

SYSTEM AND SOFTWARE RELIABILITY ASSURANCE
NOTEBOOK

Produced For Rome Laboratory
By

Peter B. Lakey, McDonnell Douglas Corporation, St. Louis, MO
Ann Marie Neufelder, SoftRel, Hebron, KY

FSC-RELI

 ii

FOREWORD

This notebook provides a reliability assurance methodology to predict and estimate the
reliability of systems that employ both hardware and software subsystems. Since the
methods used to predict the reliability of hardware systems are well established, this
notebook concentrates on the methods to predict and estimate the reliability of
software configuration items and methods for combining hardware and software
reliability metrics into an overall system parameter.

 iii

System and Software Reliability Assurance

 Table of Contents

1.0 INTRODUCTION 1-1

2.0 APPLICABLE DOCUMENTS 2-1

3.0 DEFINITIONS AND SYMBOLS 3-1
 3.1 Definitions of Terms 3-1
 3.2 Abbreviations 3-4
 3.3 Mathematical Symbols 3-5

4.0 OVERVIEW
 4.1 System Reliability Prediction and Estimation Program. 4-1
 4.1.1 System Modeling. 4-1
 4.1.2 System Reliability Allocation. 4-7
 4.1.3 System Reliability Prediction. 4-8
 4.1.4 System Reliability Growth. 4-8
 4.1.5 System Reliability Qualification Testing. 4-9
 4.1.6 System-Level Failure Reporting and Corrective
Action System (FRACAS). 4-9
 4.2 Hardware Reliability Prediction and Estimation Program 4-9
 4.2.1 Hardware Reliability Modeling 4-9
 4.2.2 Hardware Reliability Allocation. 4-10
 4.2.3 Hardware Reliability Prediction. 4-10
 4.2.4 Hardware Reliability Growth. 4-10
 4.2.5 Hardware Reliability Qualification Testing. 4-10
 4.2.6 Hardware FRACAS. 4-11
 4.3 Software Reliability Prediction And Estimation program 4-11
 4.3.1 Software Reliability Modeling 4-13
 4.3.2 Software Reliability Allocation 4-13
 4.3.3 Software Reliability Prediction 4-14
 4.3.4 Software Metrics Collection 4-16
 4.3.5 Software Reliability Growth Testing 4-18
 4.3.6 Software Reliability Qualification Testing 4-19
 4.3.7 Software Failure Reporting and Corrective Action
System (FRACAS) 4-21

 iv

5.0 HARDWARE/SOFTWARE SYSTEM RELIABILITY MODELING 5-1
 5.1 Basic Reliability Model 5-1
 5.2 Mission Reliability Model 5-1
 5.2.1 System FMEA Development 5-3
 5.2.2 System-Level Reliability Model Development 5-5
 5.2.3 Developing Detailed Reliability Models 5-5
 5.2.4 Reliability Modeling of Hardware/Software Elements 5-6
 5.2.4.1 Modeling Series Hardware/Software Elements
 5-6
 5.2.4.2 Modeling Redundant Hardware/Software Elements
 5-7
 5.2.4.2.1 Redundant Hardware Models 5-7
 5.2.4.2.2 Redundant HW/SW Models 5-9
 5.2.4.2.2.1 Cold Standby Systems 5-10
 5.2.4.2.2.2 Hot Standby Systems 5-11
 5.2.5 Hardware Failure and Repair Rates 5-13
 5.2.6 Software Failure Rates 5-13
 5.2.6.1 Timing Configurations 5-13
 5.2.6.2 Reliability Topology 5-14
 5.2.6.3 Notation 5-14
 5.2.6.4 Software Failure Rate Adjustment 5-14
 5.2.6.5 SW Reliability Combination Models. 5-15
 Procedure 5.2.6.5-1 - Sequentially active software
model. 5-16
 Procedure 5.2.6.5-2 - Concurrently active software
model. 5-17
 Procedure 5.2.6.5-3 - Mission oriented software
combination model 5-18

6.0 RELIABILITY ALLOCATION. 6-1
 6.1 System Reliability Allocation. 6-1
 6.2 Hardware Reliability Allocation. 6-1
 6.3 Software Reliability Allocation 6-1
 Procedure 6.3-1 - Equal apportionment applied to
sequential software CSCIs. 6-10
 Procedure 6.3-2 - Equal apportionment applied to
concurrent software CSCIs. 6-10
 Procedure 6.3-3 - Optimized allocation based on system-
mode profile 6-11
 Procedure 6.3-4 - Allocation based on operational criticality
factors. 6-14
 Procedure 6.3-5 - Allocation based on complexity factors
 6-15

 v

 Procedure 6.3-6 - Allocation based on achievable failure
rates 6-18
 Procedure 6.3-7 - Re-allocation based on predicted failure
rates. 6-22
 6.4 Hardware/Software Allocations. 6-24

 vi

7.0 PREDICTION 7-1
 7.1 Hardware Reliability Prediction 7-1
 7.2 Software Reliability Prediction 7-1
 7.2.1 RL-TR-92-52, "Software Reliability Measurement and Test
Integration Techniques” Method 7-4
 7.2.1.1 Proposal, Pre-Contract or Requirements
Phase Prediction 7-6
 7.2.1.2 Design phase prediction. 7-7
 7.2.1.3 Coding, Unit Testing and Integration Phases
Prediction. 7-8
 7.2.2 Raleigh Model 7-9
 7.2.3 Industry Data 7-10
 7.2.4 Musa Prediction Method. 7-11
 7.2.5 Historical Data Collection. 7-15
 7.3 Use of Predictions for Project Planning and Control 7-15
 7.3.1 The RL-TR-92-52 Model 7-15
 7.3.2 The Raleigh Model 7-15
 7.3.3 Industry Metrics Used 7-16
 7.3.4 The Musa Reliability Growth Method 7-18
 7.4 Forecasting Failure Rate Versus Execution Time 7-19
 7.5 Forecasting Cumulative Failures Versus Execution 7-19
 7.6 Forecasting When a Reliability Objective Will Be Met 7-19
 7.7 Additional Failure and Execution Time Required to Met and
Objective 7-21
 7.8 Optimal Release Time 7-22
 7.9 Ultra High Reliability Prediction 7-24

8.0 RELIABILITY GROWTH AND DEMONSTRATION TESTING 8-1
 8.1 Software Operational Profile 8-1
 8.2 Random Input-State Selection 8-3
 8.3 Multiple Copies 8-4
 8.4 Software Reliability Growth Modeling/Testing 8-5
 8.4.1 A Checklist of Software Reliability Growth Models
 8-5
 8.4.2 - Goodness-of-fit/recalibration. 8-13
 8.4.3 Collecting the Data Required for the Models 8-13
 8.5 Software Reliability Demonstration 8-14
 Procedure 8.5-1 - Demonstration test 8-17

 vii

9.0 OPERATIONAL PROFILES 9-1
 9.1 Customer Profile 9-2
 9.2 User Profile 9-2
 9.3 System Mode Profile 9-2
 9.4 Functional Profile 9-3
 Procedure 9.4.1 - Generating a functional profile 9-4
 9.5 Operational Profile 9-7
 9.6 Operational Profile Development from Object-Oriented
Analysis/Design 9-16

APPENDIX
A.0 Impact of Design and Coding Techniques on Software Reliability A-1
 A.1 The Link Between Software Reliability and Software Safety
 A-7
 A.1.1 Use of Hypothesis Testing for Software Safety
 A-7
 A.1.2. Ultra High Reliability and Safety A-7
 A.1.3 Picking Test Cases for Safety-critical Real-time
Systems A-9
 A.1.4 Safety Analyses A-9
 A.1.5 Software FMEAs and Fault Tree Analyses A-10
 A.2 Description of SEI CMM Model A-12
 A.3 Matrix of Software Reliability Skill Sets A-12
 A.4 Differences Between Software and Hardware Reliability
 A-15
 A.4.1 Does Software Reliability Make Sense? A-16
 A.4.2. What Should be Measured? A-17
 A.4.3 Software Failure Rate Cannot be Predicted From Failure
Rates Per Individual Lines or Software Components. A-17
 A.4.4. The Finite State Machine Model of Programs A-17
 A.5 Software Testability A-18
 A.6 Computing Complexity A-19
 A.7 Software Metrics A-21
 A.8 Additional Information on the Keene-Cole Model A-23
 A.9 Additional Information on the Musa Model A-24
 A.10 Bibliography A-41

 viii

TABLES

TABLE 4-1. Reliability Prediction and Estimation Tasks. 4-2
TABLE 4-2. Software Reliability Allocation Procedures 4-14
TABLE 4-3. Software Reliability Prediction Factors. 4-17
TABLE 4-4. Software Reliability Qualification Test Types. 4-20
TABLE 4-5. List of Known Fault Types 4-22
TABLE 4-6. Orthogonal Defect Classification 4-24
TABLE 5-1. Software Failure Modes 5-5
TABLE 5-2. Series Sequential Example 5-16
TABLE 5-3. Operational Profile 5-19
TABLE 5-4. Mission Phases 5-21
TABLE 5-5. Operational Modes 5-22
TABLE 5-6. Effective Operating Time in Modes 5-22
TABLE 5-7. Software CSCIs 5-22
TABLE 5-8. Operational Mode Failure Rates 5-22
TABLE 6-1. Software Functions By System Mode- Example 6-4
TABLE 6-2. Sample System Mode Profile 6-7
TABLE 6-3. Operational Profile Allocation Factors 6-13
TABLE 6-4. Complexity Procedures 6-16
TABLE 6-5. CSCI Characteristics 6-20
TABLE 6-6. Growth Model Quantities 6-21
TABLE 7-1. Software Reliability Prediction Techniques 7-3
TABLE 7-2. Prediction Techniques by Phase 7-3
TABLE 7-3. Summary of the RL-TR-92-52 Model 7-4
TABLE 7-4. Conversion Ratio from Fault Density to Failure Rate 7-5
TABLE 7-5. Proposal/ Pre-Contract/Analysis Phase Factors 7-6
TABLE 7-6. Design Phase Factors 7-7
TABLE 7-7. Coding/Unit Testing/Integration Phase Factors 7-8
TABLE 7-8. Industry Data Prediction Technique 7-11
TABLE 7-9. Code Expansion Ratios 7-13
TABLE 7-10. Using Metrics For Planning and Control 7-16
TABLE 7-11. Suggested Defect Removal Efficiencies for SEI CMM Levels
 7-18
TABLE 7-12. Methods for Predicting Optimal Release Time 7-22
TABLE 8-1. Software Reliability Models 8-6
TABLE 8-2. Failure-Free Execution Interval Test Plans 8-17
TABLE 9-1 Sample Customer Profile 9-2
TABLE 9-2 System Mode Profile 9-3
TABLE 9-3 (a) Sample Implicit Operational Profile 9-4
TABLE 9-3 (b) Sample Explicit Operational Profile 9-4
TABLE 9-4 Sample Final Function List 9-5
TABLE 9-5 Sample Functional Profile Segment 9-5
TABLE 9-6 Sample Environmental Profile 9-6

 ix

TABLE 9-7 Sample Final Functional Profile Segment 9-6
TABLE 9-8 Operational Profile for Account-Processing Billing System 9-10
TABLE 9-9 Missile Customer Profile 9-11
TABLE 9-10 Missile User Profile 9-11
TABLE 9-11 Missile System Mode Profile 9-12
TABLE 9-12 Missile Software Modules 9-12
TABLE 9-13 IBIT Operational Profile for Missile OFS 9-13
TABLE 9-14 Free-flight Operational Profile for Missile OFS 9-14
TABLE 9-15 Use Case Examples 9-19
TABLE 9-16 Operational Relationships 9-19
TABLE 9-17 Test Planning Based on Operational Profile 9-20
TABLE A-1. Software Design Techniques A-5
TABLE A-2. Software Coding Techniques A-6
TABLE A-3. How Safety Analyses Apply to Software A-11
TABLE A-4. Skills Required for Software Reliability Tasks A-13
TABLE A-5. Relationship of Engineering Disciplines A-14
TABLE A-6. Suggested Software Metrics A-22
TABLE A-7. Example Failure Times A-27
TABLE A-8. Normal Deviates A-29
TABLE A-9. Example of Grouped Failures A-31
TABLE A-10. Execution Time Derivatives A-36

 x

FIGURES

FIGURE 4-1. SystemReliability Tasks. 4-3
FIGURE 4-2. Reliability Model for HW/SW Element 4-4
FIGURE 4-3. Dependency of Software CSUs 4-5
FIGURE 4-4. Block Diagram for Automobile ABS 4-6
FIGURE 4-5. Block Diagram for Missile Guidance System 4-6
FIGURE 4-6. Block Diagram for Gateway Server System 4-7
FIGURE 4-7. Software Reliability Prediction Procedure 4-15
FIGURE 4-8. Software Failure Intensity Curve. 4-18
FIGURE 4-9. Software FRACAS 4-21
FIGURE 5-1. Example of System-Level Functional FMEA 5-4
FIGURE 5-2. General Hardware Redundancy Model. 5-7
FIGURE 5-3. Hardware Reliability Model. 5-8
FIGURE 5-4. HW/SW Reliability Model 5-10
FIGURE 5-5. Simplified State Diagram 5-12
FIGURE 6-1. Event Diagram for Reliability Allocation 6-2
FIGURE 6-2. Basic Execution Time Software Reliability Model 6-5
FIGURE 6-3. Reliability Allocation Procedures 6-9
FIGURE 7-1. Raleigh Curve 7-10
FIGURE 8-1. Software Reliability Growth Models 8-9
FIGURE 8-2. Failure Rate Profiles 8-10
FIGURE 8-3. Failure Rate Curves 8-11
FIGURE 9-1 Operational Profile Development 9-1
FIGURE 9-2 Operational Elements 9-7
FIGURE 9-3 Plot of Selected Parameters from Free-flight Operational Profile
 9-14
FIGURE 9-4 Vending Machine Object Representation 9-16
FIGURE 9-5 Stereo System Use Cases 9-16
FIGURE 9-6 Documented Use Case 9-17
FIGURE 9-7 Event Trace Example 9-17

1.0 INTRODUCTION

1.1 Purpose.

This notebook establishes uniform reliability assurance methods for predicting and
estimating the reliability of electronic systems that include software components. It
complements other reliability practices used in industry today.

1.2 Application.

This notebook provides both general requirements and specific procedures for
predicting and estimating the reliability of systems that contain both hardware and
software elements. Techniques are described for reliability modeling, allocation,
prediction, growth modeling/testing, and qualification testing.

Section 4 provides a general overview of the system reliability tasks. Section 5 has
techniques for modeling system software reliability. Section 6 provides guidance for
allocating reliability to hardware and software components. Methods for predicting
software and system reliability are discussed in Section 7. Section 8 discusses growth
and demonstration testing. The software operational profile and how it impacts
software reliability is presented in Section 9.0.

The appendix has additional information on safety analyses, measuring software
complexity, organizational considerations with respect to software reliability, the
Software Engineering Institute Capability Maturity Model, the key differences between
software and hardware reliability, establishing a software metrics program, and
reliability growth models.

2.0 APPLICABLE DOCUMENTS

American Institute of Aeronautics and Astronautics, Recommended Practice for
Software Reliability ANSI/AIAA R-013-1992, February 23, 1993.

Chillarege, Ram, Orthogonal Defect Classification - A Concept for in-Process
Measurements, IEEE Transactions on Software Engineering, 11/92.

Farr, Dr. William, A Survey of Software Reliability Modeling and Estimation, NSWC
TR 82-171, Naval Surface Weapons Center, Dahlgren, VA, Sept. 1983.

Friedman, M.A., Tran, P.Y., and Goddard, P.L., Reliability Techniques for Combined
Hardware and Software Systems, Final Report, Contract F30602-89-C-0111, Rome
Laboratory, Air Force Systems Command, Griffiss Air Force Base, New York. Sept.
1991.

Jones,Capers, “Backfiring” or Converting Lines of Code Metrics Into Function
Points, Software Productivity Research, Burlington, MA, October 6, 1995.

Jones, Capers, Measuring Global Software Quality, Software Productivity Research,
Burlington, MA, 1995.

Jones, Capers, Software Productivity Research, Inc., Applied Software Measurement,
McGraw-Hill, NY, 1995.

Keene, Dr. Samuel, Cole, G.F., Reliability Growth of Fielded Software, Reliability
Review, Vol 14, March 1994.

Lyu, Michael R., Handbook of Software Reliability Engineering, IEEE Computer
Society Press, 1996.

Musa, J.D., Iannino, A. and Okumoto, K., Software Reliability: Measurement,
Prediction, Application, McGraw Hill Book Company, New York, NY. 1987.

Musa, J.D., Operational Profiles in Software Reliability Engineering, IEEE Software
Magazine, March 1993, pages 14-32.

Parnas, David L., Evaluation of Safety-Critical Software, Communications of the
ACM, Vol. 33, No. 6, June 1990.

Putnam, L., Myers W., Measures for Excellence, Prentice Hall Yourdon Press,
Englewood Cliffs, NJ, 1992.

Rentschler, D., Implementing Orthogonal Defect Classification, Transactions from
the Fifth International Conference on Software Quality, October 1995, pages 277-
279.

Rook, P., Software Reliability Handbook, Centre for Software Reliability, Elsevier
Applied Science, London, 1990.

Science Applications International Corporation & Research Triangle Institute,
Software Reliability Measurement and Testing Guidebook, Final Technical Report,
Contract F30602-86-C-0269, Rome Air Development Center, Griffiss Air Force Base,
New York, January 1992.

SEMATECH, Tactical Software Reliability Guidebook, Technology Transfer
#95092967A-GEN, Fulton, S.; Neufelder, AM, , Austin, Tx, 1995.

Voas, Jeffrey; Friedman, Michael, Software Assessment: Reliability, Safety and
Testability, John Wiley & Sons, NY, 1995.

3.0 DEFINITIONS AND SYMBOLS

3.1 Definitions of Terms.

Aggregate. A generic term used to represent a collection of interrelated hardware
and/or software components. An aggregate can exist at any level of the system
structure. The hardware and/or software components that compose the aggregate
exist at the next level below the aggregate.

Causal Analysis. Establishment of the root cause of a fault after it has been isolated
and removed.

Component. A generic term used to represent a hardware or software item at any level
in the system hierarchy.

Computer Software or Software Program. A combination of associated computer
instructions and computer data definitions required to enable the computer hardware to
perform computational or control functions.

Computer Software Component. A distinct part of a Computer Software
Configuration Item (CSCI). CSCs may be further decomposed into other CSCs and
Computer Software Units (CSUs).

Computer Software Configuration Item (CSCI). A configuration item that is computer
software.

Configuration Item. An aggregation of hardware or software that satisfies an end use
function and may be designated by the customer for separate configuration
management.

Failure Rate. The rate at which failures occur in some interval. Failures per unit time.

Functional Baseline (FBL). The initially approved documentation describing a
system’s functional, interoperability, and interface characteristics and the verification
required to demonstrate the achievement of those specified characteristics.

Functional Profile. A software program's functional profile is a description of end-user
functions and their probabilities of occurrence (proportion of time executed).

Hardware Configuration Item(HWCI). A configuration item that is hardware.

Hardware Failure. A hardware failure is the inability of a hardware item to perform a
required function within specified limits.

Hazard Rate. The limit of the failure rate as the interval approaches zero; the
instantaneous rate of failure at time t, given that the system survives until time t.

Inherent faults. The estimated total number of faults existing in the operational
software, either observed or not.

Input Space. The input space is the set of all possible input states for a software
program.

Input State. An input state is the set of values of input variables used by a software
run.

Input Variable. An input variable is a data item that exists external to a run and is used
by the run. There is one value for each variable for each run.

Mean Time to Software Restore (MTSWR). The amount of time needed to restore
software operations on site. This is not the amount of time required to make a
permanent repair to the software.

Non-Developmental Software (NDS). Deliverable software that is not developed under
the contract but is provided by the contractor, the Government, or a third party. NDS
may be referred to as reusable software, Government furnished software, or
commercially available software, depending on the source.

Operating System. An operating system is the set of software products that jointly
control the system resources and the processes using these resources. As used in this
notebook, the term operating system includes both large, multi-user, multi-process
operating systems and small real-time executives providing minimal services.

Output State. An output state is the set of values of output variables generated by a
run.

Output Variable. An output variable is a data item that exists external to a run and is
set by the run.

Per-Fault Hazard Rate. A per-fault hazard rate is the contribution each fault in a
program makes to the overall program failure rate, when it is assumed that they
contribute equally.

Product Baseline (PBL). The initially approved documentation describing all of the
necessary functional and physical characteristics of the configuration item and the
selected functional and physical characteristics designated for production acceptance

testing and tests necessary for support of the configuration item. In addition to this
documentation, the product baseline of a configuration item may consist of the actual
equipment and software.

Release. The designation by the contractor that a document is complete and suitable for
use. Release means that the document is subject to the contractor’s configuration
control procedures.

Re-Used Code. Reused code is non-developmental software (NDS).

Run. A run is a result of the execution of a software program. A run has identifiable
input and output variables. The set of runs map the input space to the output space
and encompasses the software program’s operational profile.

Software Defect. A product anomaly that exists after the development activity in which
it was generated.

Software Engineering Environment. The set of automated tools, firmware devices, and
hardware necessary to perform the software engineering effort. The automated tools
may include but are not limited to compilers, assemblers, linkers, loaders, operating
system, debuggers, simulators, emulators, test tools, and database management
systems.

Software Error. A human action that results in software containing a fault.

Software Fault. A manifestation of an error in the software. If encountered, may cause
a failure.

Software Failure. - An event in which a system or system component does not perform
a required function within specified limits.

Software Metric. A software metric is a measurable characteristic of the software
development process or of a work product of the development process.

Software Operational Environment. The manner in which the software will be operated
in its target environment.

Software Operational Profile. A quantitative characterization of how a system will be
used. A set of disjoint alternatives with the probability that each will occur.

Software Reliability. The probability that software will not cause the failure of a system
for a specified time under specified conditions. The probability is a function of the
inputs to, and use of, the system as well as a function of the existence of faults in the

software. The inputs to the system determine whether existing faults, if any, are
encountered.

System Reliability. System reliability is the probability that a system, including all
hardware and software subsystems, will perform a required task or mission for a
specified time in a specified operational environment.

Test Case. A test case is a defined input state for a run, along with the expected output
state.

Version. An identified and documented body of software.

3.2 Abbreviations.

cdf cumulative distribution function
CPU Central Processing Unit
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSU Computer Software Unit
ETT Expected Test Time
FMEA Failure Modes and Effects Analysis
FOM Force of Mortality
FRACAS Failure Reporting Analysis and Corrective Action System
FRB Failure Review Board
HW Hardware
HWCI Hardware Configuration Item
KSLOC (1000) Executable Source Lines of Code
LOC Executable Source Lines of Code
MIPS Million Instructions per Second
MTBF Mean Time Between Failures
MTTF Mean Time To Failure
NDS Non-Developmental Software
NHPP Non-Homogeneous Poisson Point
ODC Orthogonal Defect Classification
OS Operating System
pdf probability density function
PRST Probability Ratio Sequential Test
SDD Software Design Document
SRS Software Requirements Specification
SW Software
TAAF Test, Analyze, and Fix

3.3 Mathematical Symbols.

A application factor prediction parameter

B fault reduction factor

ci criticality factor of the ith CSCI

C computer time resource index

Cd fault detection coverage is the probability of detecting a fault given that a fault
has occurred.

Ci fault Isolation coverage is the probability that a fault will be correctly isolated
to the recoverable interface (level at which redundancy is available) given that a fault
has occurred and been detected.

Cr fault recovery coverage is the probability that the redundant structure will
recover system services given that a fault has occurred, been detected, and correctly
isolated.

CP customer profile occurrence probability

D development factor prediction parameter

D() total cost

D1() total system test failures cost

D2() total operation failures cost

D3() total system test cost

E0 expected total failures in infinite time - equivalent to ν0 and N

Ec cumulative number of faults corrected

Em estimated faults detected per month

ET estimated total number of faults to be found during development and
testing

E{x} expected value of x

exp[x] exponential function: ex

f linear execution frequency

fi total expected failures detected in some interval I

F resource index of failure resolution personnel; total number of detected failures
during test

FD fault density prediction

FP functional profile occurrence probability

F(x) cumulative distribution function

G*(x) recalibration function

I number of object instructions; resource index of failure identification
personnel; input space

Is number of source instructions.

I() Fisher information

K fault exposure ratio

ln x natural logarithm of x

M number of operational modes during a mission

me cumulative number of failures during system test

N number of components in an aggregate; expected total failures in infinite time -
equivalent to ν0

p(i) probability of input state i

Q operational mode utilization matrix

qij fraction of time that jth mode is utilized during ith phase

RH reliability of the hardware

RS reliability of the software

RSYS reliability of a system

R(t) reliability function with respect to time

SA software anomaly management prediction parameter

SL software language prediction parameter

SLOCj number of SLOC in a component j

SM system mode occurrence probability; software modularity prediction
parameter

SQ software quality review prediction parameter

SR software standard review prediction parameter

ST software traceability prediction parameter

SX software complexity prediction parameter

r resource index (C, I, or F); average instruction execution rate

T mission phase duration matrix

t generic time; calendar time since the beginning of system test

tD total development and test calendar time

U utilization matrix

US user probability occurrence probability

V number of phases in a mission

wi complexity weighting factor of ith CSCI

X effective operating time matrix

z(t) instantaneous failure rate at time t

α confidence level; producer’s risk

β decrement of failure rate per failure experienced; consumer’s risk

δ discrimination ration used for reliability demonstration testing

κ normal deviate

Λ average aggregate failure rate over an interval

ΛG failure rate goal of an aggregate

ΛP predicted average aggregate failure rate over an interval

λ constant failure rate

λ0 initial failure rate (the software failure rate at the start of system test)

λF future failure rate objective

λi failure rate of the i-th component in an aggregate

λiG failure rate goal of the i-th component in an aggregate

λP present failure rate

λiP predicted failure rate of the i-th component in an aggregate.

λ(t) failure rate at time t.

µ number of copies of software concurrently operating

µr failure coefficient of resource r usage

µ(t) mean value function: expected number of failures experienced by time t

ν0 expected total failures in infinite time

θ MTBF, average failure effort per resource

ρ average number of occurrences of a single fault; fault density prediction

ρr utilization of personnel resource

τ cumulative execution time since the beginning of system test

τe cumulative execution time into system test, at which software is actually or
hypothetically released.

τi cumulative execution time at which i-th failure occurs

τ’ execution time measured from present

τ’i i-th interfailure time; active time of i-th component

φ per-fault hazard rate

ω0 number of inherent faults (the number of faults in the code at the start
of system test)

ω0i number of inherent faults in i-th CSCI

ξ failure rate adjustment

Ψ reliability growth estimate

