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APPENDIX 
 
A.0 Impact of Design and Coding Techniques on Software Reliability. 
Software design characteristics and techniques are more dynamic for software than for hardware, 
however, just as with hardware, there is a definite correlation between design techniques and reliability. 
It makes sense to assume that the fewer the faults in a software system, the higher the reliability 
will be.  Therefore, a developer should attempt to generate as few faults as possible (fault 
avoidance), should consider techniques to withstand faults (fault tolerance), and ensure that 
software is readily repairable when a fault is found (fault removal).  To develop a system that is 
reliable, apart from performing any reliability analysis, a developer should consider those three 
elements. In the design process a general model can be used. In a sequential design process a 
series of steps are followed consisting of a specification phase followed by a realization phase. 
Realizations become less abstract as the system is decomposed into more detailed specifications.  
 
Since faults are the underlying cause of failures in software, controlling the number of faults 
introduced in each development step and the number of faults that propagate undetected to the 
next development step is important in managing product reliability.  Faults must be managed 
across all phases of the life cycle.  Many development practices affect fault management.  A few 
of the more important ones are as follows: 
 

• Practicing a development methodology.  Using a common approach in translating high-
level design into code, and in documenting it, is particularly important for larger projects.  
It facilitates good communication between project team members, helping to reduce faults. 

• Constructing modular systems.  A modular system consists of well-defined, simple and 
independent parts interacting through well-defined interfaces.  Small, simple modules are 
easier for designers and programmers to build and thus less prone to faults being 
introduced in the design process.  Also, modular designs are more maintainable, further 
increasing the chance that detected faults are properly repaired. 

• Employing reuse.  Reuse of software components that have been well tested for an 
operational profile that is close to that expected for the new system reduces fault 
introduction.  The alternative is to develop new components, which will have to go 
through a complete fault introduction and removal process inherent to most software 
development projects. 

• Unit and integration testing.  Testing plays a major role in preventing faults from 
propagating to a next development step.  Unit tests verify modules’ functions as specified 
in their low-level designs.  Integration tests verify that modules interact as specified in the 
higher-level design (architecture). 

• Conducting inspections and reviews.  Inspections and reviews can be held on 
requirements, design documents, software code, user manuals, training materials, and test 
documents.  Both reviews and inspections use a small team to compare the output of a 
development step with what was specified as input to that step. 
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• Controlling change.  Many failures result from change in the intermediate items produced 
as part of the completed product.  Such intermediate items include the code of software 
components, design and requirements specifications, test plans, and user documentation.  
To reduce the occurrence of such failures, version control is required.  Also, an orderly 
procedure must be used to handle requested changes to items (change control).  Version 
and change control together are referred to as configuration management. 

 
Three Steps1 
Fault Avoidance 
The initial approach to software design is one where faults are less likely to be introduced into the 
software.  The structural description of the software at any level of detail should always be 
supplemented with a precise specification that provides a complete description of the realization 
at that level.  Configuring the design in this manner factors out the design detail so that clearness 
is maintained along with thoroughness and accuracy. 
 
Reliability should be a design objective; unfortunately it is not a design characteristic that can be 
evaluated by a static analysis of the design.  Software reliability depends on quality factors such as 
checkability and understandability, complexity and modifiability of the design.  Two attributes 
which may be most important concerning reliability include visibility and coupling of the design. 
 
design visibility.  The visibility of a design is an appraisal of how well the attributes of a design 
specification are reflected in the fulfillment of that design.  This means it should be feasible to take 
any part of the specification and distinguish where that part is achieved.  The implementation may 
be expressed in a form that is readily understandable and structured to reflect the specification. 
 
design coupling.  The coupling of a design is an appraisal of the dependencies of the units of that 
design.  Low coupling means that the design is made up of mutually independent modules with 
few shared data structures.  These characteristics are important regarding reliability for the 
following reasons: 
 
• The achievement of reliable software depends on continuous validation during software 

development.  This validation process is simplified if each design unit can be considered alone, 
minimizing reference to other design units. 

• Static design analysis can be a very effective means of detecting design faults.  If the transition 
between design levels is clear, this analysis is simplified, increasing the probability of finding 
errors in that transition. 

• The repair of faults in software subsystems is least likely to cause faults in other subsystems if 
the systems are independent.  Further, the discovery of faults is simplified if the design is 
visible.  However, even with independent subsystems some classes of faults such as timing 
faults may be introduced when one of the subsystems is modified. 

                     
1 Software Reliability Handbook, Edited by Paul Rook, Centre for Software Reliability, Elsevier Applied Science, 
London, 1990. 
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Defect Removal 
In addition to defect prevention, to produce high-quality, reliable software, it is important at all 
stages of development to look actively for defects or potential defects, and take corrective action 
for those detected.  Defect detection can accurately be called testing.  The fundamental strategy 
of testing, particularly in defect detection, is central to the process of producing quality software. 
 
The development of software occurs over a number of phases. At the end of each phase, it is 
important minimize the defects passed on to later phases.  If a problem such as a design error or 
misunderstood requirement is passed on, it will surface later.  Correction may require major 
rework, tracing the problem back to its source and repeating development from there.  Removal 
of a defect later in the life cycle is much more expensive.  Therefore, defect detection must be 
implemented rigorously at each phase in order to capture defects as early as possible. 
 
It must be recognized that the input to each phase may contain undetected defects that could 
cause the wrong output in that phase.   When testing the result of a phase, it would be prudent to 
refer back to earlier phases. In testing there are two terms conventionally used, verification and 
validation.  The distinction between the two can be described as:   
 
  Verification: testing that the system is developed correctly 
  Validation: testing that you have developed the correct system 
 
The products of a phase are tested with respect to the requirements imposed for that phase.  For 
this to occur it is important that the requirements are testable.  This means that any requirement 
should include a means of verifying conformance with that requirement.  The development of the 
product must recognize the defect detection and correction stages that follow, and development 
must be undertaken to facilitate these.  This requires attention to a number of issues. 
 
Requirements must be traceable to the part of the product that meets that requirement, and every 
part of the product must be traceable back to the requirement.  Some form of compliance matrix 
could be produced to assist this.  Alternatively, the information may be recorded in the 
configuration management system.  Traceability assists in the verification of the product against 
its requirements.  Traceability is assisted by modularization. 
 
Testing that follows the development activity needs to be carefully planned.  It is important that, 
as a minimum, all direct requirements are tested for.  If appropriate, indirect requirements may 
also be considered. In addition to conformance to specific requirements, there may also be general 
requirements like usage of standards.   
 
Initially, test requirements or specifications are established, to determine the content and detail of 
testing.  Then test plans or procedures are produced.  These describe how the tests will be carried 
out.  Test planning and preparation should ideally be done by people independent of the 
developers of the product to be tested. 
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Records should be kept on the defects found and the underlying faults.  The fault database allows 
defect prevention to be built back into the process.  The development process which produced the 
faults should be investigated to determine the cause, and the process corrected.  Tests, inspections 
and audits should be modified to ensure that they uncover any recurrence of a fault type 
immediately.  During the execution of a phase, information should be gathered from all sources 
available.  This information may include statistics about the defects found and the underlying 
faults.  The information is used to make improvements to the process and eliminate more defects. 
 
Software Fault Tolerance 
All approaches for attempting to prevent faults combined will likely not be totally successful, 
which is why software reliability engineering is a legitimate discipline.  Therefore, in effective 
engineering of reliable software, it may be prudent to augment fault prevention with approaches 
that attempt to minimize or control the effects of residual faults.  Software fault-tolerance is the 
main approach.  Applying fault-tolerant methods, however, adds a level of complexity which may 
cause more faults in the process as well as impact performance. 
 
The dynamic behavior of a software system is designated by the series of internal states which the 
system experiences during its processing. Each internal state is comprised of a set of data values 
within the scope of the design: output values produced by the software (external states) and the 
values of any variables sustained directly by the design.  Under normal processing conditions, the 
software will progress from one valid internal system state to the next by means of a valid 
transition.  However, if a fault is encountered in the software during its processing, an erroneous 
transition may occur which transforms the system to an invalid internal state containing one or 
more defective values or errors.  Once the system state is damaged, subsequent invalid states can 
be produced from valid transitions.  Alternatively, if the subsequent processing repairs the damage 
(e.g., by overwriting an incorrect variable with a new correct value), then the system can revert to 
a valid internal state.  If an error in an internal state maps on to the external state, then a failure of 
the system occurs.  Consequently, all system failures can be attributed to errors in the internal 
state of the system.  All errors, however, need not result in a failure2. 

                     
2Software Reliability Handbook, Edited by Paul Rook, Centre for Software Reliability, Elsevier Applied Science, 
London, 1990. 
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The objective of software fault tolerance is to prevent software faults from causing system failure. 
 In order to allow the system to operate successfully in the presence of a system design fault, the 
software must be constructed from a number of diverse system designs which have a low 
probability of exhibiting common-mode failure.  The four major elements  of fault-tolerance are: 

1. Error Confinement.  Software must be written in such a way that when an error occurs, it 
cannot contaminate portions of the software beyond the local domain where it occurred;  

2. Error Detection.  Software must be written such that it tests for and responds to errors 
when they arise;   

3. Error Recovery.  Software must be written such that after detecting an error, it takes 
sufficient steps to allow the software to continue to function successfully; and   

4. Design Diversity.  Software and its data must be created in such a way that there are 
fallback versions available. 

 
Tables A-1 and A-2 are a summary of just some of the specific design and code techniques that are 
related to error confinement, error detection, error recovery and design diversity.  The design and code 
techniques have been correlated to reliability and fault tolerance. 3   
 
  TABLE A-1. Software Design Techniques 
 

Design techniques 
• Recovery designed for hardware failures 
• Recovery designed for I/O failures 
• Recovery designed for communication failures 
• Design for alternate routing of messages 
• Design for data integrity after an anomaly 
• Design for replication of critical data 
• Design for recovery from computational failures 
• Design to ensure that all required data is available 
• Design all error recovery to be consistent  
• Design calling unit to resolve error conditions 
• Design check on inputs for illegal combinations of data 
• Design reporting mechanism for detected errors 
• Design critical subscripts to be range tested before use 
• Design inputs and outputs within required accuracy 

                     
3Science Applications International Corporation & Research Triangle Institute, Software Reliability Measurement and 
Testing Guidebook, Final Technical Report, Contract F30602-86-C-0269, Rome Air Development Center, Griffiss Air 
Force Base, New York, January 1992. 
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  TABLE A-2. Software Coding Techniques 
 

Coding techniques 
• All data references documented 
• Allocate all system functions to a CSCI 
• Algorithms and paths described for all functions 
• Calling sequences between units are standardized 
• External I/O protocol formats standardized 
• Each unit has a unique name 
• Data and variable names are standardized 
• Use of global variables is standardized 
• All processes within a unit are complete and self contained 
• All inputs and outputs to each unit are clearly defined 
• All arguments in a parameter list are used 
• Size of unit in SLOC is within standard 
• McCabe’s complexity of unit is within standard 
• Data is passed through calling parameters 
• Control returned to calling unit when execution is complete 
• Temporary storage restricted to only one unit - not global 
• Unit has single processing objective 
• Unit is independent of source of input or destination of output 
• Unit is independent of prior processing 
• Unit has only one entrance and exit 
• Flow of control in a unit is from top to bottom 
• Loops have natural exits 
• Compounded booleans avoided 
• Unit is within standard on maximum depth of nesting 
• Unconditional branches avoided 
• Global data avoided 
• Unit outputs range tested 
• Unit inputs range tested 
• Unit paths tested 
 



 

 
 
 A-7 

 
A.1 The Link Between Software Reliability and Software Safety. 
 
A.1.1 Use of Hypothesis Testing for Software Safety. 
According to David L. Parnas in  Evaluation of Safety-Critical Software4, the vast literature on 
random testing is, for the most part, not relevant for safety evaluations. In lieu of reliability growth 
models, a very simple model can suffice.  Hypothesis testing allows an evaluation of the probability that 
the system meets safety or high-reliability requirements (.99 or greater). 
 
In many safety-critical applications it may not be necessary to know probability of failure; instead, it is 
important to confirm the failure probability is very likely to be below some upper bound.  One method 
is to run random tests on the software, checking the results of each test.  Since it is safety-critical 
software, if a test fails the software will be changed to correct the underlying fault.  Random testing 
will resume.  These tests continue until sufficient data is available to believe the probability of a failure 
is acceptably low.  Because only a very small fraction of the conceivable tests can be run, there can 
never be 100% certainty that the failure probability is low enough.  However, it is possible to calculate 
the probability that a product with unacceptable reliability would have passed the test (Type I Error). 
 
A.1.2 Ultra High Reliability and Safety. 
Assume the probability of a failure in a software test is 1/h.  Assuming that N randomly selected tests 
(with replacement, from the operational profile) are performed, the probability there will be no failure 
encountered during the testing is  (1 - 1/h)N = M.  In other words, if the failure probability is less than 
1/h, and N tests have been run without failure, the probability that an unacceptable product would pass 
the tests is no higher than M.  Testing must continue, without failure, until N is large enough to make 
M acceptably low.  Then statements like, the probability that a product with reliability worse than 
0.999 would pass this test is less than one in a hundred, could be made.  Restated, there is  99% 
confidence that the reliability is no worse than 0.999.  So, if a reliability requirement and a confidence 
level is established, the number of tests, N, which must pass consecutively to allow the software to pass 
the test, can be determined. 
 
Using the equation above, if the design target was to have the probability of failure be less than 1 in 
1000, performing between 4500 and 5000 tests (randomly chosen) without failure would mean that the 
probability of an unacceptable product passing the test is less than 1 in 100. 
 
Because the probability of failure in practice is a direct function of the distribution of cases encountered 
in practice, the validity of this approach depends on the distribution of cases in the tests being typical of 
the distribution of cases encountered in practice (operational profile).  
 
The same approach can be considered to obtain a measure of the trustworthiness of a program.  Let the 
total number of cases from which tests are selected be C.  Assume that it is unacceptable if F of those 
cases results in faulty behavior.  By substituting F/C for 1/h gives (1 - F/C)N = M.   Now assume that N 

                     
4 David L. Parnas “Evaluation of Safety-Critical Software”, Communications of the ACM, Vol. 33, No. 6, June 1990 
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randomly selected tests have been run without finding an error.  If, during testing,  an error had been 
found, the problem would be corrected.  The value of C can be estimated, and then it must be decided 
whether to use F=1 or some higher value. A higher number might be selected if it were unlikely that 
there would be only one faulty pair.  In most computer programs, a programming error would result in 
many faulty pairs.  After choosing F, M can be determined as above.  (F,M) pairs provide a measure of 
trustworthiness.  Systems considered trustworthy would have relatively low values of M and F. 
 
Because C is almost always large and F relatively small, it is not practical to evaluate trust-worthiness 
by means of testing.  Trustworthiness, in the sense defined here, must be obtained by means of formal, 
rigorous inspections. 

  
 Three classes of programs 
 The simplest class of programs to test comprises those that terminate after each run and retain no data 

between runs.  These memory-less batch programs are given data, executed, and produce an output 
independent of earlier runs. 

  
 A second class consists of batch programs that retain data from one run to the next.  The behavior of 

these programs on the nth run can depend on data supplied in any previous run. 
  
 A third class consists of programs that run continuously.  These real-time programs consist of one or 

more processes.  Some processes are run periodically, while others are randomly spawned in response 
to external events.  Discrete runs cannot be identified, and the behavior at any time may depend on 
arbitrary events in the past. 
  
• Reliability estimates for memory-less batch programs 
 For a memory-less batch program a test consists of a single run using a randomly selected input set. 

  
• Reliability estimates for batch programs with memory 
 When a batch program has previous data dependencies, a test consists of a single run.  However, a 

test case is comprised of both input data and an internal state.  For reliability estimates, the 
distribution of internal states should approximate that expected in field operation.  It may be more 
difficult to determine the appropriate distribution of internal states than to derive the input space.  
Determining the distribution of internal states requires an understanding of the software program. 

  
• Reliability estimates for real-time systems 
 In real-time systems, the concept of a batch run is not applicable.  Because the real-time system is 

intended to simulate or replace an analogous system, the concept of an input sequence must be 
replaced by a multidimensional run.  Each profile gives the input values as continuos functions of 
time.  Each test involves a simulation in which the software samples the inputs for the run length. 

 
The question of the duration of the run is critical in determining whether or not statistical testing is 
practical.  In many computer systems there are states that can arise after long periods.  Reliability 
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estimates derived from tests involving short runs will not be valid for systems that have been operating 
for longer periods.  On the other hand lengthy runs render the testing time required impractical. 
 
Statistical testing can be made more practical if the system design is such that a limit on the length of 
the runs can be established without invalidating the tests.  To do this, the states must be partitioned. A 
small amount of memory is reserved for data that must be retained for arbitrary amounts of time.  The 
remaining data are reinitialized periodically.  The length of the period becomes the length of the test. 
 
Testing to estimate reliability is only practical if a real-time system has limited long-term memory. 
 
A.1.3 Picking Test Cases for Safety-Critical Real-Time Systems. 
Particular attention must be paid to run selection if the system is required to act only in rare 
circumstances.   Since the reliability is a function of the input distribution, the runs must be selected to 
provide accurate estimates under the conditions where critical performance matters.  In other words, 
the population from which runs are drawn must include only runs in which the system must take action.  
 
Determining the population of runs from which the tests are selected can be the most difficult part of 
the process.  It is important to use knowledge of the physical situation to define a set of runs that can 
occur.  However, there is always the danger that the model used to determine the runs overlooks the 
same situation overlooked by the programmer who introduced a serious fault.  It is important that any 
model used to eliminate impossible runs be developed independently of the program.  Most safety 
experts would feel more comfortable if, in addition to the tests using segments considered possible, 
some statistical tests were conducted with crazy runs. 
 
A.1.4 Safety Analyses. 
Risk is the possibility of something undesired occurring.  Safety is relative freedom from risks.  
Quantitatively, risk is a composite of the probability and severity of loss.  Risk is quantified to 
allow hazards to be ranked for prioritizing control and mitigation through expected loss. 
 
Severity can be described as: 
Catastrophic.  Personnel: death.  Facilities/equipment/vehicles: system loss, severe damage. 
Critical.  Personnel: severe injury/illness; required admission to a health-care facility.   
 Facility/equipment/vehicle: major system damage.  Loss of primary mission capability. 
Marginal.  Personnel: minor injury/illness.  System: Loss of non-primary mission capability. 
Negligible. superficial injury/illness.  Lost time less than one day.  Less than minor damage. 
  

 Probability or likelihood can be described as: 
 Frequent - likely to occur repeatedly during the life cycle of the system. 
 Probable - likely to occur several times during the life cycle of the system. 
 Occasional - likely to occur sometime during the life cycle of the system. 
 Remote - not likely to occur in the life cycle of the system, but possible. 
 Improbable - probability of occurrence cannot be distinguished from zero. 
 Impossible - physically or logically impossible to occur. 
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The purpose of a software safety program is to eliminate hazards or reduce their associated risk 
to an acceptable level5.  System safety engineering provides methods for identifying, tracking, 
evaluating and removing hazards associated with a system and ensures that safety is designed into 
the system in a timely, cost-effective manner, that the risk is minimized, and that the potential 
effects in the event of a mishap are minimized.  Software can cause or contribute to a hazard by: 
  
• Not performing a function required - failing to produce an output 
• Performing a function not required - commission 
• Performing a function out of sequence or at the wrong time 
• Failure to recognize a hazardous condition requiring corrective action 
• Inadequate response to a contingency 
• Wrong decision as a solution to a problem that arises. 
• Poor timing, resulting in a response that is too late or too soon for an adverse situation 
  

 Safety is a property of an executing program, just like reliability.  In software reliability, every 
failure is taken into account.  Reliability is concerned with the frequency of failure.  Each failure 
also has a severity associated with its consequences.  Reliability looks at frequency.  Safety is only 
concerned with those failures that result in system hazards.  While reliability concerns itself with 
whether the program is doing what is required, safety concerns itself with seeing to it that the 
software does not do bad things. 

  
 The following are safety analyses that apply to software: 

  
Preliminary Hazard 
List 

Hazard Analysis Causes Fault Tree Analysis 

Backward Threading Software 
Requirements Hazard 
Analysis 

Identifying Safety-
critical Design 
Elements 

Design of Safety-
critical CSUs 

 
A.1.5 Software FMEAs and Fault Tree Analyses. 
 
Table A-3 illustrates how two specific safety analyses can be applied to hardware/software systems. 
 

                     
5 Voas, Jeffrey, Friedman, Michael, “Software Assessment: Reliability, Safety and Testability”, John Wiley & Sons, 
NY, 1995. 



 

 
 
 A-11 

 
TABLE A-3.  How FMEA and Fault Tree Analyses Apply to Software 

 
Safety Analyses How to apply 
Fault Tree Analysis This can be applied in a similar manner as for hardware with just a few 

differences.*   
 
1. Develop the top level failure events based on historical information on 
similar or previous products 
 
2. Determine the severity and relative probability of each event. A threshold 
for severe and probable events is determined prior to this. 
 
3. From the requirements phase forward, continue developing the fault tree 
and determine how and if the event can occur in the software system. Drive 
the requirements, design, code and test activities based on the results. 
 
4. The tree is expanded or pruned based on the thresholds for severe and 
probability determined prior to analysis. 
 
5. The software requirements, design, code and test cases should reflect the 
analysis results. 
 

Failure Modes Effect 
Analysis 

This can be applied in a similar manner as for hardware with just a few 
differences described below.*   
 
1. The failure events for software typically are not predictable, i.e., there is 
normally no way to know for sure that a software fault is about to happen 
before it actually does.   
 
2. There are typically only two repair activities that apply to software.  A) 
restarting the software or B) Laboratory repair.  Software units are not 
replaced with new software units on site. 
 
3. As discussed earlier, individual failure rates are not assigned to CSU’s as a 
CSU does not fail independently.   

Key to table: * - One difference between hardware and software fault trees is that piece part failure 
rates are not assigned to individual CSU’s. As discussed previously, an individual CSU does not have 
an independent failure rate as it is the operational profile that must be modeled. 
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A.2 Description of SEI CMM model6. 
The Software Engineering Institute has developed a Capability Maturity Model that is as a framework 
describing the key elements of an effective software process.  It covers key practices for planning, 
engineering, management, development and maintenance that when followed may improve the ability 
for an organization to meet cost, schedule, and quality goals. 
 
The five CMM levels are: 
 
1. Initial - Ad hoc processes dependent on individuals. Cost, schedule and quality are unpredictable. 
  
2. Repeatable - Policies for managing software are in place. Planning is based on prior experience.  

Planning and tracking can be repeated. 
  
3. Defined - The process for developing the software is documented and integrated coherently.  The 

process is stable and repeatable and the activities of the process are understood organization wide. 
  
4. Managed - The process is measured and operates within measured limits.  The organization is able 

to predict trends and products are of predictable quality. 
  
5. Optimizing - The focus is on continuous process improvement. The organization can identify 

weaknesses in the process and is proactive in preventing faults.  The organization is also innovative 
throughout. 

 
As was shown in Section 7, the CMM level can be tied to the fault density prediction. 
 
A.3 Matrix of Skill Sets for Software Reliability. 
Software reliability has generally not yet become an established part most organizations. Typically there 
is a software organization and a reliability organization but software reliability departments are a rarity. 
The question then is who performs the software reliability tasks?  Table A-4 is presented as a guide to 
the skill set needed for the tasks discussed in this notebook. The software reliability tasks cannot be 
performed by one engineering discipline working in a vacuum. For the tasks to be effective a team of 
individuals from several disciplines should collaborate. 

                     
6 “Key Practices of the Capability Maturity Model”, Version 1.1, Software Engineering Institute, SEI-93-TR-025, 
Pittsburg, PA, 1993. 
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TABLE A-4. Skills Required for Software Reliability Tasks 
 
Task Skills Required Cooperation and data required 
Reliability 
Allocation 

1. Understanding of reliability 
engineering principles. 
 
2. Understanding of software design 
characteristics. 
 
3. Understanding of software fault 
characteristics and behavior. 
 

Need to know overall reliability 
allocations and reliability block 
diagram. 

Reliability 
Prediction 

1. Understanding of reliability 
engineering principles. 
 
2. Understanding of software design 
characteristics. 
 
3. Understanding of software fault 
characteristics and behavior. 
 

Need to have access to software 
engineers, software requirements, 
software designs, development 
plans and organization policies.  

Reliability Growth 
Modeling 

1. Understanding of software 
reliability models and which ones to 
use under which fault profile 
conditions. 
 
2. Understanding of what data is 
required for model and how to 
effectively and efficiently collect 
that data. 
 
3. Needs to be involved with 
software testing organization. 

1. Must be able to collect failure 
data during testing. 
 
2. Must have access to software 
failure reporting systems. 
 
3. Must have automated tools to aid 
in this modeling. 

Fault Tree Analysis 
and/or FMEA 

1. Basic understanding of how to 
generally apply these. 
 
2. Intimate understanding of the 
software requirements and design. 
 
3. Must be performed with or by 
software engineers or someone very 
familiar with software design. 

1. Must have access to any 
historical failure events. 
 
2. Must have access to 
requirements, design and possibly 
code. 
 
3. Must be able to influence the test 
plan development. 
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Table A-5 describes the typical engineering components and how they can be involved in the software 
reliability process: 
 

TABLE A-5. Relationship of Engineering Disciplines 
 
Engineering 
discipline 

Potential primary software reliability responsibility  

Software engineers • Providing information needed for predictions. 
  
• Analyzing, prioritizing and scheduling failures for corrective action. 
  
• Making improvements/adjustments based on analyses. 
  
• Managing the project and the schedule with respect to reliability growth 

parameters and predictions. 
Software Quality 
Engineers or 
Software Test 
Engineers 

• Aiding the software engineers in collecting and/or organizing failure 
data. 

  
• Recording and tracking failure events. 
  
• Participating in the analysis of the failure events. 

Reliability Engineers • Determining prediction technique in conjunction with software 
engineering. 

  
• Determining reliability growth modeling technique based on exhibited 

fault profiles in conjunction with software engineering. 
  
• Interviewing software engineers to collect data required for predictions. 
  
• Using failure data generated during testing and development for 

prediction and growth models. 
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A.4 Differences Between Software and Hardware Reliability. 
 
• MTTR does not exist for software.  The reason is that software units are not replaced in the 

manner that hardware units are.  When software fails, the configuration changes permanently in 
order to correct the fault.  Also, software is generally not corrected in the field.  The software may, 
however, be restored or restarted in the field, but this does not constitute a corrective action. 

 
• Since MTTR does not exist for software, MTBF may not be very helpful.  The term MTTF may be 

more appropriately used instead. 
 
• Software failure rates can be allocated to the CSCI level because CSCIs are generally assumed to 

be independent and to fail independently.  However, assigning failure rates to lower level CSUs is 
not valid since CSUs do not fail independently.  Even though software units may be designed to be 
modular and cohesive from a data and processing point of view, they are still never independent.  
Software units experience failures in association with their operational profile and not due to 
environmental wear out. 

 
• Whenever a corrective action or any other modification is made to a software system, that change 

results in a new configuration.  Therefore there is a risk that functionality will be inadvertently 
changed after a corrective action or modification takes place. 

 
• Error or fault seeding (the process of inserting software faults into the existing software version for 

the purposes of measuring test effectiveness and reliability) is not applicable to software for many 
reasons.  The most important is that software faults are caused by 4 types of human error: 1) 
requirements 2) design 3) code and 4) corrective action or bad fix.  Other reasons include: 

  
 Error seeding assumes that all faults are coding related and that errors representing the types 

that would typically be committed during development are known and established. 
  

Error seeding also does not consider the fact that during testing, corrective actions are being 
made thereby changing the configuration of the software.  

 
Error seeding is also not advised because seeded faults can mask real ones. 

 
• Software maintainability and hardware maintainability are divergent disciplines.  Software 

maintainability means that a given software unit can be modified with relative ease by the software 
engineer who developed it or engineer responsible for corrective action.  Software maintainability 
does not reflect the effort required by an end user or operator to restore software functionality (the 
only maintenance action that can be made by an end user). 
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Many of the differences between hardware and software reliability, particularly from a reliability 
engineer’s viewpoint, are discussed in Evaluation of Safety-Critical Software7 by David L. Parnas, as 
summarized in the next sections. 
  
A.4.1 Does Software Reliability Make Sense? 
Developers, users and military organizations are often concerned about the reliability of systems that 
include software.  Over the years, reliability engineers have developed detailed and elaborate methods 
of estimating the reliability of hardware systems based on an estimate of the reliability of their 
components.  Software can be viewed as one of those components, and an estimate of the reliability of 
software is considered essential to estimating the reliability of the overall system. 
 
Traditional Reliability engineers are often misled by their experience with hardware.  Their background 
has them concerned with the reliability of devices that work correctly when new, but wear out and fail 
as they age.  In other cases, they are concerned with mass-produced components where manufacturing 
techniques introduce defects that affect a small fraction of the devices.  These hardware failure 
mechanisms result in the bathtub curve.  Neither of these situations applies to software.  Software does 
not wear out, and errors introduced when software is copied are minimal. 
 
As a result of these differences, it is not uncommon to see reliability assessments for large systems 
based on an estimated software reliability of 1.0.  Many reliability engineers are convinced that 
software errors are only due to poor design, so software failures are deterministic.  The software is 
either correct (R=1.0) or incorrect (R=0). Assuming a reliability of 0 doesn’t provide them a useful 
reliability estimate for the system containing the software.  As a result, they assume correctness.  Many 
consider it nonsense to talk about reliability of software.  They say the two words together do not 
make sense. 
 
Nonetheless, practical experience has shown over and over that software approximates stochastic 
properties.  It is quite useful to associate reliability figures such as MTTF with an operating system or 
other software product.  Some software experts believe the approximate random behavior is a result of 
ignorance.  They think that all software failures would be predictable if the software were fully 
understood, but the inability of software engineers to understand their own creation justifies the 
treatment of software failures as random. 
 
When a program fails, it is the result of an input state that had not occurred before.  The reason that 
software appears to behave randomly, and that it is useful to talk about the MTTF of software, is that 
the input sequences for any particular case is unpredictable.  Over the long run the input space will 
cover some predictable distribution of inputs, thus the software operation can be considered a 
stochastic process.  Addressing the MTTF of software systems is done by predicting the probability of 
encountering an input state that will cause the system to fail. 
 

                     
7 David L. Parnas, “Evaluation of Safety-Critical Software”, Communications of the ACM, Vol. 33, No. 6, June 1990 
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Strictly speaking from a reliability engineer’s point of view, software should not be considered as a 
component in systems at all.  The software is simply the initial data in the computer and it is the 
initialized computer that is the component in question.  However, in practice, the reliability of hardware 
is high and failures caused by software errors dominate those caused by hardware in most current 
systems. 
 
A.4.2. What Should be Measured? 
If the sequences of inputs that lead to failure could be accurately characterized, it would be simple to 
measure the distribution of input histories directly.  Due to ignorance, however, the software itself must 
be used to measure the frequency with which failure- inducing sequences occur as inputs. 
 
In safety-critical applications, particularly those for which a failure would be considered catastrophic, it 
may be prudent to take the position that design errors that would lead to failure are always 
unacceptable.  In other technologies a system with a known design error would not be put in service.  
The complexity of software, and its consequent poor track record, means that seldom can there be 
confidence that software is free of serious design errors.  Under those circumstances, it may be 
appropriate to evaluate the probability that serious errors have been missed by testing.  This gives rise 
to a second probabilistic measure of software quality, software trustworthiness.  Software 
trustworthiness is the probability that no serious design errors remain after the software passes a set of 
randomly chosen tests.   
 
A.4.3 Software Failure Rate Cannot be Predicted From Failure Rates of Components. 
The fundamental tenet of hardware system reliability studies is the computation of the reliability when 
given the reliability of the parts.  It is tempting to try to do the same thing for software, but the 
temptation should be resisted.  The modules of a program are not analogous to the components of a 
hardware system.  The components of a hardware system operate independently and concurrently.  
The units of a computer program function sequentially and the effect of one execution depends on the 
state that results from earlier executions.  A failure at one part of the code may lead to problems 
elsewhere in the code.  When evaluating the reliability of a software product, the only sound approach 
is to treat the whole computer, hardware and software, as a black box. 
 
A.4.4 The Finite State Machine Model of Programs. 
Used for more than five decades, the finite state model recognizes that every digital computer has a 
finite number of states and there is a limit to the number of possible input and output signals at any 
point in time.  Each machine is described by two functions: next-state and output.  Both have a domain 
consisting of (state, input) pairs.  The range of the next-state function is the set of states.  The range of 
the output function is the set of symbols known as the output alphabet.  These functions describe 
machine behavior that starts in an initial state and periodically selects new states and outputs in 
accordance with the functions. 
 
In this model, it makes sense for the software to be viewed as part of the initial data.  It determines the 
initial state of the programmed machine.  Von Neumann introduced a machine architecture in which 
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the program and data could be combined.  Code can be replaced with data or vice-versa.  It does not 
make sense to deal with the program and data as if they were different. 
 
The software can be viewed as a finite state machine described by two very large tables.  This model of 
software enables a definition of the number of faults in the software; it is the number of entries in the 
table that specify faulty behavior.  This fault count does not have a simple relation to the number of 
statements that must be corrected to remove the faults.  It serves only to help determine the number of 
tests that need to be performed. 
 
A.5 Software Testability. 
According to Voas and Friedman8:  
 
Software Testability analysis predicts the likelihood that if there are faults in the software, they 
will be revealed through testing.  The analysis is used to optimize the testing process to determine 
how much testing is enough, determine where to concentrate resources, and determine the value 
of any particular testing approach. 
 
The Software Engineering Life Cycle is simply a process where many development decisions are 
made at various points during the process.  These decisions directly impact future decisions 
during the process and eventually affect the software product itself.  At the early phases in the life 
cycle, the emphasis is on achieving quality in the end product; later in the life cycle, emphasis is 
shifted toward assessing and assuring how much quality has been achieved.  Achievement and 
assessment will both, however, occur throughout the life cycle.  
 
Testing plays a role in both achieving and assessing quality.  In most cases a particular testing 
technique is intended for use in either achieving or assessing, but not both.  An organization 
should not try to use a quality achievement technique as a quality assessment technique.  Software 
testing is a validation and verification (V&V) technique that occurs late in the software life cycle. 
As mentioned in Section A.0, the distinction between the two can be described as:   
 
  Verification: testing that the system is developed correctly 
  Validation: testing that you have developed the correct system 
 
Testability is the degree to which a system or component facilitates the establishment of test 
criteria and the performance of tests to determine whether those criteria have been met.  Jeffrey 
Voas defines software testability of a program P to be a prediction of the probability that if a fault 
exists in P, the fault will be detected by whatever testing means are applied. 
 

                     
8 Voas, Jeffrey, Friedman, Michael, “Software Assessment: Reliability, Safety and Testability”, John Wiley & Sons, 
NY, 1995. 
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A.6 Computing Complexity. 
 
McCabe’s Complexity9  
Step 1. Determine where the branches in logic are.  These include: 
 
• if-then 
• if-then-else 
• loops 
• returns 
• GOTO’s (not good structure) 
• case statements 
 
Count the branches in logic and add 1.  The minimum complexity any unit can have is 1.  According to 
Thomas McCabe, the recommended maximum threshold is 11 for each unit. 
 
Functional complexity 
This metric is subjective.  Ideally each unit should have a functional complexity of one, meaning the 
unit performs one indivisible function.  The following can help in determining how many indivisible 
functions a unit performs: 
 
A. Are all inputs related to each other? 
B. Are all outputs related to each other? 
C. Are all inputs and outputs related to each other? 
D. Can the unit be concisely named? 
E. Can the unit be understood just by knowing the inputs and outputs? 
 
Function Points 
The Software Productivity Research, Inc. method of estimating functions points is summarized as10: 
 
A. Determine problem complexity - Are algorithms 
 1. Simple 
 2. Mostly simple 
 3. Average complexity 
 4. Some difficult 
 5. Many difficult or complex 
 
B. Determine code complexity - Are modules 
 1. non-procedural 
 2. well structured and/or reusable 
 3. well structured and small 

                     
9 Thomas McCabe, “Structured Software Testing”, McCabe & Associates, Columbia, Md, Course Materials, 1985. 
10 Jones, Capers;”Applied Software Measurement”, McGraw-Hill, NY, 1995. 
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 4. fair structure, some complex 
 5. poor structure, complex and large 
 
C. Determine data complexity - Are file structures and data relationships 
 1. Simple with few variables 
 2. Numerous but simple 
 3. Multiple files, fields and data relationships 
 4. Complex structure and interactions 
 5. Very complex structure and interactions 
 
D. Add the complexity adjustments from A through C 
E. Compute number of inputs and multiply by weight of 4 
F. Compute number of outputs and multiply by weight of 5 
G. Compute number of inquiries and multiply by weight of 4 
H. Compute number of data files and multiply by weight of 10 
I. Compute number of interfaces and multiply by weight of 7 
J. Add total of E through I 
K. Multiply complexity adjustment by J 
 
Feature Points 
The Software Productivity Research, Inc. method of estimating feature points11: 
 
A. Determine number of algorithms and multiply by 3 
B. Determine number of inputs and multiply by 4 
C. Determine number of outputs and multiply by 5 
D. Determine number of inquiries and multiply by 4 
E. Determine number of data files and multiply by 7 
F. Determine number of interfaces and multiply by 7 
G. Add A through F 
H. Multiply by complexity adjustment  

                     
11 Jones, Capers;”Applied Software Measurement”, McGraw-Hill, NY, 1995. 
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A.7 Software Metrics. 
Establishing a software metrics program is paramount to having accurate software reliability 
predictions, allocations and estimations.  It is also pertinent to making any tactical or strategic 
improvements, including cost and productivity as well as reliability improvements. Historical data based 
on an organization’s development practices and industry (providing it is complete) is superior to using 
any other data for prediction or measurement purposes. TABLE A-6 is a summary of the data that 
should be collected. From this data the following cost measures can also be calculated: 
 
• Cost per defect - Increases by a factor of 10 for each phase it goes undetected in. 
• Cost of rework = Percentage of rework  x Cost of corrective action  x Inherent cost of defect.   
  
 Percentage of rework can be measured as: 

• percentage of project time spent re-analyzing, re-designing, re-coding, re-testing what has been 
analyzed, designed, coded, or 

• percentage of project effort in man-years spent re-analyzing, re-designing, re-coding, re-testing 
what has been analyzed, designed, coded. 

  
• Productivity - how much product, resources and calendar needed to complete project 
 
According to Boehm, the cost of a defect increases by a factor of ten for each phase that it remains in 
the software product undetected.  This is because more personnel and resources are required to 
address a defect towards the later phases of the life cycle. Several metrics for computing productivity 
exist.  These include but are not limited to: 
 
• The Software Life Cycle Model - Quantitative Software Management12 
• COCOMO13 - Barry Boehm 
• Function point productivity14 - Software Productivity Research, Inc. 
 
Some types for a good metrics program: 
 
• Measure the process or product but avoid measuring the individuals 
• Use measures that are easily understood 
• Use measures that are correlated to the item being measured 
• Use measures that can be automated 
 
Section 7.2.3 contains empirical data associated with many of these metrics shown above. 
 

                     
12 Putnam, Larry, “Measures for Excellence”, Yourdon Press, Englewood Cliffs, NJ., 1992. 
13 Boehmn, Barry, “Software Engineering Economics”, Prentice Hall, Inc., Englewood Cliffs, NJ., 1981. 
14 Jones, Capers, “Applied Software Measurement”, McGraw-Hill, NY, 1991. 
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TABLE A-6. Suggested Software Metrics 
 
Size • SLOC - Executable source lines of code not 

including blank lines and comments 
• Function points 
• McCabe’s complexity 

Failure and defect data • Experienced fielded failures 
When & How (operational characteristics) 

• Defect removal efficiency (percent of 
corrective actions that are successful at 
removing fault) 

• Defect density  
• Total number detected and corrected at any 

time 
• Profiles such as severity, root cause, inputs 

that caused failure event 
• Number of corrective actions that require 

rework 
• Defects detected per phase including 

requirements, design and code reviews. 
Development environment characteristics • How was the software developed? 

Methods? 
Tools? 
Organization structure? 
Standards used? 
Techniques used? 

Operational/execution/calendar time in testing or 
usage 

• Needed to compute failure rate  

How long and how many  • How many calendar months from start of 
project to delivery 

• How many man-months of effort from start of 
project to delivery - including everything. 
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A.8 Additional Information on the Keene-Cole Model15. 
Dr. Samuel Keene and G.F. “Gerry” Cole have developed a reliability growth model for fielded 
software that incorporates two factors into a exponential growth profile model.  These two factors are 
the recurrence factor ρ and the usage factor µ.  
 
If the reliability growth profile during testing follows a saturating profile with time that is an 
exponential curve and the number of faults F decreases proportionally to the number of faults in the 
system N  then  

F = Ne-kt        (A.1) 
 

which is the anticipated reliability growth profile.      
 
Traditional exponential reliability growth models such as the one above assume that once a fault is 
detected that it is immediately removed.  The way to circumvent this limiting assumption is to predict a 
recurrence factor ρ that measures the average number of occurrences of a single fault.  Keene and Cole 
found this number to be between 1 and 5.   
 
The second factor considered is the impact of a fault occurrence on multiple copies of the software.  
The usage factor µ is a value between 1 and the number of copies of the software concurrently 
operating.  Measuring µ is analogous to accumulating operating hours for multiple hardware systems. 
 
Equation (A.1) is now modified for these two factors as 
 

 F = ρNe-kµt       (A.2) 
 
Example: 
1. Previous historical data shows that  
 N = 500 
 KSLOC = 250 
 kµ = .048 
 56% will remain after first year 
 
2. 500 x (1-.56) = 220 faults expected after first year. 
 
3. The recurrence factor ρ is found to be 4.  Historical data on this project shows that 25% of the faults 
are perceived by the user.  So now ρ x .25 = 1. 
 
4. MTTF = 8760 hours per year / 220 failures = 40 hours /failure average during first year of operation. 

                     
15 Keene, Dr. Samuel, Cole, G.F. “Gerry”, “Reliability Growth of Fielded Software”, Reliability Review, Vol 14, 
March 1994. 
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A.9 Additional Information on the Musa Model. 
One of the models discussed in Section 8.4-1 is the Basic Execution Time Model. It views the 
phenomenon of software failure as a Non-homogeneous Poisson Process (NHPP).  The counting 
process {M(τ),τ≥0} represents the cumulative number of software failures in the execution time 
interval [0,τ).  The Greek letter tau, τ, is used for execution time to distinguish it from 
calendar time, t.  Execution time is the failure-inducing stress for software.  The model also has a 
"calendar time component" that relates τ to t.  The mean value function is the expected cumulative 
number of failures in the interval: 

The failure rate can be defined as the execution time derivative of the mean value function: 

When the program code is frozen and subjected to a stationary operational profile, the software is 
modeled as having a constant failure rate 

resulting in a (homogeneous) Poisson process.  The probability that the software will execute for 
execution time τ’ measured from the present is given by the reliability function 

 
In the Basic Execution Time Model, ν0 is the total number of failures that would have to occur to 
uncover all faults.  These faults include ω0 faults that were present at the start of system test--called 
inherent faults--plus any faults that might be inadvertently introduced into the program as the result of 
fault correction activity. 
 
Not every failure results in exactly one fault being removed from the program code.  Sometimes 
additional faults are discovered from code reading, when a failure reveals a whole class of closely 
related faults.  And sometimes the fault that caused a failure is not found, or a new fault is introduced.  
In the model, the net number of faults removed per failure is called the fault reduction factor, denoted 
B.  The fault reduction factor is related to the inherent faults and total failures by 

 

 µ τ τ( )  {M( )}≡ E  (A.3) 

 λ τ
µ τ

τ( ) equiv 
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d
 (A.4) 

 λ τ λ τ( ) =  , 0≥  (A.5) 
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 B =  
0

0

ω
ν

 (A.7) 
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The initial failure rate, the one at the start of system test, is denoted λ0.  The contribution of each 
fault to the overall program failure rate is called the per-fault hazard rate, denoted φ.  The per-fault 
hazard rate is related to the initial failure rate and the inherent number of faults by 

It is called a hazard rate (called also force of mortality [FOM]) because a fault is considered to have a 
finite lifetime:  If testing is continued long enough, the fault will be discovered and corrected. 
 
The failure rate is expected to improve as time goes on, as faults are removed from the code.  Since B 
faults are removed per failure occurrence, the failure rate declines by β = Bφ upon each failure. If m 
is the expected number of failures at time τ, then the overall program failure rate is 

or 

Since 

it must be the case that 

 
The solution to this differential equation provides the mean value function 

 
The parameters β and ν0 can be determined by prediction or estimation.  Prediction procedures 
depend on the software development phase in which the prediction is made (see Section 7). 
 

 φ
λ
ω
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0
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Point estimation of model parameters.   
Estimation establishes values for the Basic Execution Time Model parameters β and ν0 based on 
the history of software failure during system test.  The method of maximum likelihood estimation 
chooses the values of β and ν0 that maximize the likelihood of obtaining the failure times that were 
in fact observed. 
 
Once system test begins, the cumulative execution times 

at which failures occur are recorded.  The quantity me is the cumulative number of failures.  The time 
at which the parameters are estimated is denoted τe and may or may not coincide with the time τme 
of the last failure.  This "time censoring" is taken into account in the estimation equations. 
 
The maximum likelihood estimate of β is obtained as the solution to 

and then ν0 is given by 

rounded to the nearest integer. 
 
Steps. 
A.  Upon the occurrence of each software failure, the failure identification personnel record the 
cumulative execution time, in CPU seconds since the start of system testing.  The execution time can 
be obtained from the operating system’s accounting facility, or the program can be instrumented to 
provide this information.  Collect these failure times, store in a table, and denote the ordered failure 
times using equation (A.14) 
 
B.  To assess the current failure rate and reliability of  the software, follow these steps: 

 
i.  Record the current cumulative execution time, in CPU seconds since the start of system 
testing. Denote this time τe. 
 
ii. Record the cumulative number of failures that have  occurred since the start of system testing. 
 Denote   this count me. 

 
iii. Using the knowns:  me, τe, and (A.15), solve for the unknown parameter β using 
equation (A.7) 

 1 2 m, ,...,
eτ τ τ  (A.14) 
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The equation is best solved using a root-finding procedure on a computer or programmable 
calculator. The remaining parameter of the model, ν0, is found by substituting β into equation 
(A.16) and rounding ν0 to the nearest integer. 
 
iv. With the point estimates obtained for β and ν0, the failure rate of the software is given by 
equation (5.2) and the reliability function by using equation (A.6) where τ’ is execution time 
measured from the present. 

 
Example: 
In this example, there are seven software failures, so me = 7.  The current cumulative execution time is 
te = 445.  The software failure times are presented in Table A-7. 
 

TABLE A-7.  Example Failure Times 
 

FAILURE NUMBER i CPU SECONDS ti 

         1        5 

         2       35 

         3      144 

         4      229 

         5      342 

         6      353 

         7      441 

 
To estimate the parameter β, the following equation is solved: 

The sum term is 

 e e e

e i=1

m

i
m

 -  
m
[ ] - 1

 -  0
e

 =  
β

τ
β τ

τ
exp ∑   

 
i = 1

7
i  =  (5+ 35 +144+ 229 + 342+ 353+ 441) =  1549∑ τ   
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yielding 

The solution β =7.3x10-5 is obtained.  Several methods for solving equations can be found in any text 
on numerical analysis.  The solution here was obtained using the method of "bisection," which involves 
repeatedly halving the interval containing the root of the relevant function.  The value for ν0 is found 
as 

which, rounded to the nearest integer, gives ν0  = 218. 
 
The failure rate of the software is obtained as 

The reliability function is obtained as 

 
Confidence intervals.  
The degree of uncertainty present in the point estimates of β and ν0 can be expressed through the 
use of confidence intervals.  To determine confidence intervals, compute the "Fisher information" 
 
 

Then a 100(1-α)% confidence interval for β is 

where κ1-α/2 is the corresponding normal deviate.  To obtain a  100(1-α)% confidence interval for 
ν0, the high and low confidence limits for β are substituted into the equation for ν0. 
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Steps. 
A.  Compute the "Fisher information" from equation (A.17) 
 
B.  Choose a confidence level, α.  Find the corresponding normal deviate κ1-α/2.  Table A-8 shows 
the normal deviate values for selected values of α.  More-extensive tables can be found in many 
statistics textbooks. 

 
 TABLE A-8.  Normal Deviates 
 

   α κ1-α/2 

 0.001  3.29 

 0.002  3.09 

 0.01  2.58 

 0.02  2.33 

 0.05  1.96 

 0.10  1.64 

 0.20  1.28 

 
 
C.  To find the lower limit of a 100(1-α)% confidence interval for β, substitute the point estimate for 
β into the formula 

To find the upper limit, use 

To find the same confidence interval for ν0, substitute βlow and then βhigh into 
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Example: 
Suppose that there were me = 19 software failures during the interval through time τe = 150.0 
and that β was estimated to be .04.  Then, the "Fisher information" is computed from (A.17). 
 
For a 95% confidence interval, α = 0.05 and κ1-α/2 = 1.96.  Thus 

 
Grouped data.  
Sometimes it is more convenient to work with the number of failures that occurred over execution time 
intervals rather than with failure times.  Suppose the failure data is grouped into z intervals, with 
interval i ending at cumulative execution time xi. The duration of interval i is then xi-xi-1, with x0 = 0.  
Let the number of failures in interval i be denoted yi’ and the cumulative number of failures through 
interval i be denoted yi.  The total test time is xz, and the cumulative number of failures for the test is yz.  
 
The maximum likelihood estimate for β is given by solving the following equation for β:  

The maximum likelihood estimator for ν0 is then given by 

rounded to the nearest integer.  In this case 
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This can be used in the same way as for ungrouped failures to construct confidence intervals for β 
and ν0. 
 
Steps. 
A.  Divide the execution time since the start of system testing into p intervals.  Denote the cumulative 
execution time at the end of the i-th interval as xi. 
 
B.  Count the number of software failures that occurred in each interval i.  Denote the count for 
interval i as yi’.  Denote  the cumulative number of failures through interval i as yi. 
 
C. Using the knowns--z; 

Solve for the unknown parameter β using equation (A.20). To find the value of the parameter ν0, 
substitute the estimate found for β into equations (A.21) and (A.22). 
 
Example: 
In this example, there are four intervals, so z = 4.  The total test time is xp = 55.  The total number of 
failures is yz = 12.  The failure data appears in Table A-9. 
 
 TABLE A-9.  Example of Grouped Failures 
 

   Interval   Number l     Ending Time xl Number of Failures  
yl’ 

Cumulative Number 
of Failures yl 

     1        15       4       4 

     2        25       3       7 

     3        35       3      10 

     4        55       2      12 

 
The solution to the equation is β = 0.022.  The parameter ν0 is found to be 

which, rounded to the nearest integer, is 17. 
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Calendar time modeling.  The relationship between cumulative execution time t and cumulative 
calendar time t is determined from the "calendar time component" of the Basic Execution Time Model. 
 The calendar time component takes into account the constraints involved in applying test and repair 
resources to the software development project.  The rate of testing is constrained by failure 
identification personnel (test team), failure resolution personnel (debuggers), and available computer 
time.  Due to long lead times for training and computer procurement, the model assumes that the 
quantities of those resources are constant throughout the system test period. 
 
The subscript r is an index that indicates the particular resource involved: 

 
I = failure identification personnel 
F = failure resolution personnel 
C = computer time 

 
Let θr be the amount of resource r required per unit of execution time, and let µr be the amount of 
resource r required per failure experienced.  Note that θF=0 since failure resolution personnel only 
address failures.  The expected resource requirement χr is 

where τ is cumulative execution time.  Then the change in resource usage per unit of execution time is 

If Pr is the available quantity of resource r that is available and ρr is its utilization, then Prρr 
represents the effective amount of resource r that is available.  Then 

Note that ρI=1, because failure identification personnel can be fully utilized.  At any point in 
execution time, one resource will be limiting, the one that yields the maximum derivative of calendar 
time with respect to execution time: 

 

 r r r =   +  ( )χ θ τ µ µ τ  (A.24) 

 
∂
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The testing phase can be divided into segments.  During each segment, exactly one of the resources C, 
F, or I will be limiting. Each segment will exhibit its own calendar-to-execution time ratio t/τ.  To 
find the potential transition points (in terms of failure rate values) between resource-limited segments, 
compute 

for each pair of resources.  To find the limiting resource within each segment, calculate 

for an arbitrary choice of λ within each segment. 
 
If the boundaries of a resource-limited segment are λ1 and λ2, the expected number of failures 
during the segment is 

 
while the execution time interval is 

The calendar time increment during the segment is 

Confidence limits are obtained by substituting high and low endpoints of the confidence interval for β. 
 
Typically, three resource-limited segments occur: 
 

[0,λFI]: Failures occur frequently.  The limiting resource is failure 
resolution personnel.  Testing has to be stopped to allow the debugging 
team to catch up. 
 
[λFI,λIC]: Intervals between failures lengthen.  The test team 
becomes the bottleneck, as the team can only make test runs and 
evaluate the results so fast. 
 

 rs
s s r r r s

r r s s s r

 =  P - P

P - P
 ,     r sλ

ρ θ ρ θ
ρ µ ρ µ

≠  (A.28) 

  (A.29) 

 ∆µ ν λ λ
λ

 =  
-

0
1 2

0

 (A.30) 

 ∆τ ν
λ

λ
λ

 =  0

0

1

0

ln  (A.31) 

 ∆ r
r r

r
1

2
r 1 2t  =  

1

P
 +  ( - )

ρ β
θ λ

λ
µ λ λln







 (A.32) 



 

 
 
 A-34 

[λIC,...]:  Interfailure times become very long.  Only the 
computing capacity limits how fast testing can be accomplished. 

 
The total increment of calendar time over the three segments is given by 

Steps. 
A.  For each resource--computer time (C), failure resolution personnel (F), and failure identification 

personnel (I)--determine resource quantity: 
 
    PI:  available identification personnel (man-hours) 
 
    PF:  available failure resolution personnel (man-hours) 
 
    PC:  available CPU time (CPU hours) 

 
B.  For each resource r, determine the utilization fraction ρr. 
 
C.  Determine the amount of each resource expended per failure: 

 
    IC:  computer time (CPU hours per failure) 
 
    IF:  failure resolution personnel (man-hours per failure) 
 
    II:  failure identification personnel (man-hours per failure) 

 
D.  Determine the amount of each resource expended per CPU hour: 
 
      θC:  computer resource expenditure (=1) 
 
      θF:  failure resolution personnel (=0) 
 
      θI:  failure identification personnel 
 
E.  Compute the potential transition points (in terms of failure rate) between resources by applying the 

following formula with the combinations r=I, s=F; r=I, s=C; and r=F, s=C using equation (A.28). 
 
Disregard any λrs that is negative.  Put the potential transition points in descending order.  Determine 
which resource is limited in the interval between each pair of successive transition points by choosing 
an arbitrary λ in each interval and determining the resource r for which the following expression is 
maximized: 

 ∆ ∆ ∆ ∆t =  t  +  t  +  tF I C  (A.33) 
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F.  To determine the incremental calendar time, in hours, between two execution times, τ1 and τ2, 

that lie within the same resource-limited period, calculate using equation (A.33). r is the limiting 
resource in that interval.  For two points that lie in different intervals, sum the incremental calendar 
time incurred in each intervening interval. 

 
Example: 
Suppose that the calendar time component parameters are 

Then, from 

the potential transition points are found to be 

The intervals are thus (3,0.19), (0.19,0.04), and (0.04,0).  The next step is to find out which resource 
is limiting in each of these intervals.  For resource I, 
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For resource C, 

And for resource F it gives 

 
Table A-10 summarizes the results of the calculations. 
      
 TABLE A-10.  Execution Time Derivatives 
 

Interval Arbitrary    
   λ 

dtI / dτ dtC / dτ dtF / dτ 

(3.0,0.19)    2.0 0.021 0.022 0.07 

(0.19,0.04)    0.1 0.0096 0.0068 0.00825 

(0.04,0.0)    0.02 0.00912 0.00616 0.00565 

 
In the first row, the maximum value for dtr/dτ is from resource F; for the second and third rows it is 
from resource I.  Therefore, in the interval (3.0,0.19), the limiting resource is failure resolution 
personnel and, during the interval (0.19,0.04) and the interval (.04,0.0) it is failure identification 
personnel. 
 
Suppose now that the Basic Execution Time Model parameters are β = 0.001, and ν0 = 200.  Then 
the time-dependent failure rate of the software is To find the calendar time increment from τ=69 to 
t=184, compute the failure rate at those points:  λ(69)»0.101 and λ(184)»1.006. The failure rate 
interval (1.006,0.19) is in a failure resolution personnel limited period, and the failure rate interval 
(0.19,0.101) is in a failure identification personnel limited period.  The total calendar time over the 
failure rate interval (1.006,0.101) is the sum of the increments over the two intervals (1.006,0.19) and 
(0.19,0.101). 
 
For the first interval, the calendar time increment is given by 
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For the second interval, the calendar time increment is 

Thus, the total calendar time increment is 

hours. 
 
The recalibration technique. 
The parameters β and ν0 are estimated on the basis of the first (i-1) failures and used to evaluate 

The estimated cumulative distribution function (Cdf) is then 
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≈   
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where τme is the cumulative execution time to the end of the growth test, λ(τme) is the failure 
intensity at that time, and τ’ is execution time measured from the present.  When the i-th failure--and 
thus the interfailure time τ’i between the (i-1)st and i-the failure--is later observed, the probability 
integral transform 

is recorded.  Each failure results in another ui.  The probability integral transform implies that the ui’s 
should look like a random sample from a U(0,1) distribution, if the sequence of one-step-ahead 
predictions was good.  The accuracy of the model with respect to the particular program can be 
gauged by drawing a u-plot.  In a u-plot the sample Cdf of the ui’s is visually compared with the Cdf of 
the uniform distribution over (0,1).  Let m be the number of ui’s.  To create a u-plot the m ui’s are put in 
ascending order 

 
and then the points 

 
are plotted.  The line of unit slope (uniform Cdf) is also plotted on the same graph, for comparison. 
 
Furthermore, the u-plot can be employed to recalibrate the software reliability model.  The recalibrated 
model corrects systematic bias or noisiness that the model is experiencing when being used on a 
particular program.  The recalibration takes place by applying a function G*(×) to the estimated Cdf.  
The function G*(×) is expressed as 

 
where m is the number of ui's and, for convenience, u(0) º 0 and u(m+1) º 1. 
 
To perform the recalibration the user applies the transformation 

Steps. 
A.  Upon the i-th software failure, use the Basic Execution Time Model to estimate the failure rate 

based on the software failures 

 i i iu  =  F ( )$ ′τ  (A.37) 
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The estimated cumulative distribution function is found using formula (A.36). 
 
When failure number (i+1) occurs, record 

 
B.  To form a u-plot, put the sequence {ui} into ascending order.  Denote the ordered u values using 

formula (A.37) 
 
C.  Plot the points using formulas (A.38).  If the points mostly lie above the line, the model is 

producing optimistic estimates of the failure rate.  If the points mostly lie below the line, the model 
is producing pessimistic estimates.  If the points are spread out both above and below the line, the 
problem is noisiness.  The bias or noisiness can be corrected by recalibration. 

 
D.  Correct the value cumulative distribution function by substituting it into formula (A.40) to obtain a 

recalibrated value. 
 
Example: 
The estimated failure rate after the m software failures is λ = 0.27.  The estimated cumulative 
distribution function is thus 

Suppose further that the ordered u sequence is 

It is desired to recalibrate 

Since 

 
the recalibrated value is 

 1 2 i,  ,  ...,  τ τ τ  (A.42) 

 i i i+1 iu  =  F (  -  )$ τ τ  (A.43) 

 7F ( ) =  1 -  [-0.27 ]$ exp′ ′τ τ   
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u = 0.03,u = 0.06,u = 0.12,

u = 0.59,u = 0.8,u = 0.86,

u = 0.92

  

 
 7F (6.35) =  0.82$   
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Since 

 
the reliability is estimated to be 1-0.72=0.28. 
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