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5.0 HARDWARE/SOFTWARE SYSTEM RELIABILITY MODELING 
 
Reliability modeling of combined hardware and software systems is in many ways analogous to 
reliability modeling of purely hardware systems. Reliability block diagrams of system elements are 
developed and employed.  Individual hardware platforms and the software assigned to those platforms 
are independent of other hardware/software platforms.   
 
Reliability block diagrams that accurately portray the interrelationship between the hardware platforms 
and the software executing on the platforms are developed and used in estimating reliability metrics. 
For complex structures, state diagrams are developed to accurately portray the unique 
interrelationships of the structure being modeled.  
 
This section provides the techniques applicable to the reliability modeling of combined hardware and 
software systems.  For series systems, the process is straightforward.  For complex, redundant, 
repairable systems, an abbreviated overview of the system modeling process is provided.  Because 
these complex models are unique to the system being modeled, detailed procedures for developing 
these complex models cannot be provided.   
 
The overview provided is used to help the analyst identify those system properties which are unique to 
redundant combined hardware and software systems.  The majority of this section is dedicated to 
describing the development of software failure rates that are a composite of the multiple processes that 
may be executing during any time period. 
 
5.1 Basic Reliability Model.   
A basic reliability model for a hardware/software system can be prepared. However, the result is two 
reliability models; one for the software and one for the hardware elements of the system. The basic 
hardware reliability model consists of all hardware elements of the system in series so that the overall 
logistics support requirements for spares, maintenance personnel, training, etc., can be readily assessed 
based on the failure rates of the equipment. 
 
Individual software components (CSUs) as a rule do not fail independently and are not subject to wear 
out.  Software components fail in association with the operational profile and must be modeled that 
way. Also, software components are not replaced independently like hardware units because they do 
not wear out and the unit itself is not independent.    
 
For hardware/software systems, the results of the basic software reliability model can be used to 
estimate the number and types of equipment that must be supplied when a software maintenance 
facility is required as a part of the contractual effort. 
 
5.2 Mission Reliability Model.  
The mission reliability model is used to support allocations of system requirements to individual 
hardware and software elements and to support assessment of the compliance to requirements. 
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Reliability modeling methods used to model combined HW/SW systems for the purposes of reliability 
estimation and allocation need to accurately assess the interdependence between individual software 
elements, the hardware platforms on which these software elements execute, and the services provided 
by the system being analyzed.  
 
Additionally, the methods used need to be based on and compatible with modern system engineering 
methods.  This results in a modeling procedure consisting of six steps:  
 
1) Development of a system Failure Modes and Effects Analysis (FMEA) 
2) Development of the top level reliability model based on the system FMEA results 
3) Development of detailed reliability block diagrams and models based on the top level reliability 

model 
4) Modeling the combined hardware/software elements of the system  
5) Development of hardware models and appropriate hardware failure rates 
6) Use of the appropriate software failure rate modeling and calculation procedures of this notebook 

to predict software failure rate.   
 
The reliability model(s) developed using these steps can then be used to estimate the reliability of the 
system being analyzed. 
 
System reliability modeling is based on system FMEA, a bottom-up reliability analysis technique that 
provides a mapping between failures and their impact on system services.  These FMEAs need not 
always be a formal analysis since the results are expressed in the reliability model block diagrams. A 
system-level adaptation of Matrix FMEA techniques which  results in a compact, readily usable display 
of the needed FMEA information is used to support the development of system reliability models. 
 
Estimation of system reliability characteristics is based on the reliability block diagrams and Markov 
state diagrams developed from the system FMEA and the individual hardware and software component 
failure rates.  Estimation techniques for hardware reliability and maintainability characteristics are well 
known and can be applied to the hardware portions of combined hardware/software systems.   
 
Software reliability characteristics can be estimated using the procedures provided in this notebook.  
For redundant, fault tolerant systems, software recovery characteristics are system design and 
implementation dependent. These recovery characteristics will need to be estimated on a case by case 
basis in conjunction with performance modeling and estimation. 
 
Complex, redundant systems and system elements are modeled using state diagrams to accurately 
portray the possible operational and non-operational states.  In general, these state diagrams will be 
complex enough to require access to automated tools for solution. They are not, strictly speaking, 
intractable.  However, the labor required to manually determine a specific closed form solution for a 
state diagram that has been developed to model a specific design being analyzed is usually prohibitive.  
Automated solutions of these state diagrams are possible both analytically and through simulation.  The 
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use of automated tools to support complex modeling is highly recommended.  However, the user of 
automated reliability modeling tools will need to determine whether or not the numerical accuracy 
needed for their specific situation is supported.   
 
Analytic solutions to complex diagrams often require the solution of a transition matrix with potentially 
significant losses in numerical accuracy due to the multiple arithmetic operations compounded by the 
accuracy limitations of the processing platform used.  Monte Carlo solutions to state diagrams can 
result in both numerical inaccuracy due to the methods employed and may involve substantial cost for 
multiple program runs.  The costs associated with Monte Carlo solutions rise dramatically as the 
accuracy requirements increase. 
 
Maintainability, the time required to isolate and correct a fault in the design, is not used in the reliability 
modeling and allocation discussed in this section.  Software maintenance is expected to proceed in 
parallel with ongoing system operation following a software failure.  Thus, the time required to re-
establish system operation following a software failure is used as the repair or recovery rate in the 
modeling of software elements of combined HW/SW elements.  Note that Mean Time to Software 
Recovery (MTSWR) is not to be confused with MTTR. The MTSWR includes only the time to 
recover operations and does not include time to permanently repair the software. 
 
Software maintenance will result in a software failure rate that is not constant over time due to the 
software corrections being implemented.  However, for the purposes of modeling and allocation of 
combined hardware and software systems, an assumption of constant software failure rate during any 
operational period (i.e., between fixes), when the software is under configuration control is justified. 
 
5.2.1 System FMEA Development. Reliability modeling of combined HW/SW systems, whether for 
reliability allocation or estimating purposes, is approached on a functional service basis using a matrix 
FMEA approach.  The resultant FMEA can then be used to develop a HW/SW system reliability block 
diagram of independent elements.  The individual series/parallel elements of the  reliability block 
diagram can then be modeled.  Non-redundant systems can be modeled as series strings of hardware 
and HW/SW system elements.  
 
Development of a system FMEA to support creation of reliability models for use in reliability 
estimation and allocation begins with the use of the functional decomposition that has been developed 
as a part of the system engineering process.  For small or relatively simple system structures, system 
functional analysis may have been omitted as a formal procedure.  If the system level functional 
decomposition is not available, the reliability engineer may find it necessary to recreate this analysis 
using Data Flow Diagrams.  
 
The functional decomposition of the system is used to identify the Hardware Configuration Items 
(HWCIs), the Computer Software Configuration Items (CSCIs) along with the processing provided by 
these CSCIs, and the allocation of CSCIs to various HWCIs within the system. The analyst can then 
begin to create the system level FMEA that will support reliability modeling of the combined HW and 
SW system. 
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The system level FMEA, illustrated in Figure 5-1, is a mapping of the hardware and software 
components of the system onto the system services provided.  To create the FMEA, the analyst first 
constructs a matrix with each of the hardware CIs and their associated software CSCIs or CSCs as 
appropriate along the vertical axis.  The horizontal axis is formed by the system services or outputs of 
the system grouped in convenient ways that support the desired analysis.   
 
A grouping of system services by system operating mode often supports development of the various 
models required by the system specification.  The HWCIs and CSCIs are then mapped onto the system 
services or outputs based on the impact on system services caused by the failure of each hardware and 
software element.  In performing this mapping, the analyst will need to assess the impact of failure of 
both hardware platforms and software configuration items.   
 
The failure impact of software elements will need to be examined in depth based on the data flow that 
has been established for the system design. Similarly, the failure of hardware platforms will need to be 
examined for its impact on software provided services using the data flow diagrams for the system 
software resident on the hardware platform.  
 

 
 

 FIGURE 5-1. Example of System-Level Functional FMEA 
 
 
Table 5-1 illustrates some of the generic failure modes for software systems.  This chart is useful when 
analyzing the software at any level of architecture. 
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TABLE 5-1. Software Failure Modes 
 
Undesired 
outputs 

Undesired 
processes 

False alarms Error handling Timing Sequences 

Output is 
invalid 

Output is valid 
but process for 
getting output 
is not 
acceptable 

Exception 
handling 
executes 
when there is 
no exception 

Exception 
handling does 
not execute 
when there is an 
exception 

Timing 
window is 
missed 

Functions 
executed 
correctly but 
in incorrect 
order 

Output is valid 
but not 
expected 

Making a 
calculation 
based on 
invalid or 
incorrect 
inputs. 

 Exception 
handling 
executes 
incorrectly when 
there is an 
exception 

Software 
functions 
properly but 
not within 
expected time 

 

 
Once the system level FMEA has been completed, the analyst can  examine the hardware and software 
that are required for any particular mode or set of system services.  A reliability model for these 
services can then be developed. 
 
5.2.2  System Level Reliability Model Development.  
The system level reliability model, expressed as a reliability block diagram for combined HW/SW 
systems, is developed based on system FMEA, using a procedure that is analogous to that used for 
purely hardware systems.   
 
The FMEA results are used to determine which hardware and software elements are required to 
provide a set of system services required by the system mission or mode being modeled.  The analyst 
then proceeds to develop a reliability block diagram that consists of a set of series blocks for each of 
the independent HW/SW subsystems that must be operational to provide the services being modeled.  
 
At the system level of modeling, separation of the hardware and software elements in the system is not 
needed. For small systems and equipment, "system" level modeling as a separate activity may not be 
required. For these small systems, the methods discussed below under development of detailed 
reliability models may be directly applied. 
 
5.2.3 Developing Detailed Reliability Models.  
The system level reliability models which have been developed are then further decomposed to produce 
reliability models, expressed as reliability block diagrams, of increasing detail.  These block diagrams 
are developed. The decomposition process is stopped when the reliability model block diagrams are 
sufficiently detailed to show all hardware and combined hardware/software elements of the system as 
single blocks.  
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The reliability analyst must use care in assessing the level of detail required by the system being 
analyzed. The detailed block diagrams must allow separation of hardware and software elements as a 
next step.  However, the block diagrams must not be so detailed prior to the separation of the 
hardware and software elements that hardware and software interdependencies for redundant 
structures are lost from the model(s). 
 
5.2.4 Reliability Modeling of Hardware/Software Elements.  
Once the detailed reliability models are complete, the reliability analyst must further decompose those 
system elements containing hardware that hosts executing software.  For the purposes of reliability 
modeling, software includes firmware which is configurable or under configuration control and 
hardware includes firmware which is not. Also, the media that the software is stored on should be 
treated as hardware.  Decomposition of series elements which contain hardware and software is 
straightforward.  Modeling of complex, redundant systems with recovery, is more difficult and requires 
a highly skilled analyst. 
 
5.2.4.1 Modeling Series Hardware/Software Elements.   
Series hardware/software elements are modeled as a series string consisting of the hardware platform 
and the software which executes on that platform as shown previously in Figure 4-3 and discussed in 
Section 4.1.1.  As shown in that figure, the software further decomposes into two elements; non-
developmental or re-used software, and newly developed software.  
 
Failure rates for operating systems or executives, if available, can be obtained from the supplier of the 
operating system or executive. Failure rates obtained from the operating system supplier are usually 
quoted in the number of outages caused over some period of time (e.g., a year).  Failure rates for 
operating systems are generally quoted with respect to system operating time because the operating 
system is active at all times when the computer is powered and ready for processing.  The reliability 
analyst will need to convert the failure rate given to failures per hour for compatibility with hardware 
failure rates.   
 
Defect data for re-used code can be obtained from applications where the code was previously used. 
The availability of this data depends on the completeness of organizational record keeping and the 
amount of code modification that has been necessary to allow the code re-use. The data for re-used 
code can only be used if the operational profile of the previously developed application resembles that 
of the current application. If the operational profiles are consistent, then the historical defect rates can 
be used and then converted to failure rates using the techniques in Section 7. 
 
Estimates of the failure rate for newly developed software are obtained using the prediction procedures 
provided in Section 7 of this notebook. The failure rate estimates produced by these procedures is 
provided in failures per CPU operating second for each software element being developed. These 
failure rates must then be combined as discussed in Section 5.2.6 to account for the specific software 
topology and timing.  Additionally, the resultant software failure rate can be converted to a system 
operating hour form as discussed in Section 5.2.6.5. 
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5.2.4.2 Modeling Redundant Hardware/Software Elements.  
Reliability models of redundant and configurable or recoverable HW/SW elements are significantly 
more complex than reliability models of series hardware/software elements.  The addition of 
redundancy introduces complexity associated with the ability of the hardware and software to correctly 
respond to failure events.   
 
Reliability modeling of redundant HW/SW elements with hot standby and automatic switch-over 
capability significantly increases the complexity required to properly account for system behavior.  Of 
necessity, this discussion of modeling redundant hardware/software elements will focus on the state 
diagrams which are used to accurately assess the behavior of these complex systems.  This discussion is 
designed to assist an experienced reliability analyst to determine the information which will need to be 
included in the state diagrams developed for the system being analyzed.  
 
5.2.4.2.1  Redundant Hardware Models.   
A general model for hardware redundancy using identical equipment is shown in Figure 5-2. 
Redundant system elements transition to the next higher state upon occurrence of any hardware failure. 
  
Hardware repairs transition the system element model to the next lower state.  The system is a closed-
form semi-Markov process that can be solved for the appropriate reliability measures using 
conventional methods.  Closed-form solutions for the reliability measures of interest for this type of 
model under most common repair restrictions, types of standby, etc., are available in the technical 
literature referenced by this notebook. 
 
The model shown in Figure 5-2 provides an upper bound on the reliability of redundant hardware-only 
systems.  Estimation of the expected reliability of hardware systems requires that the fault tolerance 
employed in the redundancy be included in the model.  For cold standby systems, where backup 
elements are not powered and thus immune to failure occurrence, the model of Figure 5-2 provides a 
reasonable estimate if the transition rates shown from each success state to the next higher number 
state are adjusted to account for the constant number of elements in operation (m units).  
  
However, for hot standby systems with automatic switch-over, the model of Figure 5-2 significantly 
overstates the reliability achieved by the redundant hardware elements.  Failures in the fault detection, 
fault isolation, and fault recovery mechanisms that may lead to latent faults in backup equipment, or an 
inability to activate redundant system elements and resume system services in response to primary 
element failures, are not included in the model shown in Figure 5-2. 
 

 0 S  1 S M F  N-1 F   N Units
Operational

 N - 1 Units
Operational
     1 Unit
     Failed

 M - 1 Units
Operational

   N Units
    Failed

. . .

. . .
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NλHW
(N-1)λHW (M-1)λHW    λ
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µHW µHW µHW µHW

. . .

. . .
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 FIGURE 5-2. General Hardware Redundancy Model 
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Figure 5-3 is a simplified reliability model for a hardware system employing hot standby, and automatic 
switch-over with one of two identical elements required.  The model accounts for failures in the fault 
detection, isolation, and recovery mechanisms.  The concept of three types of "coverage" is introduced 
as a part of the model.   
 
• Fault detection coverage (Cd) is the probability of detecting a fault given that a fault has occurred.   
  
• Fault Isolation coverage (Ci) is the probability that a fault will be correctly isolated to the 

recoverable interface (level at which redundancy is available) given that a fault has occurred and 
been detected.   

  
• Fault recovery coverage (Cr) is the probability that the redundant structure will recover system 

services given that a fault has occurred, been detected, and correctly isolated.   
 
The model shown in Figure 5-3 is a simplified model since it does not separately consider the possible 
impact of transient failures. To account for transient failures would represent an uplift of failure rate by 
some percentage. The model also assumes that Cd is the same for both the primary element and the 
backup element.  In practice, there may be different levels of fault detection coverage between primary 
and backup equipment due to a difference in test exposure intensity. 
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 FIGURE 5-3. Hardware Reliability Model 
 
As shown in the state diagram of Figure 5-3, the structure can transition from the full up state (1) to 
one of three states.  The structure transitions to state 1 whenever a hardware failure occurs in the 
primary element that is correctly detected, isolated, and recovered from.   
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Similarly, a detected failure in the backup element results in a transition from state 0 to state 1.  The 
structure transitions from state 0 to state 4 when a failure occurs in the backup equipment which is not 
detectable.   
 
Failures in the primary hardware element that cannot be correctly detected, isolated, or recovered from 
result in a transition from state 0 to state 3.  State 3 is a system state to account for the failure time 
accrued during manual intervention by system operations or maintenance personnel to restore lost 
system services.   
 
Transitions from states 1, 3, and 4 to state 2 are caused by a hardware failure occurring prior to repair 
of the first failure which occurred in the system structure. 
 
For an analogy of this model, consider a hospital operating room where it is critical that power is 
available for the equipment at all times.  They might use a dual power supply system where both 
are operating continuously.  If one fails the backup will automatically take over, ensuring that an 
operation can be carried out. 
 
In actual practice, the model to be used will need to be based on the fault tolerant characteristics of the 
design being analyzed. Models that incorporate system fault behavior, such as shown in Figure 5-3, do 
not specifically include software as a part of the model. However, the system or structure control 
processing, a software based functionality, determines the model structure to account for system 
behavior under fault conditions. 
 
The reliability estimates which result from the use of system reliability models that account for fault 
detection, isolation, and recovery are less optimistic than estimates from reliability models based only 
on the quantity of hardware supplied and required.  The reliability of the system structure being 
modeled is usually very sensitive to the total fault coverage provided by the system design.   
 
System designs that feature well-designed fault detection and isolation coupled with rapid and effective 
recovery of system services avoid most sudden losses of system services due to undetected latent 
failures in backup equipment or due to the inability of backup equipment to successfully restore system 
services when failures to the primary equipment occur. Similarly, models of HW/SW systems that 
include software as well as the fault tolerance characteristics of the system design are sensitive to the 
overall effectiveness of the fault detection, isolation, and recovery provided by the hardware and 
software designs. 
 
5.2.4.2.2  Redundant HW/SW Models.  
Inclusion of software into hardware reliability redundancy models further increases the complexity of 
the models.  As in the hardware-only reliability models, accurate modeling of system behavior requires 
that fault coverage (Cd, Ci, Cr) be included into the model.  Similarly, software fault coverage and the 
impact of long persistence faults must be included in the system models where appropriate.  This 
results in each model of redundant HW/SW elements being uniquely tailored to the design. 
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5.2.4.2.2.1  Cold Standby Systems.  
Redundant hardware/software systems that use cold standby techniques to provide fault tolerance can 
be modeled without undue difficulty as long as automatic switch-over and startup schemes are not used 
in the design.  In general, only the hardware and software failure rates for the HW/SW elements need 
consideration in developing the reliability model.  
 
For designs that use manual restoration of system services through the activation of an unpowered 
backup unit, an adaptation of the reliability model shown in Figure 5-4 can be used to estimate the 
reliability of the redundant structure. Structure state transitions are caused by either hardware or 
software failures.  Hardware failures cause a transition to a state with one less hardware element and 
initiation of repair actions on the failed element if repair is allowed.   
 
The reliability model of Figure 5-4 does not allow latent failures in the backup element to be modeled.  
The model assumes that failures of unpowered elements are impossible. Similarly, problems in 
recovering system services are not modeled since the recovery of system services must be directly 
managed by the system operator.   
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FIGURE 5-4.  HW/SW Reliability Model 
 
Software failures result in system recovery using the same processing hardware and a restart of the 
failed software.  Both repairable and non-repairable systems are allowed to have software restarted to 
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enable recovery from software failures.  Inclusion of the transition path allowing recovery from 
software failures is optional for non-repairable systems. The existence or lack of this transition path will 
depend on how the equipment is operationally employed. 
 
5.2.4.2.2.2  Hot Standby Systems.  
Reliability modeling of hot standby HW/SW structures requires consideration of hardware and 
software failure rates, fault detection, isolation, recovery coverage, and repair/recovery rates. 
 
The effect of long persistence software failures on the reliability achieved by hot standby redundant 
structures is included in the software fault coverage estimates for recovery coverage.  Depending on 
the system design being modeled, all or most of these parameters will be used to help identify states 
and/or transition rates between structure states.  The exact state diagrams that result from an FMEA of 
the HW/SW redundant structure will depend on the design being evaluated.  An example of a reliability 
model for a very simple redundant structure is discussed below. 
 
Figure 5-5 presents a simplified state diagram for a hardware/software structure with one of two 
identical elements required.  The model shown is for a hot standby system with automatic switch-over. 
In modeling this structure, five parameters of interest are recognized.  The model states depend on 
primary hardware platform state (operational or failed), primary software state (operational or failed), 
backup hardware platform state, backup software state, and recovery status.   
 
Recovery status is defined to have two states, successful or failed.  A successful recovery indicates that 
the structure has successfully transitioned from primary equipment to the backup equipment after 
failure of either the primary hardware or software. Alternatively, successful recovery can indicate that a 
failure in a backup equipment was successfully detected, allowing repair of the backup equipment to 
commence.  A failed recovery indicates that either recovery from primary to backup equipment has 
failed or that a failure has occurred in the backup equipment which has not been detected.  
 
Since there are five parameters of interest, each of which has two possible values, a total of 32 possible 
states would be expected.  However, some of the 32 possible states cannot exist in practice.  Also, 
some of the states that can exist are functional duplicates that can be merged.  For example, a state 
with a hardware failure in the primary equipment and operational software in the primary equipment 
can by shown to be one of the 32 possible states.  However, the state is impossible because software 
cannot be operational on a failed hardware platform.  The two states that can exist for (1) a failed 
backup equipment with successful recovery and (2) a failed primary equipment with successful 
recovery can be shown to be functionally equivalent since successful recovery implies that whichever 
hardware remains operational has been assigned to primary processing as a part of the recovery 
process. 
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FIGURE 5-5.  Simplified State Diagram 
 
For the model of Figure 5-5, a total of ten states result, with the following definitions: 
State 0: Success State - Fully Operational State 
State 1: Success State - Backup has a detected software failure which is being recovered from. 
State 2: Success State - System is operational with a latent software failure in the backup element. 
State 3: Success State - System is operational with a detected hardware failure in the backup element. 
State 4: Success State - System operational with a latent hardware failure in the backup element. 
State 5: Failed State -   Primary software has failed, recovery to the backup hardware and software has 

not been successful. System operations intervention will be required to restore 
system operation on either hardware platform. 

State 6: Failed State -  Primary hardware has failed.  The recovery process has failed. Either incorrect 
detection, isolation, or incomplete recovery has occurred.  Manual intervention 
by the system operator will be required to restore system services on the 
backup equipment. 

State 7: Failed State -   Software failures have occurred on both primary and backup system elements.  
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State 8: Failed State - The primary hardware and backup software have failed.  Both elements are 
down, recovery is not possible without manual  intervention by the system 
operator and/or maintenance personnel. 

State 9: Failed State -  Both hardware elements have failed. 
 
As shown in Figure 5-5, transitions between states occur due to either failures in the hardware or 
software or due to the status of the recovery process.  Using state diagrams that model the impact of 
hardware, software, and fault coverage for both hardware and software failures results in more 
accurate assessment of the potential reliability of redundant systems.  Also, accurate models that reflect 
the system design decisions which have been made provide a basis for evaluating the reliability 
demands of candidate architectural approaches early in the design process. 
 
5.2.5 Hardware Failure and Repair Rates.  
Individual hardware components which are identified as blocks on the detailed reliability block 
diagrams should be decomposed into detailed internal models of the hardware where appropriate.  
 
Hardware failure rates for use in combined HW/SW models should be obtained from the same sources 
as those traditionally used for hardware only reliability models.  In service, field reliability records are 
the best estimators of expected hardware failure rates. When field reliability records are not available, 
reliability test results are the next best estimator of expected hardware reliability performance. 
 
5.2.6  Software Failure Rates.  
Determining software failure rates for use in combined hardware/software models requires that the 
software being analyzed be treated as a subsystem. A software subsystem, like hardware, can be 
viewed as a hierarchy.  As far as reliability is concerned, however, the hierarchy consists of functions or 
operations rather than components (the term function is used for this discussion).  A CSCI can perform 
one or more functions.  The term CSCI could be used interchangeably with the term function in this 
section.  It is used in Section 6 on Allocations in place of the function term.  However, CSCI is not 
completely accurate here.  A function is a capability of the system from the end user’s perspective.  
This could be accomplished by a CSCI.  It could also, however, be accomplished by a combination of 
CSCs or CSCIs.  Therefore, the term function is used as it is more general. The concepts of functions 
and operations are described thoroughly in Section 9 on Operational Profiles. 
 
The software functions that comprise a system will be related to one another in two ways: a particular 
timing configuration and a particular reliability topology. 
 
Timing configuration is a concern when the various functions are active and inactive during a period of 
interest.  Topology concerns the number of functions in the system that can fail before the system fails. 
 
5.2.6.1  Timing Configurations.   
Several different timing configurations are possible.  The major timing relationships among software 
functions are "concurrent" and "sequential." Functions will be termed concurrent if they are active 
simultaneously.  The functions are sequential if they are active one after the other.  It is also possible for 
function times to partially overlap, resulting in a hybrid concurrent/sequential timing configuration. 
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Concurrently active software functions are found in systems that are serviced by more than one CPU, 
for example in a multiprocessing system or a distributed system. They are also found in single 
processor systems with preemptive schedulers. Process synchronization is a reliability consideration in 
concurrent processes. 
 
5.2.6.2  Reliability Topology.   
Reliability topology is the relationship between the failure of an individual function to the failure of the 
aggregate system.  Generally, software functions or operations are related in a "series" topology, 
meaning that the failure of one function results in the failure of the software system.  Software fault 
tolerance techniques can result in systems that can survive the failure of one or more functions. 
Software fault tolerance consists of a set of techniques which are not covered by this notebook, but are 
described in depth in the general software engineering literature. 
 
5.2.6.3  Notation.   
Capital letters will be used to refer to the aggregate system and lowercase letters to refer to a single 
function.  The average aggregate failure rate will be denoted Λ, and the aggregate reliability 
representation will be denoted R(t).  The functional failure rate is denoted λ, or λk for the k-th 
function. 
 
5.2.6.4  Software Failure Rate Adjustment.  
A computer program’s failure rate can be expressed with respect to three different time frames of 
reference:  
 
• execution time 
• system operating time 
• calendar time 
 
Execution time is CPU time; it only accumulates or increments when the program is executing 
instructions.  System operating time increments whenever the hardware/software system as a whole is 
operating.  Calendar time, short periods of which are called wall-clock time, is always incrementing. 
 
The ratio of a CSCI’s execution time to system operating time is the CSCI’s utilization ui.  The 
utilization can exceed 100% if copies of the software run on multiple CPUs reading different input 
streams.  The CSCI’s execution-time failure rate is multiplied by the CSCI’s utilization to obtain the 
system-operating-time failure rate. 
 
A software program can only fail when it is executing.  The failures uncover faults, and the removal of 
the faults results in reliability growth.  Thus, software reliability growth curves are based on cumulative 
execution time and express a single program’s failure rate in terms of execution time.  For scheduling 
purposes, execution time can be converted to calendar time. 
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During the operation of a system, programs may not operate continuously.  For example, some of the 
programs may time-share a single CPU.  Also, multiple CPUs may be present, allowing program 
executions to overlap.  In order to combine the failure rates of the various programs with one another 
to arrive at an overall software failure rate, it is first necessary to translate all the program failure rates 
into a common time frame of reference.  This frame of reference is system operating time, the same 
time frame used to express hardware failure rates. 
 
If the programs are in a series configuration, then the (average) failure rate is simply the sum of the 
system-operating-time failure rates of the individual functions.  This result can be derived as follows.  
Suppose there are N functions that run during the time period T.  Let λi be the execution-time failure 
rate for the i-th function.  Let µ(T) be the expected number of failures during that period.  The 
expected number of failures contributed by the i-th function is λiuiT.  Thus 

The overall failure rate is 

The sum Σλiui is seen to be the sum of the functions’ system-operating-time failure rates. 
 
5.2.6.5  SW Reliability Combination Models.   
The solution for the reliability of an aggregate of series functions 1, ..., N is calculated by first 
determining the average failure rate 

where λk is the failure rate of the i-th function and τk' is the amount of time function k is active 
during period [0,T].    
 
Procedures 5.2.6.5-1 through 5.2.6.5-3, below provide specific solutions for modeling the failure rate 
of software which is sequentially active, concurrently active, and for mission software where the 
activation times are indeterminate. 
 

 µ λ(T) =  u Ti i∑  (5.1) 

 Λ =  
(T)

T
 =  ui i

µ
λ∑  (5.2) 

 Λ =  
T

k=1

N

k k∑ ′λ τ
 (5.3) 
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Procedure 5.2.6.5-1 - Sequentially active software model.   
In this situation, software functions 1 through N are active one after the other.  The time tk is the point 
at which function k finishes and function (k+1) is activated. 
 
The mission time T will lie between the times ti and ti+1.  The average failure rate is 

 
Sometimes the functions are not active consecutively; a period during which no program is active can 
be represented by a pseudo-function whose failure rate is zero.  If a function is active intermittently, 
that is, for several piece-wise continuous periods, then a pseudo-function can be created for each such 
period.  All pseudo-functions created for a particular function will have the same failure rate as that 
function. 
 
Steps. 
A.  Determine the failure rate and stopping time of each function. 

 
B.  For a particular time T of interest, use the above formula to determine the average failure rate. 

 
Example: 
Suppose that there are four sequentially active functions, whose characteristics are provided in Table 5-
2.  Find R(100). 
 

TABLE 5-2.  Series Sequential Example 
 

Function i Start 
Time 

End time     ti Failure 
Rate λi 

    1   0    45 3x10-5 

    2  45   200 6x10-5 

    3 200   300 2x10-5 

    4 300   800 8x10-5 

 
The average failure rate at time t = 100 is calculated by using equation (5.4): 
 

 Λ =  

t t T t

T
j=1

i

j j j-1 i+1 i( - ) + ( - )∑λ λ
 (5.4) 
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The reliability at time 100 is obtained as 

 
Procedure 5.2.6.5-2 - Concurrently active software model. 
If throughout a time interval software functions 1, ..., N are concurrently active, then the aggregate 
failure rate is 

If all functions have the same failure rate λ, the aggregate failure rate will be Λ = Nλ. 
 
Steps. 
A.  Start with the function failure rates λk. 
B.  Use the above formula to determine the average failure rate for the aggregate. 

 
Example: 
Suppose that there are three functions that run concurrently.  The first function has a failure rate of 
1.0x10-5, the second a failure rate of 4x10-4, and the third has a failure rate of 3x10-5.  Find the 
aggregate failure rate. 
 
The aggregate failure rate is the sum of the three failure rates: 

 
 
 
 
 

 

[ ]Λ =  t t T t T

  =  
(45 - 0)(3x -510 ) +  (6x -510 )(100 - 45)

100
 =  0.0000465

j=1

i

j j j-1 j+1 i( - )+ ( - )  /  

 
 

∑λ λ

   

 R(100) =  [- (100)] =  [-(0.0000465)(100)] =  0.995exp expΛ   

 Λ =  
k=1

N

k∑λ  (5.5) 

 Λ =  (1x -510 ) +  (4x -410 ) +  (3x -510 ) =  0.00044
k=1

3

k  =  ∑λ   
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Procedure 5.2.6.5-3 - Mission oriented software combination model.  
In many practical cases, the exact function starting and stopping times are unknown or non-
deterministic.  As long as the failure rate λj and total active time τ’j for each operational mode are 
known, the average failure rate, and hence the reliability, can be obtained. 
 
A mission-oriented system is described by means of a mission operational profile and consists of V 
consecutive time periods, called phases. During each phase the mission has to accomplish a specified 
task (similar to the function concept).  An example of a space vehicle’s mission phases are ground 
operation, launch, and orbit.  Furthermore, at any point in time the system is in one of M possible 
operational modes.  The effective operating time Xj for the j-th operational mode is given by 

 
or  

 X = TQ (5.7) 

 
 
where ti is the duration of the i-th mission phase and qij is the fraction of time the j-th mode is utilized 
during that phase.  
 
In order to determine the duration of each mode, phase and utilization of software functions, determine 
the operational profile.  Assign probabilities to each customer type, user type within each customer 
type and function profile within each user type and customer type. Finally determine the probabilities 
for each CSCI in a given mission or operational profile. 
 
There are a variety of techniques for predicting the failure rate of the CSCI.  Any of the techniques in 
Section 7 can be employed.  One of those techniques is shown here. 
 
Suppose there are N components in the aggregate.  Let SLOCk be the executable source lines of code 
per function that are active during some mode j.  Then the total SLOC per operational mode is defined 
as: 
 

 
j

K

N

KiSLOC  =  SLOC    k = 1,2, ,N

j M
=

∑
=

1

1 2

K

, ,...

 (5.8) 

Where: 
 

 KSLOC = 0  (5.9) 

 j
i=1

V

i ijX  =  t q  ,   j = 1,2, , M∑ K  (5.6) 
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When function k is not active in operational mode j. 
 
Using the techniques for predicting failure rate given source lines of code in Section 7, calculate 
the failure rate for each operational mode. 
 
Let λj be the failure rate of the j-th operational mode.  The (average) failure rate over the mission can 
be calculated as 

 
Steps. 
A. Determine the operational mission profile using Table 5-3. 
 

TABLE 5-3. Operational Profile 
 

Step Description 
Determine customer profile Characteristics of multiple customers and occurrence 

probabilities 
Determine user profile Characteristics of multiple users within each customer 

profile and occurrence probabilities 
Determine system mode 
profile 

Characteristics of execution behavior and occurrence 
probabilities 

Functional profile Quantitatively describes relative use of different software 
functions (tasks or work to be done by system).   

 
B.  From the mission profile, form the row matrix of the durations t1, t2, ..., tN of the mission phases, 

 where V is the number of mission phases.  Next determine qij which are the fraction  of time the 
 j-th mode is utilized during the i-th phase, where M is the number of operational modes. 

 
C.   Compute the row matrix X by using equations (5.7) and (5.8). 
 

The elements x1, x2, ..., xM are the effective operating times for each operational mode. 
 

D. Use one of the prediction techniques in Section 7 to determine the failure rate of the CSCIs or 
functions. One technique is to determine the size of each CSCI or function that is executed in 
each operational mode.  Use equations (5.9) and (5.10).   

 
E.  Using the function and/or operational mode information, compute the failure rate for each 

operational mode and denote the failure rates of each operational mode as λ1, λ2,...,λj. 
 

 Λ =  

X

 
j=1

M

j j∑λ

mission duration
 (5.10) 
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F.   Calculate the average failure rate over the mission by  applying equation 11. 
 
G. Note that this technique can also model HWCIs and CSCIs by  using the hardware prediction 

techniques for the HWCIs.  
 
Example: 
A mission has V = 8 phases.  The names and durations are given by Table 5-4. 
 

     TABLE 5-4.  Mission Phases 
 

Phase Number i Phase Name Duration ti (hours) 

      1 Start-Up     0.1 

      2 Taxi     0.1 

      3 Climb     0.2 

      4 Loiter     1.0 

      5 Attack     0.3 

      6 Return     0.2 

      7 Land     0.1 

      8 Shutdown     0.2 

 
During the mission, there are M=4 operational modes (see Table 5-5). 
 

                 TABLE 5-5.  Operational Modes 
 

Operational Mode j Mode Name 

         1 Idle 

         2 Scan 

         3 Track 

         4 Maintenance 
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Suppose the mode utilization is 

From Table 5-4, the phase durations are 

Then the effective operating times are computed as follows and summarized in Table 5-6. 
 

 
 

          TABLE 5-6.  Effective Operating Time in Modes 
 

Operational Mode j Mode Name Effective Time      xj 

        1 Idle     0.5 

        2 Scan     1.1 

        3 Track     0.4 

        4 Maintenance     0.2 

 
Suppose that there are N = 5 software CSCIs (see Table 5-7). 
 
 
 
 
 

 

Q =  
1.0 0 0 0

1.0 0 0 0

0.5 0.5 0 0

0 0.8 0.2 0

0  0.33  0.67 0

0.5 0.5 0 0

1.0 0 0 0

0 0 0 1.0



































  

 T =  [
0.1 0.1 0.2 1.0 0.3 0.2 0.1 0.2

]   

 X TQ =   =  [
0.5 1.1 0.4 0.2

]   
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                TABLE 5-7.  Software CSCIs 
 

S/W CSCI k Name SLOC Operational modes 
active in 

     1 Exec    3,000 All 

     2 Test    3,000 Maintenance 

     3 Scan   10,000 Scan 

     4 Track    5,000 Track 

     5 Calibrate    2,000 Idle and Maintenance 

 

Assuming that equation (13) is used to calculate failure rate with r = 3 MIPS (million instructions per 
second), K = 4.2*10-7, ω0 = .006 faults per SLOC, and the language is Ada the failure rates shown in 
Table 5-8 are calculated for each operational mode j.  The initial failure rate is 6.048 for each 
operational mode. In this example, 500 hours of system test is scheduled.  Therefore, each operational 
mode has the following test time expected, and therefore expected failure rate.  
 

         TABLE 5-8.  Operational Mode Failure Rates 
 

Operational 
mode j 

Mode name λ0 SLOC 
per 
mode 

ω0 Expected 
system test 
time per 
mode 

Failure rate 
per mode 

   1 Idle 6.048 
failures per 
hour 

5,000 30 .5/2.2 * 500 
hours = 
113.7 hours 

.00211E-6 
failures per 
hour 

   2 Scan 6.048 
failures per 
hour 

13,000 78 1.1/2.2 * 
100 hours = 
250 hours 

.0608E-6 
failures per 
hour 

   3 Track 6.048 
failures per 
hour 

8,000 48 .4/2.2 * 100 
hours = 90.9 
hours 

114E-6 
failures per 
hour 

   4 Maintenance 6.048 
failures per 
hour 

5,000 30 .2/2.2 * 100 
hours = 
45.45 hours 

1003E-6 
failures per 
hour 
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From Table 5-4, the mission time is found by summing the phase durations, yielding 2.2 hours.  The 
average failure rate is found by multiplying the matrix λj by the matrix Xj.   
 

 

Λ =  

X

E E E E
E

j j
j

M

λ
=

∑
=

− + − + − + −
= −

1

00211 6 0608 6 114 6 1003 6

2 2
1117 06 6

Mission duration

hours
failures per hour

. .

.
.

 


