APPENDI X

A.0 Impact of Design and Coding Techniques on Software Religbility.

Software design characteristics and techniques are more dynamic for software than for hardware,
however, just as with hardware, there is a definite correlation between design techniques and reliability.
It makes sense to assume that the fewer the faults in a software system, the higher the reliability
will be. Therefore, a developer should attempt to generate as few faults as possible (fault
avoidance), should consider techniques to withstand faults (fault tolerance), and ensure that
software is readily repairable when a fault is found (fault removal). To develop a system that is
reliable, apart from performing any reliability analysis, a developer should consider those three
elements. In the design process a general model can be used. In a sequential design process a
series of steps are followed consisting of a specification phase followed by a realization phase.
Realizations become less abstract as the system is decomposed into more detailed specifications.

Since faults are the underlying cause of failures in software, controlling the number of faults
introduced in each development step and the number of faults that propagate undetected to the
next development step is important in managing product reliability. Faults must be managed
across all phases of the life cycle. Many development practices affect fault management. A few
of the more important ones are as follows:

* Practicing a development methodology. Using a common approach in trandating high-
level design into code, and in documenting it, is particularly important for larger projects.
It facilitates good communication between project team members, helping to reduce faults.

* Congtructing modular systems. A modular system consists of well-defined, simple and
independent parts interacting through well-defined interfaces. Small, simple modules are
easier for designers and programmers to build and thus less prone to faults being
introduced in the design process. Also, modular designs are more maintainable, further
increasing the chance that detected faults are properly repaired.

» Employing reuse. Reuse of software components that have been well tested for an
operational profile that is close to that expected for the new system reduces fault
introduction. The dternative is to develop new components, which will have to go
through a complete fault introduction and removal process inherent to most software
development projects.

* Unit and integration testing. Testing plays a maor role in preventing faults from
propagating to a next development step. Unit tests verify modules’ functions as specified
in their low-level designs. Integration tests verify that modules interact as specified in the
higher-level design (architecture).

* Conducting inspections and reviews. Inspections and reviews can be held on
requirements, design documents, software code, user manuals, training materials, and test
documents. Both reviews and inspections use a small team to compare the output of a
development step with what was specified as input to that step.

A-1

» Controlling change. Many failures result from change in the intermediate items produced
as part of the completed product. Such intermediate items include the code of software
components, design and requirements specifications, test plans, and user documentation.
To reduce the occurrence of such failures, version control is required. Also, an orderly
procedure must be used to handle requested changes to items (change control). Version
and change control together are referred to as configuration management.

Three Steps'
Fault Avoidance

The initial approach to software design is one where faults are less likely to be introduced into the
software. The structural description of the software at any level of detall should aways be
supplemented with a precise specification that provides a complete description of the realization
at that level. Configuring the design in this manner factors out the design detail so that clearness
is maintained along with thoroughness and accuracy.

Reliability should be a design objective; unfortunately it is not a design characteristic that can be
evaluated by a static analysis of the design. Software reliability depends on quality factors such as
checkability and understandability, complexity and modifiability of the design. Two attributes
which may be most important concerning reliability include visibility and coupling of the design.

design visibility. The visibility of a design is an appraisal of how well the attributes of a design
specification are reflected in the fulfillment of that design. This meansit should be feasible to take
any part of the specification and distinguish where that part is achieved. The implementation may
be expressed in aform that is readily understandable and structured to reflect the specification.

design coupling. The coupling of a design is an appraisal of the dependencies of the units of that
design. Low coupling means that the design is made up of mutually independent modules with
few shared data structures. These characteristics are important regarding reliability for the
following reasons:

* The achievement of reliable software depends on continuous validation during software
development. This validation process is simplified if each design unit can be considered alone,
minimizing reference to other design units.

» Static design analysis can be a very effective means of detecting design faults. If the transition
between design levels is clear, this analysis is simplified, increasing the probability of finding
errorsin that transition.

* Therepair of faults in software subsystems is least likely to cause faults in other subsystems if
the systems are independent. Further, the discovery of faults is simplified if the design is
visible. However, even with independent subsystems some classes of faults such as timing
faults may be introduced when one of the subsystems is modified.

! Software Reliability Handbook, Edited by Paul Rook, Centre for Software Reliability, Elsevier Applied Science,
London, 1990.

A-2

Defect Removal

In addition to defect prevention, to produce high-quality, reliable software, it is important at all
stages of development to look actively for defects or potential defects, and take corrective action
for those detected. Defect detection can accurately be called testing. The fundamental strategy
of testing, particularly in defect detection, is central to the process of producing quality software.

The development of software occurs over a number of phases. At the end of each phasg, it is
important minimize the defects passed on to later phases. If a problem such as a design error or
misunderstood requirement is passed on, it will surface later. Correction may require major
rework, tracing the problem back to its source and repeating development from there. Removal
of a defect later in the life cycle is much more expensive. Therefore, defect detection must be
implemented rigorously at each phase in order to capture defects as early as possible.

It must be recognized that the input to each phase may contain undetected defects that could
cause the wrong output in that phase. When testing the result of a phase, it would be prudent to
refer back to earlier phases. In testing there are two terms conventionaly used, verification and
validation. The distinction between the two can be described as:

Verification: testing that the system is developed correctly
Validation: testing that you have developed the correct system

The products of a phase are tested with respect to the requirements imposed for that phase. For
this to occur it is important that the requirements are testable. This means that any requirement
should include a means of verifying conformance with that requirement. The development of the
product must recognize the defect detection and correction stages that follow, and development
must be undertaken to facilitate these. This requires attention to a number of issues.

Requirements must be traceable to the part of the product that meets that requirement, and every
part of the product must be traceable back to the requirement. Some form of compliance matrix
could be produced to assist this. Alternatively, the information may be recorded in the
configuration management system. Traceability assists in the verification of the product against
its requirements. Traceability is assisted by modularization.

Testing that follows the development activity needs to be carefully planned. It is important that,
as a minimum, al direct requirements are tested for. If appropriate, indirect requirements may
also be considered. In addition to conformance to specific requirements, there may also be general
requirements like usage of standards.

Initialy, test requirements or specifications are established, to determine the content and detail of
testing. Then test plans or procedures are produced. These describe how the tests will be carried
out. Test planning and preparation should idealy be done by people independent of the
developers of the product to be tested.

A-3

Records should be kept on the defects found and the underlying faults. The fault database allows
defect prevention to be built back into the process. The development process which produced the
faults should be investigated to determine the cause, and the process corrected. Tests, inspections
and audits should be modified to ensure that they uncover any recurrence of a fault type
immediately. During the execution of a phase, information should be gathered from all sources
avallable. This information may include statistics about the defects found and the underlying
faults. The information is used to make improvements to the process and eliminate more defects.

Software Fault Tolerance

All approaches for attempting to prevent faults combined will likely not be totally successful,
which is why software reliability engineering is a legitimate discipline. Therefore, in effective
engineering of reliable software, it may be prudent to augment fault prevention with approaches
that attempt to minimize or control the effects of residual faults. Software fault-tolerance is the
main approach. Applying fault-tolerant methods, however, adds a level of complexity which may
cause more faults in the process as well as impact performance.

The dynamic behavior of a software system is designated by the series of internal states which the
system experiences during its processing. Each internal state is comprised of a set of data values
within the scope of the design: output values produced by the software (external states) and the
values of any variables sustained directly by the design. Under normal processing conditions, the
software will progress from one valid internal system state to the next by means of a valid
transition. However, if afault is encountered in the software during its processing, an erroneous
transition may occur which transforms the system to an invalid internal state containing one or
more defective values or errors. Once the system state is damaged, subsequent invalid states can
be produced from valid transitions. Alternatively, if the subsequent processing repairs the damage
(e.g., by overwriting an incorrect variable with a new correct value), then the system can revert to
avalid internal state. If an error in an internal state maps on to the external state, then a failure of
the system occurs. Consequently, al system failures can be attributed to errors in the internal
state of the system. All errors, however, need not result in a failure’.

?Software Reliability Handbook, Edited by Paul Rook, Centre for Software Reliability, Elsevier Applied Science,
London, 1990.

A-4

The objective of software fault tolerance is to prevent software faults from causing system failure.
In order to allow the system to operate successfully in the presence of a system design fault, the

software must be constructed from a number of diverse system designs which have a low
probability of exhibiting common-mode failure. The four major elements of fault-tolerance are:

1. Error Confinement. Software must be written in such a way that when an error occurs, it
cannot contaminate portions of the software beyond the local domain where it occurred,;

2. Error Detection. Software must be written such that it tests for and responds to errors
when they arise;

3. Error Recovery. Software must be written such that after detecting an error, it takes
sufficient steps to alow the software to continue to function successfully; and

4. Design Diversity. Software and its data must be created in such a way that there are
fallback versions available.

Tables A-1 and A-2 are a summary of just some of the specific design and code techniques that are
related to error confinement, error detection, error recovery and design diversity. The design and code
techniques have been correlated to reliability and fault tolerance. ®

TABLE A-1. Software Design Technigues

Design techniques

* Recovery desgned for hardware failures

* Recovery designed for 1/O failures

* Recovery designed for communication failures

» Dedgn for dternate routing of messages

» Dedgn for dataintegrity after an anomay

» Desgn for replication of critical data

» Desgn for recovery from computationd failures

» Desgnto ensurethat al required datais available

» Deggnal error recovery to be consstent

» Desgn cdling unit to resolve error conditions

» Design check on inputsfor illegal combinations of data

» Design reporting mechanism for detected errors

» Dedgn critica subscriptsto be range tested before use

» Design inputs and outputs within required accuracy

3Science Applications International Corporation & Research Triangle Ingtitute, Software Reliability Measurement and
Testing Guidebook, Fina Technical Report, Contract F30602-86-C-0269, Rome Air Development Center, Griffiss Air
Force Base, New Y ork, January 1992.

A-5

TABLE A-2. Software Coding Techniques

Coding techniques

All data references documented

Allocate dl syssem functionsto a CSCl

Algorithms and paths described for al functions

Calling sequences between units are standardized

Externd 1/0O protocol formats standardized

Each unit has a unique name

Data and variable names are sandardized

Use of globd variables is standardized

All processes within a unit are complete and self contained

All inputs and outputs to each unit are clearly defined

All argumentsin a parameter list are used

Size of unit in SLOC iswithin sandard

McCabe’s complexity of unit is within standard

Data is passed through calling parameters

Control returned to calling unit when execution is complete

Temporary storage restricted to only one unit - not global

Unit has single processing objective

Unit is independent of source of input or destination of outp

Unit is independent of prior processing

Unit has only one entrance and exit

Flow of control in a unit is from top to bottom

Loops have natural exits

Compounded booleans avoided

Unit is within standard on maximum depth of nesting

Unconditional branches avoided

Global data avoided

Unit outputs range tested

Unit inputs range tested

Unit paths tested

A-6

A.1 The Link Between Software Rdiahility and Software Safety.

A.1.1 Use of Hypothesis Tegting for Software Safety.

According to David L. Parnas in Evaluation of Safety-Critical Software”, the vast literature on
random testing is, for the most part, not relevant for safety evaluations. In lieu of reliability growth
models, avery smple model can suffice. Hypothess testing alows an evauation of the probability that
the system meets safety or high-reliability requirements (.99 or grester).

In many safety-critical applications it may not be necessary to know probability of fallure; insteed, it is
important to confirm the failure probability is very likely to be below someupper bound. One method
is to run random tests on the software, checking the results of each test. Since it is safety-critical
software, if atest fails the software will be changed to correct the underlying fault. Random testing
will resume. These tests continue until sufficient data is available to believe the probability of afallure
is acceptably low. Because only a very smal fraction of the conceivable tests can be run, there can
never be 100% certainty that the failure probability islow enough. However, it is possible to calculate
the probability that a product with unacceptable religbility would have passed the test (Type | Error).

A.1.2 Ultra High Rdliability and Safety.

Assume the probability of afailure in a software test is 1/h. Assuming that N randomly selected tests
(with replacement, from the operationd profile) are performed, the probability there will be no failure
encountered during the testing is (1 - 1/h)™ = M. In other words, if the failure probability is less than
1/h, and N tests have been run without failure, the probability that an unacceptable product would pass
the tests is no higher than M. Testing must continue, without failure, until N is large enough to make
M acceptably low. Then statements like, the probability that a product with reliability worse than
0.999 would pass this test is less than one in a hundred, could be made. Redated, thereis 99%
confidence that the reiability is no worse than 0.999. So, if ardliahility requirement and a confidence
level is established, the number of tests, N, which must pass consecutively to alow the software to pass
the test, can be determined.

Using the equation above, if the design target was to have the probahility of fallure be less than 1 in
1000, performing between 4500 and 5000 tests (randomly chosen) without failure would mean that the
probakility of an unacceptable product passing the test islessthan 1 in 100.

Because the probability of failure in practice is adirect function of the distribution of cases encountered
in practice, the validity of this approach depends on the distribution of cases in the tests being typical of
the distribution of cases encountered in practice (operationd profile).

The same approach can be consdered to obtain a measure of the trustworthiness of aprogram. Let the
total number of cases from which tests are selected be C. Assume that it is unacceptable if F of those
cases results in faulty behavior. By substituting F/C for 1/h gives (1 - F/IC)Y =M. Now assumethat N

* David L. Parnas “Evaluation of Safety-Critical Software”, Communications of the ACM, Vol. 33, No. 6, June 1990

A-7

randomly selected tests have been run without finding an error. If, during testing, an error had been
found, the problem would be corrected. The vaue of C can be estimated, and then it must be decided
whether to use F=1 or some higher value. A higher number might be selected if it were unlikely that
there would be only one faulty pair. In most computer programs, a programming error would result in
many faulty pairs. After choosing F, M can be determined as above. (F,M) pairs provide a measure of
trustworthiness. Systems congdered trustworthy would have relatively low vaues of M and F.

Because C is dmogt aways large and F relatively small, it is not practical to evaluate trust-worthiness
by means of testing. Trustworthiness, in the sense defined here, must be obtained by means of forma,

rigorous inspections.

Three classes of programs
The smplest class of programs to test comprises those that terminate after each run and retain no data
between runs. These memory-less batch programs are given data, executed, and produce an output
independent of earlier runs.

A second class congsts of batch programs that retain data from one run to the next. The behavior of
these programs on the nth run can depend on data supplied in any previous run.

A third class conggts of programs that run continuously. These real-time programs consst of one or
more processes. Some processes are run periodicaly, while others are randomly spawned in response
to externa events. Discrete runs cannot be identified, and the behavior at any time may depend on
arbitrary eventsin the past.

* Rdiahility estimates for memory-less batch programs
For amemory-less batch program atest consists of asingle run using arandomly selected input set.

* Rdiability estimatesfor batch programs with memory
When a batch program has previous data dependencies, atest conssts of asingle run. However, a
test case is comprised of both input data and an internal state. For reiability estimates, the
distribution of internd states should approximate that expected in field operation. 1t may be more
difficult to determine the appropriate distribution of interna states than to derive the input space.
Determining the distribution of internal states requires an understanding of the software program.

» Rdiability estimatesfor real-time systems
In red-time systems, the concept of a batch run is not applicable. Because the red-time system is
intended to smulate or replace an analogous system, the concept of an input sequence must be
replaced by a multidimensional run. Each profile gives the input values as continuos functions of
time. Each test involves a smulation in which the software samples the inputs for the run length.

The question of the duration of the run is critical in determining whether or not Satistical testing is
practical. In many computer systems there are dates that can arise after long periods. Réiability

A-8

estimates derived from tests involving short runs will not be valid for systems that have been operating
for longer periods. On the other hand lengthy runs render the testing time required impractical.

Statigtical testing can be made more practica if the system design is such that a limit on the length of
the runs can be established without invaidating the tests. To do this, the states must be partitioned. A
small amount of memory is reserved for data that must be retained for arbitrary amounts of time. The
remaining data are reinitialized periodicaly. The length of the period becomes the length of the test.

Testing to estimate reliability is only practical if ared-time system has limited long-term memory.

A.1.3 Picking Test Casesfor Safety-Critical Real-Time Systems.

Particular attention must be paid to run sdlection if the system is required to act only in rare
circumstances. Since the rdiability is a function of the input distribution, the runs must be selected to
provide accurate estimates under the conditions where critical performance matters. In other words,
the population from which runs are drawn must include only runsin which the system must take action.

Determining the population of runs from which the tests are sdlected can be the most difficult part of
the process. It isimportant to use knowledge of the physical stuation to define a set of runs that can
occur. However, there is always the danger that the model used to determine the runs overlooks the
same Situation overlooked by the programmer who introduced a serious fault. It isimportant that any
modd used to eiminate impossble runs be developed independently of the program. Most safety
experts would fed more comfortable if, in addition to the tests using segments considered possible,
some statistical tests were conducted with crazy runs.

A.1.4 Safety Analyses.
Risk is the possibility of something undesired occurring. Safety is relative freedom from risks.

Quantitatively, risk is a composite of the probability and severity of loss. Risk is quantified to
allow hazards to be ranked for prioritizing control and mitigation through expected loss.

Severity can be described as:

Catastrophic. Personnel: death. Facilities/equipment/vehicles. system loss, severe damage.

Critical. Personnel: severe injury/iliness; required admission to a health-care facility.
Facility/equipment/vehicle: major system damage. Loss of primary mission capability.

Marginal. Personnel: minor injury/iliness. System: Loss of non-primary mission capability.

Negligible. superficia injury/iliness. Lost time less than one day. Less than minor damage.

Probability or likelihood can be described as:

Frequent - likely to occur repeatedly during the life cycle of the system.
Probable - likely to occur several times during the life cycle of the system.
Occasional - likely to occur sometime during the life cycle of the system.
Remote - not likely to occur in the life cycle of the system, but possible.
Improbable - probability of occurrence cannot be distinguished from zero.
Impossible - physically or logically impossible to occur.

A-9

The purpose of a software safety program is to eliminate hazards or reduce their associated risk
to an acceptable level®. System safety engineering provides methods for identifying, tracking,
evaluating and removing hazards associated with a system and ensures that safety is designed into
the system in a timely, cost-effective manner, that the risk is minimized, and that the potential
effectsin the event of a mishap are minimized. Software can cause or contribute to a hazard by:

* Not performing afunction required - failing to produce an output

» Performing afunction not required - commission

» Performing afunction out of sequence or at the wrong time

» Failure to recognize a hazardous condition requiring corrective action

* Inadequate response to a contingency

» Wrong decision as a solution to a problem that arises.

» Poor timing, resulting in aresponse that istoo late or too soon for an adverse situation

Safety is a property of an executing program, just like reliability. In software reliability, every
failure is taken into account. Reliability is concerned with the frequency of failure. Each failure
also has a severity associated with its consequences. Reliability looks at frequency. Safety is only
concerned with those failures that result in system hazards. While reliability concerns itself with
whether the program is doing what is required, safety concerns itself with seeing to it that the
software does not do bad things.

The following are safety analyses that apply to software:

Preliminary Hazard Hazard Analysis Causes Fault Tree Analysis

List

Backward Threading | Software | dentifying Safety- Design of Safety-
Requirements Hazard | critical Design critical CSUs
Analysis Elements

A.1.5 Software FMEASs and Fault Tree Analyses.

Table A-3 illustrates how two specific safety analyses can be applied to hardware/software systems.

® Voas, Jeffrey, Friedman, Michael, “Software Assessmenialfiéty, Safety and Testability”, John Wiley & Sons,
NY, 1995.

A-10

TABLE A-3. How FMEA and Fault Tree Analyses Apply to Software

Safety Analyses How to apply

Fault Tree Andysis | This can be applied in a amilar manner as for hardware with just a few
differences*

1. Develop the top leve failure events based on historical information on
sSmilar or previous products

2. Determine the severity and relative probahility of each event. A threshold
for savere and probable events is determined prior to this,

3. From the requirements phase forward, continue developing the fault tree
and determine how and if the event can occur in the software system. Drive
the requirements, design, code and test activities based on the results.

4. The tree is expanded or pruned based on the thresholds for severe and
probability determined prior to anaysis.

5. The software requirements, design, code and test cases should reflect the
anaysis results.

Failure Modes Effect | This can be applied in a amilar manner as for hardware with just a few
Andysis differences described below.*

1. The fallure events for software typicaly are not predictable, i.e., there is
normally no way to know for sure that a software fault is about to happen
beforeit actually does.

2. There are typically only two repair activities that apply to software. A)
restarting the software or B) Laboratory repair. Software units are not
replaced with new software units on site.

3. As discussed earlier, individual failure rates are not assigned to CSU's as a
CSU does not fail independently.

Key to table * - One difference between hardware and software fault trees is that piece part failure
rates are not assigned to individual CSU’s. As discussed previously, an individual CSU does not have
an independent failure rate as it is the operational profile that must be modeled.

A-11

A.2 Description of SEI CMM model®.

The Software Engineering Ingtitute has developed a Capability Maturity Model thet is as a framework
describing the key elements of an effective software process. It covers key practices for planning,
engineering, management, development and maintenance that when followed may improve the ability
for an organization to meet cost, schedule, and qudity goals.

The five CMM levelsare:
1. Initial - Ad hoc processes dependent on individuas. Cost, schedule and quality are unpredictable.

2. Repeatable - Policies for managing software are in place. Planning is based on prior experience.
Planning and tracking can be repeated.

3. Defined - The process for developing the software is documented and integrated coherently. The
processis stable and repeatable and the activities of the process are understood organization wide.

4. Managed - The process is measured and operates within measured limits. The organization is able
to predict trends and products are of predictable quality.

5. Optimizng - The focus is on continuous process improvement. The organization can identify
weaknesses in the process and is proactive in preventing faults. The organization is aso innovative
throughout.

Aswas shown in Section 7, the CMM level can be tied to the fault dengty prediction.

A.3 Matrix of Skill Setsfor Software Religbility.

Software reliability has generaly not yet become an established part most organizations. Typically there
is a software organization and a reliability organization but software reliability departments are ararity.
The question then is who performs the software reliability tasks? Table A-4 is presented as a guide to
the skill set needed for the tasks discussed in this notebook. The software reliability tasks cannot be
performed by one engineering discipline working in a vacuum. For the tasks to be effective a team of
individuals from severd disciplines should collaborate.

® “Key Practices of the Capability Maturity Model”, Version 1.1, Software Engineering Institute, SEI-93-TR-025,
Pittsburg, PA, 1993.

A-12

TABLE A-4. Skills Required for Software Rdidhility Tasks

Task SkillsRequired Cooperation and datarequired
Reiability 1. Understanding of religbility Need to know overd| reliability
Allocation engineering principles. alocations and religbility block
diagram.

2. Understanding of software design

characterigtics.

3. Understanding of software fault

characteristics and behavior.
Reiability 1. Understanding of reliability Need to have accessto software
Prediction engineering principles. engineers, software requirements,

2. Understanding of software design
characterigtics.

3. Undergtanding of software fault
characteristics and behavior.

software designs, development
plans and organization policies.

Religbility Growth

1. Understanding of software

1. Must be able to collect failure

Modeling religbility models and which onesto | data during testing.
use under which fault profile
conditions. 2. Must have access to software
failure reporting systems.
2. Undergtanding of what dataiis
required for model and how to 3. Must have automated toolsto aid
effectively and efficiently collect in this moddling.
that data
3. Needsto be involved with
software testing organization.
Fault Tree Andlysis | 1. Basic understanding of how to 1. Must have accessto any
and/or FMEA generaly apply these. historical failure events.

2. Intimate understanding of the
software requirements and design.

3. Must be performed with or by
software engineers or someone very
familiar with software design.

2. Must have access to
requirements, design and possibly
code.

3. Must be adle to influence the test
plan development.

A-13

Table A-5 describes the typical engineering components and how they can be involved in the software
religbility process.

TABLE A-5. Rdationship of Engineering Disciplines

Engineering Potential primary software reiability respongbility
discipline

Softwareengineers | ¢ Providing information needed for predictions.
* Analyzing, prioritizing and scheduling failures for corrective action.
» Making improvements/adjustments based on analyses.

» Managing the project and the schedule with respect to reliability growth

parameters and predictions.
Software Quality » Aiding the software engineersin collecting and/or organizing falure
Engineers or data
Software Test
Engineers » Recording and tracking failure events.

» Participating in the analysis of the failure events.

Reliability Engineers | « Determining prediction technique in conjunction with software
engineering.

» Determining reliability growth modeling technique based on exhibited
fault profilesin conjunction with software engineering.

* Interviewing software engineersto collect data required for predictions.

» Usgng failure data generated during testing and development for
prediction and growth models.

A-14

A .4 Differences Between Software and Hardware Rdiahility.

* MTTR does not exist for software. The reason is that software units are not replaced in the
manner that hardware units are. When software fails, the configuration changes permanently in
order to correct the fault. Also, software is generdly not corrected inthefield. The software may,
however, be restored or restarted in the field, but this does not congtitute a corrective action.

* Since MTTR does not exigt for software, MTBF may not be very helpful. Theterm MTTF may be
more appropriately used instead.

» Software failure rates can be dlocated to the CSCI level because CSCls are generally assumed to
be independent and to fail independently. However, assgning failure rates to lower level CSUs is
not valid snce CSUs do not fail independently. Even though software units may be designed to be
modular and cohesive from a data and processing point of view, they are ill never independent.
Software units experience failures in association with their operationa profile and not due to
environmental wear out.

* Whenever a corrective action or any other modification is made to a software system, that change
results in a new configuration. Therefore there is a risk that functionality will be inadvertently
changed after a corrective action or modification takes place.

» Error or fault seeding (the process of inserting software faults into the existing software version for
the purposes of measuring test effectiveness and reliability) is not applicable to software for many
reasons. The most important is that software faults are caused by 4 types of human error: 1)
requirements 2) design 3) code and 4) corrective action or bad fix. Other reasonsinclude:

Error seeding assumes that al faults are coding related and that errors representing the types
that would typically be committed during development are known and established.

Error seeding also does not consider the fact that during testing, corrective actions are being
made thereby changing the configuration of the software,

Error seeding is aso not advised because seeded faults can mask real ones.

» Software maintainability and hardware maintainability are divergent disciplines. Software
maintainability means that a given software unit can be modified with relative ease by the software
engineer who developed it or engineer responsible for corrective action. Software maintainability
does not reflect the effort required by an end user or operator to restore software functionality (the
only maintenance action that can be made by an end user).

A-15

Many of the differences between hardware and software reliability, particularly from a reliability
engineer’s viewpoint, are discussedEiraluation of Safety-Critical Software” by David L. Parnas, as
summarized in the next sections.

A.4.1 Does Software Reliability Make Sense?

Developers, users and military organizations are often concerned about the reliability of systems that
include software. Over the years, reliability engineers have developed detailed and elaborate methods
of estimating the reliability of hardware systems based on an estimate of the reliability of their
components. Software can be viewed as one of those components, and an estimate of the reliability of
software is considered essential to estimating the reliability of the overall system.

Traditional Reliability engineers are often misled by their experience with hardware. Their background
has them concerned with the reliability of devices that work correctly when new, but wear out and fail

as they age. In other cases, they are concerned with mass-produced components where manufacturing
techniques introduce defects that affect a small fraction of the devices. These hardware failure
mechanisms result in thathtub curve. Neither of these situations applies to software. Software does

not wear out, and errors introduced when software is copied are minimal.

As a result of these differences, it is not uncommon to see reliability assessments for large systems
based on an estimated software reliability of 1.0. Many reliability engineers are convinced that
software errors are only due to poor design, so software failures are deterministic. The software is
either correct (R=1.0) or incorrect (R=0). Assuming a reliability of O doesn’'t provide them a useful
reliability estimate for the system containing the software. As a result, they assume correctness. Many
consider it nonsense to talk abodiability of software. They say the two words together do not
make sense.

Nonetheless, practical experience has shown over and over that software approximates stochastic
properties. It is quite useful to associate reliability figures such as MTTF with an operating system or
other software product. Some software experts believe the approximate random behavior is a result of
ignorance. They think that all software failures would be predictable if the software were fully
understood, but the inability of software engineers to understand their own creation justifies the
treatment of software failures as random.

When a program fails, it is the result of an input state that had not occurred before. The reason that
software appears to behave randomly, and that it is useful to talk about the MTTF of software, is that
the input sequences for any particular case is unpredictable. Over the long run the inpuill space w
cover some predictable distribution of inputs, thus the software operation can be considered a
stochastic process. Addressing the MTTF of software systems is done by predicting the probability of
encountering an input state that will cause the system to fail.

" David L. Parnas, “Evaluation of Safety-Critical Software”, Communications of the ACM, Vol. 33, No. 6, June 1990

A-16

Strictly speaking from a reliability engineer’s point of view, software should not be considered as a
component in systems at all. The software is simply the initial data in the computer and it is the
initialized computer that is the component in question. However, in practice, the reliability of hardware
is high and failures caused by software errors dominate those caused by hardware in most current
systems.

A.4.2. What Should be Measured?

If the sequences of inputs that lead to failure could be accurately characterized, it would be simple to
measure the distribution of input histories directly. Due to ignorance, however, the software itself must
be used to measure the frequency with which failure- inducing sequences occur as inputs.

In safety-critical applications, particularly those for which a failure would be considered catastrophic, it
may be prudent to take the position that design errors that would lead to failure are always
unacceptable. In other technologies a system with a known design error would not be put in service.
The complexity of software, and its consequent poor track record, means that seldom can there be
confidence that software is free of serious design errors. Under those circumstances, it may be
appropriate to evaluate the probability that serious errors have been missed by testing. This gives rise
to a second probabilistic measure of software quasitfiware trustworthiness. Software
trustworthiness is the probability that no serious design errors remain after the software passes a set of
randomly chosen tests.

A.4.3 Software Failure Rate Cannot be Predicted From Failure Rates of Components

The fundamental tenet of hardware system reliability studies is the computation of the reliability when
given the reliability of the parts. It is tempting to try to do the same thing for software, but the
temptation should be resisted. The modules of a program are not analogous to the components of a
hardware system. The components of a hardware system operate independently and concurrently.
The units of a computer program function sequentially and the effect of one execution depends on the
state that results from earlier executions. A failure at one part of the code may lead to problems
elsewhere in the code. When evaluating the reliability of a software product, the only sound approach
is to treat the whole computer, hardware and software, as a black box.

A.4.4 The Finite State Machine Model of Programs

Used for more than five decades, the finite state model recognizes that every digital computer has a
finte number of states and there is a limit to the number of possible input and output signals at any
point in time. Each machine is described by two functioeg:state andoutput. Both have a domain
consisting of (state, input) pairs. The range of the next-state function is the set of states. The range of
the output function is the set of symbols known as the output alphabet. These functions describe
machine behavior that starts in an initial state and periodically selects new states and outputs in
accordance with the functions.

In this model, it makes sense for the software to be viewed as part of the initial data. It determines the
initial state of the programmed machine. Von Neumann introduced a machine architecture in which

A-17

the program and data could be combined. Code can be replaced with data or vice-versa. It does not
make sense to ded with the program and data asif they were different.

The software can be viewed as a finite state machine described by two very large tables. This model of
software enables a definition of the number of faults in the software; it is the number of entries in the
table that gpecify faulty behavior. This fault count does not have a smple relation to the number of
statements that must be corrected to remove the faults. It serves only to help determine the number of
tests that need to be performed.

A.5 Software Tegtahility.
According to Voas and Friedman®:

Software Testability analysis predicts the likelihood that if there are faults in the software, they
will be revealed through testing. The analysis is used to optimize the testing process to determine
how much testing is enough, determine where to concentrate resources, and determine the value
of any particular testing approach.

The Software Engineering Life Cycle is simply a process where many development decisions are
made at various points during the process. These decisions directly impact future decisions
during the process and eventually affect the software product itself. At the early phasesin the life
cycle, the emphasis is on achieving quality in the end product; later in the life cycle, emphasis is
shifted toward assessing and assuring how much quality has been achieved. Achievement and
assessment will both, however, occur throughout the life cycle.

Testing plays a role in both achieving and assessing quality. In most cases a particular testing
technique is intended for use in either achieving or assessing, but not both. An organization
should not try to use a quality achievement technique as a quality assessment technique. Software
testing is a validation and verification (V&V) technique that occurs late in the software life cycle.
As mentioned in Section A.0, the distinction between the two can be described as:

Verification: testing that the system is developed correctly
Validation: testing that you have developed the correct system

Testability is the degree to which a system or component facilitates the establishment of test
criteria and the performance of tests to determine whether those criteria have been met. Jeffrey
V oas defines software testability of a program P to be a prediction of the probahility that if a fault
existsin P, the fault will be detected by whatever testing means are applied.

8 Voas, Jeffrey, Friedman, Michael, “Software Assessmenialfiéty, Safety and Testability”, John Wiley & Sons,
NY, 1995.

A-18

A.6 Computing Complexity.

McCabe’s Complexity
Step 1. Determine where the branches in logic are. These include:

o if-then

e if-then-else
* loops

e returns

* GOTO'’s (not good structure)
e case statements

Count the branches in logic and add 1. The minimum complexity any unit can have is 1. According to
Thomas McCabe, the recommended maximum threshold is 11 for each unit.

Functional complexity

This metric is subjective. Ideally each unit should have a functional complexity of one, meaning the
unit performs one indivisible function. The following can help in determining how many indivisible
functions a unit performs:

A. Are all inputs related to each other?

B. Are all outputs related to each other?

C. Are all inputs and outputs related to each other?

D. Can the unit be concisely named?

E. Can the unit be understood just by knowing the inputs and outputs?

Function Points
The Software Productivity Research, Inc. method of estimating functions points is summ&rized as

A. Determine problem complexity - Are algorithms
1. Simple
2. Mostly simple
3. Average complexity
4. Some difficult
5. Many difficult or complex

B. Determine code complexity - Are modules
1. non-procedural
2. well structured and/or reusable
3. well structured and small

° Thomas McCabe, “Structured Software Testing”, McCabe & Aatex; Columbia, Md, Course Materials, 1985.
19 jones, Capers;”Applied Software Measurement”, McGraw-Hill, NY, 1995.

A-19

4. fair structure, some complex
5. poor structure, complex and large

C. Determine data complexity - Arefile structures and data relationships
1. Smple with few variables
2. Numerous but smple
3. Multiplefiles, fields and data relationships
4. Complex structure and interactions
5. Very complex structure and interactions

D. Add the complexity adjustments from A through C

E. Compute number of inputs and multiply by weight of 4

F. Compute number of outputs and multiply by weight of 5

G. Compute number of inquiries and multiply by weight of 4
H. Compute number of data files and multiply by weight of 10
I. Compute number of interfaces and multiply by weight of 7
J. Add totd of E through |

K. Multiply complexity adjustment by J

Feature Points
The Software Productivity Research, Inc. method of estimating feature points™:

A. Determine number of algorithms and multiply by 3
B. Determine number of inputs and multiply by 4

C. Determine number of outputs and multiply by 5

D. Determine number of inquiries and multiply by 4
E. Determine number of data files and multiply by 7
F. Determine number of interfaces and multiply by 7
G. Add A through F

H. Multiply by complexity adjustment

11 Jones, Capers;”"Applied Software Measurement”, McGraw-Hill, NY, 1995.

A-20

A.7 Software Metrics.

Egablishing a software metrics program is paramount to having accurate software religbility
predictions, dlocations and estimations. It is adso pertinent to making any tactica or srategic
improvements, including cost and productivity as well as rdliability improvements. Historical data based

on an organization’s development practices and industry (providing it is complete) is superior to using
any other data for prediction or measurement purposes. TABLE A-6 is a summary of the data that
should be collected. From this data the following cost measures can also be calculated:

» Cost per defect - Increases by a factor of 10 for each phase it goes undetected in.
» Cost of rework =Percentage of rework x Cost of corrective action x Inherent cost of defect.

Percentage of rework can be measured as:

* percentage of project time spent re-analyzing, re-designing, re-coding, re-testing what has been
analyzed, designed, coded, or

* percentage of project effort in man-years spent re-analyzing, re-designing, re-coding, re-testing
what has been analyzed, designed, coded.

* Productivity - how much product, resources and calendar needed to complete project

According to Boehm, the cost of a defect increases by a factor of ten for each phase that it remains in
the software product undetected. This is because more personnel and resources are required to
address a defect towards the later phases of the life cycle. Several metrics for computing productivity
exist. These include but are not limited to:

« The Software Life Cycle Model - Quantitative Software Managefent
« COCOMG®? - Barry Boehm
« Function point productivity - Software Productivity Research, Inc.

Some types for a good metrics program:

* Measure the process or product but avoid measuring the individuals
» Use measures that are easily understood

» Use measures that are correlated to the item being measured

» Use measures that can be automated

Section 7.2.3 contains empirical data associated with many of these metrics shown above.

2 putnam, Larry, “Measures for Excellence”, Yourdon Press, Englewood Cliffs, NJ., 1992.
13 Boehmn, Barry, “Software Engineering Economics”, Prentice Hall, Inc., Englewood Cliffs, NJ., 1981.
4 Jones, Capers, “Applied Software Measurement”, McGraw-Hill, NY, 1991.

A-21

TABLE A-6. Suggested Software Metrics

Size

SLOC - Executable source lines of code not
including blank lines and comments
Function points

McCabe’s complexity

Failure and defect data

Experienced fielded failures
When & How (operational characteristics

Defect removal efficiency (percent of

corrective actions that are successful at

removing fault)

Defect density

Total number detected and corrected at ar

time

Profiles such as severity, root cause, inputs

that caused failure event

Number of corrective actions that require

rework

Defects detected per phase including

requirements, design and code reviews.

y

Development environment characteristics

How was the software developed?
Methods?
Tools?
Organization structure?
Standards used?
Techniques used?

Operational/execution/calendar time in testing ps

usage

Needed to compute failure rate

How long and how many

How many calendar months from start of
project to delivery

How many man-months of effort from start
project to delivery - including everything.

of

A-22

A.8 Additional Information on the Keene-Cole Model™.

Dr. Samuel Keene and G.F. “Gerry” Cole have developed a reliability growth model for fielded
software that incorporates two factors into a exponential growth profile model. These two factors are
the recurrence fact@rand the usage factpr

If the reliability growth profile during testing follows a saturating profile with time that is an
exponential curve and the number of faults F decreases proportionally to the number of faults in the
system N then

F = Ne“ (A1)

which is the anticipated reliability growth profile.

Traditional exponential reliability growth models such as the one above assume that once a fault is
detected that it is immediately removed. The way to circumvent this limiting assumption is to predict a
recurrence factqp that measures the average number of occurrences of a single fault. Keene and Cole
found this number to be between 1 and 5.

The second factor considered is the impact of a fault occurrence on multiple copies of the software.
The usage factop is a value between 1 and the number of copies of the software concurrently
operating. Measuring is analogous to accumulating operating hours for multiple hardware systems.

Equation(A.1) is now modified for these two factors as
F =pNe** (A.2)

Example:
1. Previous historical data shows that

N =500

KSLOC = 250

kp =.048

56% will remain after first year
2. 500 x (1-.56) = 220 faults expected after first year.

3. The recurrence factpris found to be 4. Historical data on this project shows that 25% of the faults
are perceived by the user. So now.25 = 1.

4. MTTF = 8760 hours per year / 220 failures = 40 hours /failure average during first year of operation.

5 Keene, Dr. Samuel, Cole, G.F. “Gerry”, “Reliability Growth of Fielded Software”, Reliability Review, Vol 14,
March 1994.

A-23

A.9 Additiona Information on the Musa Modd.

One of the models discussed in Section 8.4-1 is the Basic Execution Time Moded. It views the
phenomenon of software failure as a Non-homogeneous Poisson Process (NHPP). The counting
process {M 1), 1=0} represents the cumulative number of software falures in the execution time
intervd [0, 1). The Greek letter tau, 1, is used for execution time to digtinguish it from
caendar time, t. Execution time is the fallure-inducing stress for software. The modd aso has a
"calendar time component” thet relates T tot. The mean vaue function is the expected cumulative
number of falluresin the interval:

u(r) = EM(7)} (A3)
The failure rate can be defined as the execution time derivative of the mean vaue function:

d
A7) equiv D) (A4)
dr

When the program code is frozen and subjected to a Stationary operationd profile, the software is
modeled as having a constant failure rate

A(r) = A, 720 (A.5)

resulting in a (homogeneous) Poisson process. The probability that the software will execute for
executiontime T measured from the present is given by the reliability function

R(7") = exp[-AT'] (A.6)

In the Basic Execution Time Model, v, is the total number of failures that would have to occur to
uncover al faults. These faultsinclude) faults that were present at the start of system test--called
inherent faults--plus any faults that might be inadvertently introduced into the program as the result of
fault correction activity.

Not every falure results in exactly one fault being removed from the program code. Sometimes
additiond faults are discovered from code reading, when a fallure reveds a whole class of closdy
related faults. And sometimes the fault that caused a failure is not found, or a new fault is introduced.
In the moded, the net number of faults removed per failure is called the fault reduction factor, denoted
B. Thefault reduction factor isrelated to the inherent faults and total failures by

o
Vo

B = (A7)

A-24

The initid failure rate, the one at the start of system test, is denoted A,. The contribution of each
fault to the overdl program failure rate is called the per-fault hazard rate, denoted ¢. The per-fault
hazard rate is related to the initid failure rate and the inherent number of faults by

Ao

- (A.9)

¢) =
It is called a hazard rate (caled aso force of mortality [FOM]) because a fault is consdered to have a
finite lifetime: I testing is continued long enough, the fault will be discovered and corrected.

The failure rate is expected to improve as time goes on, as faults are removed from the code. Since B
faults are removed per failure occurrence, the failure rate declinesby 3 = Bg upon each failure. If m
isthe expected number of falluresat time 1, thenthe overdl programfailurerateis

A(u) = B(vo- 1) (A9
or
A7) = Blvo- (1)) (A.10)
Since
A1) = d‘(;(;) (A.12)
it must be the case that
J'L;(TT) + @u(r) = v (A.12)

The solution to this differential equation provides the mean value function

M(1) = vo(1-exp[-fr]) (A.13)

The parameters 3 and v, can be determined by prediction or estimation. Prediction procedures
depend on the software development phase in which the prediction is made (see Section 7).

A-25

Point estimation of model parameters.

Egtimation establishes values for the Basic Execution Time Mode parameters 3 and v, based on
the history of software failure during system test. The method of maximum likelihood estimation
chooses the valuesof 3 and v, that maximize the likelihood of obtaining the failure times that were
in fact observed.

Once system test begins, the cumulative execution times
T1,T2,, T, (A19)

at which failures occur are recorded. The quantity m isthe cumulative number of failures. Thetime
at which the parameters are estimated is denoted 1, and may or may not coincide with the time T
of thelast failure. This"time censoring” istaken into account in the estimation equations.

The maximum likelihood estimate of 3 is obtained asthe solution to

M §.=0 (A15)

ﬂ eXp(,B z-(9) -1 =1
andthen v, isgiven by

me

1-exp[-B7] (A-18)

Vo =
rounded to the nearest integer.

Steps.

A. Upon the occurrence of each software failure, the fallure identification personnd record the
cumulative execution time, in CPU seconds since the start of system testing. The execution time can
be obtained from the operating system’s accounting facility, or the program can be instrumented to
provide this information. Collect these failure times, store in a table, and denote the ordered failure
times using equation (A.14)

B. To assessthe current failure rate and reiability of the software, follow these steps.

i. Record the current cumulative execution time, in CPU seconds since the start of system
testing. Denote thistime T..

ii. Record the cumulative number of failures that have occurred since the start of system testing.
Denote thiscount m.

iii. Usng the knowns. m, 1, and (A.15), solve for the unknown parameter 3 using
equation (A.7)

A-26

The equation is best solved using a root-finding procedure on a computer or programmable
calculator. The remaining parameter of the model, v,, isfound by substituting (3 into equation
(A.16) and rounding v to the nearest integer.

iv. With the point etimates obtained for andv,, thefailurerate of the software is given by
equation (5.2) and the rdiability function by using equation (A.6) where T is execution time
measured from the present.

Example:
In this example, there are seven software failures, so m. = 7. The current cumulative execution time is

te = 445. The software fallure times are presented in Table A-7.

TABLE A-7. Example Failure Times

FAILURE NUMBER i CPU SECONDSY;

1 5
35
144
229
342
353
441

N (o (oW N

To estimate the parameter 3, thefollowing equation is solved:

Me

Me MeTe

_=fe . =0
5 ewlprdl &
Thesumtermis

.
S ri = (5+ 35+ 144+ 229+ 342+ 353+ 441) = 1549

i=1

A-27

yielding

LA) TP,
B expl f445)] -1 -

The solution B =7.3x10” is obtained. Several methods for solving equations can be found in any text
on numerical analysis. The solution here was obtained using the method of "bisection,” which involves
repeatedly halving the interval containing the root of the relevant function. The vauefor v, isfound
as

,
= = 21754
Vo T 1 exp[-(7.35% 10 °)(445)]

which, rounded to the nearest integer, gives v, = 218.
Thefailure rate of the software is obtained as

A(1e) = Bvoexp[-Brel

= (7.3x10°)(218) exp[-(7.3x107°)(218)] = 0.016
The religbility function is obtained as
R(7') = exp[-AT'] = exp[-0.0167"]

Confidenceintervals.
The degree of uncertainty present in the point estimatesof 3 and v, can be expressed through the
use of confidence intervals. To determine confidence intervals, compute the "Fisher information”

I(B) = md LB - (T exp(L)) ((exp(Br.) - 1)) (A.17)

Then a 100(1-a)% confidence interva for 3 is

Kia/2
A.18
P I(B) (A19)

where K, o,, IS the corresponding normal deviate. To obtain a 100(1-a)% confidence interval for
v,, thehighand low confidence limitsfor 3 are substituted into the equation for v,

A-28

Steps.
A. Compute the "Fisher information” from equation (A.17)

B. Choose aconfidence level, a. Find the corresponding normal deviate K, o ,. Table A-8 shows
the normal deviate values for sdlected vaues of a. More-extensive tables can be found in many
satistics textbooks.

TABLE A-8. Normal Deviates

a K.aq,
0.001 3.29
0.002 3.09
0.01 2.58
0.02 2.33
0.05 1.96
0.10 164
0.20 1.28

C. Tofind the lower limit of a 100(1-a)% confidence interva for 3, subgtitute the point estimate for
3 into the formula

_) K1-ai2
SN/

To find the upper limit, use

Brign = B+ —K,—T(%i
To find the same confidence interval for v, substitute 3, andthen B, into

Vo= — & (A.19)

1-exp[Bre]

A-29

Example:
Suppose that there were m = 19 software falures during the interval through time t, = 150. 0
andthat [3 wasestimated to be.04. Then, the "Fisher information” is computed from (A.17).

For a95% confidenceinterval, a = 0.05and K, o, =1.96. Thus

— Kil-al2
ﬁlow =B-

JI(B)

= 0.04 - 1.96/+/10810.06 = 0.02

Brigh = B+ K2

VI(B)

=0.04 + 196/ +/10810.06 = 0.06

Grouped data

Sometimes it is more convenient to work with the number of failures that occurred over execution time
intervals rather than with failure times. Suppose the failure data is grouped into z intervals, with
interva i ending at cumulative execution time x;. The duration of interva i is then x-x.1, with X = 0.
Let the number of fallures in interval i be denoted v’ and the cumulative number of failures through
interval i be denoted y;. Thetotd test timeis x,, and the cumulative number of failuresfor thetest isys,.

The maximum likelihood estimate for 3 is given by solving the following equation for [3:

i Y (xe €Xp[-B xs] - xs-1€XP[-B x4-1]) i Y, Xz -0 (A.ZO)
& exp[-B x¢-1] -exp[-B x.] exp[Bx.] -1
The maximum likelihood estimator for v, isthen given by
_ Y
Vo = 1- exp[-Bx.] (A.22)
rounded to the nearest integer. Inthiscase
Y. xzexp[Bx.]
I(B) = .
(exp[Bx.] - 1)
(A.22)

zZ Y, (X - Xz-l)zexp[',g(xz + Xs.1)]
=1 (exp[-BX.-1] - exp[-Bx,])2

A-30

This can be used in the same way as for ungrouped failures to construct confidence intervas for 3
and v,.

Steps.
A. Divide the execution time since the start of system testing into p intervals. Denote the cumulative
execution time at the end of thei-th interval as x;.

B. Count the number of software falures that occurred in each interval i. Denote the count for
interval i asy;’. Denote the cumulative number of failuresthrough interval i asy;.

C. Using the knowns--z;

Yi, Yoo s Yo
Yo Yor oo Yy (A.23)
Xla XZa ey XZ

Solve for the unknown parameter 3 using equation (A.20). To find the value of the parameter v,
subgtitute the estimate found for 3 into equations (A.21) and (A.22).

Example:
In this example, there are four intervals, S0 z = 4. The totd test timeis x, = 55. The total number of

falluresisy, = 12. Thefailure data appearsin Table A-9.

TABLE A-9. Example of Grouped Failures

Interval Number | Ending Time x Number of Failures | Cumulative Number
W of Falluresy,
1 15 4 4
2 25 3 7
3 35 3 10
4 55 2 12

The solution to the equationis B =0.022. The parameter v, isfound to be

) Y,) 12 s
Vo T 1lep[-Bx)] 1-exp[-0022(85)]

which, rounded to the nearest integer, is 17.

A-31

Cdendar time modeling. The relationship between cumulative execution time t and cumulative
cdendar timet is determined from the "calendar time component” of the Basic Execution Time Modd.
The calendar time component takes into account the congtraints involved in applying test and repair
resources to the software development project. The rate of testing is congtrained by failure
identification personnel (test team), failure resolution personnd (debuggers), and available computer
time. Due to long lead times for training and computer procurement, the mode assumes that the
quantities of those resources are congtant throughout the system test period.

The subscript r isan index that indicates the particular resource involved:

| = failure identification personnel
F = failure resolution personnel
C = computer time

Let 6, betheamount of resourcer required per unit of execution time, and let p be the amount of
resource r required per failure experienced. Note that 6.=0 since failure resolution personnel only
addressfailures. The expected resource requirement X, is

X = 61+ U ur) (A.29)

where T iscumulative execution time. Then the change in resource usage per unit of execution timeis

a1 = 6+HUA (A.25)

If P is the available quantity of resource r thet is available and p, is its utilization, then P.p,
represents the effective amount of resourcer that isavailable. Then

dt, 1 ox,
dr ~ P.p. or

(A.26)

Note that p=1, because failure identification personnd can be fully utilized. At any point in
execution time, one resource will be limiting, the one that yields the maximum derivative of caendar

time with respect to execution time:
dt max?
— = A.2
dr r drﬁ (A7)

A-32

The testing phase can be divided into segments. During each segment, exactly one of the resources C,
F, or | will be limiting. Each segment will exhibit its own calendar-to-execution time ratiot/ t. To
find the potential trangition points (in terms of failure rate values) between resource-limited segments,
compute

Pspser - Pr ,0.— es

, F#s (A.28)
P pr M- PSps/Jr

for each pair of resources. To find the limiting resource within each segment, calculate

(A.29)

for an arbitrary choiceof A within each segment.

If the boundaries of a resource-limited segment are A, and A,, the expected number of fallures
during the segment is

A=Az

A/J = Vo (A30)
Ao
while the execution timeinterva is
Ar= Yot (A.31)
Ao Ao
The calendar time increment during the segment is
1 O, A U
At, = A==+ 1 (A1- 1) (A.32)
PI’ prﬂ g AZ ' ’ H

Confidence limits are obtained by substituting high and low endpoints of the confidence interval for 3.
Typicaly, three resource-limited segments occur:

[0, A,]: Failures occur frequently. The limiting resource is fallure
resolution personnd. Testing has to be stopped to alow the debugging
team to catch up.

[A.,AJd: [Intervas between failures lengthen. The test team
becomes the bottleneck, as the team can only make test runs and
evaluate the results so fadt.

A-33

[Ao---1]: Interfailure times become very long. Only the
computing capacity limits how fast testing can be accomplished.

Thetotal increment of calendar time over the three segmentsis given by
At = Ate + Aty + Atc (A.33)
Steps.
A. For each resource--computer time (C), failure resolution personnel (F), and failure identification
personnd (I)--determine resource quantity:
P: available identification personnel (man-hours)
P available failure resolution personnel (man-hours)
Pc: available CPU time (CPU hours)
B. For each resourcer, determine the utilization fraction p, .
C. Determine the amount of each resource expended per failure:
Ic: computer time (CPU hours per failure)
I failure resolution personnd (man-hours per failure)
l: failureidentification personnel (man-hours per failure)
D. Determine the amount of each resource expended per CPU hour:
8. computer resource expenditure (=1)
6. failureresolution personnel (=0)
6: failureidentification personnel

E. Compute the potentia trangition points (in terms of failure rate) between resources by applying the
following formulawith the combinations r=I, s=F; r=I, s=C; and r=F, s=C using equation (A.28).

Disregard any A that is negative. Put the potentid trangtion points in descending order. Determine
which resource is limited in the interval between each pair of successive transition points by choosing
an arbitrary A in each interval and determining the resource r for which the following expression is
maximized:

A-34

dt, _ 1

dr P o

6+ 14, A) (A.34)

F. To determine the incrementa calendar time, in hours, between two execution times, 1, and T,,
that lie within the same resource-limited period, calculate usng equation (A.33). r is the limiting
resource in that interval. For two points thet lie in different intervals, sum the incremental calendar
time incurred in each intervening interval.

Example:
Suppose that the calendar time component parameters are

6:=15;, 6 =30; 6-=10; Uu.=20;, u-=6.5;, u =20
pP:=10;, p=10;, p-=10;

P:=200; P,=300; Pc= 250
Then, from

- Pspser'Prpres rs

Pr O, K, - Ps P M, ’

rs

the potentia trangtion points are found to be

_ (2540)(1.0)(3.0) - (300)(1.0)(1.5) _

© " (300)(1.0)(2.0) - (250)(1.0)(2.0)
|- (200(10)30)-(300)(10)1O) _ (o
T (300)(1.0)(6.5) - (200)(1.0)(2.0) '
(250)(1.0)(1.0) - (200)(1.0)(1.5) _

(200)(1.0)(2.0) - (250)(1.0)(6.5)

Aec =
The intervals are thus (3,0.19), (0.19,0.04), and (0.04,0). The next step is to find out which resource
islimiting in each of these intervals. For resourcel,

- 1 g+ 1) = 000330+201)
dr P P,

A-35

For resource C,

dtc 1

flc _ + 4. A) = 0.004(1.5+ 2.0A

ar Pcpc(ﬁc HeA) ()
And for resource F it gives

dte = 1 (gt ud) = 0005(L0+651)

dr PE p|:

Table A-10 summarizes the results of the caculations.

TABLE A-10. Execution Time Derivatives

Interva Arbitrary dt, / dt dic/ dt dte/ dt
A

(3.0,0.19) 2.0 0.021 0.022 0.07

(0.19,0.04) 0.1 0.0096 0.0068 0.00825

(0.04,0.0) 0.02 0.00912 0.00616 0.00565

In the first row, the maximum value for dt/dt is from resource F; for the second and third rowsiit is
from resource |I. Therefore, in the interva (3.0,0.19), the limiting resource is falure resolution
personnd and, during the interva (0.19,0.04) and the interva (.04,0.0) it is fallure identification
personndl.

Suppose now that the Basic Execution Time Model parametersare 3 =0.001, and v, =200. Then

the time-dependent failure rate of the software is To find the caendar time increment from 1=69 to

t=184, compute the failure rate at those points: A(69) »0.101 andA(184) »1.006. The failure rate
interval (1.006,0.19) is in a failure resolution persottineled period, and the failure rate interval
(0.19,0.101) is in a failure identification personimelted period. The total calendar time over the
failure rate interval (1.006,0.101) is the sum of the increments over the two intervals (1.006,0.19) and
(0.19,0.101).

For the first interval, the calendar time increment is given by

A-36

1
(200)(1.0)(0.003)

Ate =

x%lO)ﬁ @ + (6.5)(1.006- 019)E

= 11.62

For the second interval, the calendar time increment is

) 1 0.19 oD
Mte = 000 §0)|n§.ﬁﬁ+ (65)(0:19-0.101)7 = 19283

Thus, the tota caendar time increment is

At = Atg + At, = 11.62 + 192.83 = 204.45

hours.

The recalibration technique.
The parameters B andv, are estimated on the basis of the first (i-1) failures and used to evauate

A1) = Boexp[-pr] (A.35)
The estimated cumulative digtribution function (Cdf) is then
Fi(7') = 1 - exp[-A(rn)T'] (A.36)

A-37

where Tt is the cumulative execution time to the end of the growth test, A(t,.) Is the falure
intensity at that time, and T is execution time measured from the present. When thei-th failure--and
thus the interfailure time T, between the (i-1)st and i-the fallure--is later observed, the probability
integra transform

u = F(rv) (A.37)

is recorded. Each failure results in another u.. The probability integral transform implies that the uy's
should look like a random sample from a U(0,1) distribution, if the sequence of one-step-ahead
predictions was good. The accuracy of the mode with respect to the particular program can be
gauged by drawing a u-plot. Inau-plot the sample Cdf of the uy's is visually compared with the Cdf of
the uniform distribution over (0,1). Let m be the number of u’'s. To create au-plot themu’sare put in
ascending order

U < Ue) < ... £ Um) (A38)
and then the points

(U, 1/ (M+1)), (ue,2/(M+1),(um,m/(m+1)) (A.39)

are plotted. The line of unit dope (uniform Cdf) is aso plotted on the same graph, for comparison.

Furthermore, the u-plot can be employed to recdibrate the software reiability model. The recalibrated
model corrects systematic bias or noisness that the mode is experiencing when being used on a
particular program. The recdibration takes place by applying a function G (x) to the estimated Cdf.
The function (%) is expressed as

Fi (T')+ jlug+n+ugl -ug

Gi[F ()] = M+ Dlugrorug] up < F; (T') € ugsy (A.40)

where m is the number ofsiand, for convenienceg)? 0 and) © 1.
To perform the recalibration the user applies the transformation
F (1) = GILA(T)] (A.41)

Steps.
A. Upon the i-th software failure, use the Basic Execution Time Model to estimate the failure rate

based on the software failures

A-38

T1, T2, ooy Ti (A.42)
The estimated cumulative digtribution function is found using formula (A.36).
When failure number (i+1) occurs, record
u = F(re - 1) (A43)

B. To form a u-plot, put the sequence {u;} into ascending order. Denote the ordered u values using
formula (A.37)

C. Plot the points usng formulas (A.38). If the points mostly lie above the line, the modd is
producing optimistic estimates of the failure rate. If the points mostly lie below the line, the model
is producing pessimigtic estimates. If the points are spread out both above and below the line, the
problemisnoisiness. The bias or noisiness can be corrected by recdibration.

D. Correct the vaue cumulative distribution function by substituting it into formula (A.40) to obtain a
recdibrated value.

Example:
The etimated falure rate after the m software falluresis A = 0.27. The estimated cumulative
distribution function is thus

E,(r") = 1- exp[-0.277']
Suppose further that the ordered u sequence is

Ug = 0.03,up = 0.06,ug = 0.12,
U@ = 0.59,ui) = 0.8, u = 0.86,
Umn = 0.92

It isdedired to recdibrate

£,(6.35) = 0.82

Since

therecdibrated valueis

A-39

0.82+ 5(0.86+ 0.8)-0.8
7(0.8+ 0.86)

= 0.72

Since

R(7') equiv 1-F(7)

the reliability is estimated to be 1-0.72=0.28.

A-40

A.10 Bibliography.

MIL-STD-721 Definition of Terms for Reliability and Maintainability, 12 June 1981
MIL-STD-756 Reliability Modeling and Prediction, 18 November 1981

MIL-STD-781 Rdiability Testing for Engineering Development, Qualification and Production, 17
October 1987

MIL-STD-1521 Technical Reviews and Audits for Systems, Equipments, and Computer Software, 4
June 1985

MIL-STD-2155 Failure Reporting Analysis and Corrective Action System, 24 July 1985
MIL-HDBK-189 Rdiability Growth Management, 13 February 1981
MIL-HDBK-217 Rdiahility Prediction of Electronic Equipment, 2 December 1991

MIL-HDBK-781 Rdiahility Test Methods, Plans, and Environments for Engineering Development,
Qudification, and Production, 14 July 1987.

DOD-STD-2167 Defense System Software Development, 29 February 1988
MIL-STD-973 Configuration Management, 24 November 1993
R-013-1992 “Recommended Practice Software Reliability” ANSI/AIAAR3-1992

NSWC TR-82-171 “A Survey of Software Relidp Modelling and Estimation” by Dr. Wiliam H.
Farr, Naval Surface Weapons Center NSWC TR 82-171, Dahlgren, VA.,1983.

A-41

