and the vertex b is called the *terminal vertex* of this edge.


43

Example 1 The directed graph of the relation $R = \{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ on the set $\{1,2,3,4\}$

52

54

Reflexive closure of R

- R = {(1,1),(1,2),(2,1),(3,2)} on the set A={1,2,3}
- The smallest reflexive relation containing R?
 - Adding (2,2) and (3,3) to R
- The reflexive closure of R
- {(1,1),(1,2),(2,1),(3,2),(2,2),(3,3)}
 Add a diagonal relation
- $R \cup \Delta$, where $\Delta = \{(a,a) \mid a \in A\}$

Example

• What is the reflexive closure of the relation R={(a,b)|a<b}?

Symmetric closure of R

- {(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)} on {1,2,3}
- How can we produce a symmetric relation that is as small as possible and contains R?
- Add (2,1) and (3,1)
- Symmetric closure of R

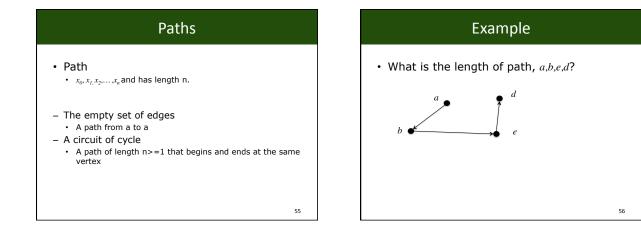
 {(1,1),(1,2),(2,2),(2,3),(3,1),(3,2),(2,1), (3,1)}

51

49

Constructing the symmetric closure of R

- Add all ordered pairs of the form (b,a), where (a,b) is in the relation, that are not already present in R.
- $R \cup R^{-1}$ is the symmetric closure of R where, $R^{-1} = \{(b,a) \mid (a,b) \in R\}$


Example

 What is the symmetric closure of the relation R={(a,b)|a>b} on the set of positive integer?

Paths in Directed Graphs

Definition

- A path from a to b in the directed graph G is a sequence of edges $(x_0, x_1), (x_1, x_2)...(x_{n-1}, x_n)$ in G, where *n* is a nonnegative integer, and $x_0 = a$ and $x_n = b$, that is, a sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the next edge in the path.

Connectivity relation

• The connectivity relation *R*^{*} consists of the pairs (*a*,*b*) such that there is a path of length at least one from *a* to *b* in *R*

Example

• Let R be the relation on the set of all people in the world that contains (a,b) if a has met b. What is Rⁿ, where n is a positive integer greater than one? What is R^{*}?

Equivalence Relations

Definition

- A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Example

• Let *R* be the relation on the set of integers such that aRb if and only if *a*=*b* or *a*=-*b*. Is this relation equivalence relation?

57

58