5.0 HARDWARE/SOFTWARE SYSTEM RELIABILITY MODELING

Rdiability modeling of combined hardware and software systems is in many ways analogous to
reliability modeling of purely hardware sysems. Rdliahility block diagrams of system elements are
developed and employed. Individual hardware platforms and the software assgned to those platforms
are independent of other hardware/software platforms.

Rediahility block diagrams that accurately portray the interrelationship between the hardware platforms
and the software executing on the platforms are developed and used in estimating reliability metrics.
For complex dructures, sate diagrams are developed to accurately portray the unique
interrelationships of the structure being modeled.

This section provides the techniques applicable to the reliability modeling of combined hardware and
software systems. For series systems, the process is sraightforward. For complex, redundant,
reparable systems, an abbreviated overview of the syssem modeling process is provided. Because
these complex models are unique to the syssem being modeled, detailed procedures for developing
these complex models cannot be provided.

The overview provided is used to help the andlyst identify those system properties which are unique to
redundant combined hardware and software syssems. The mgority of this section is dedicated to
describing the development of software failure rates that are a composte of the multiple processes that
may be executing during any time period.

5.1 Basic Reliability Moddl.

A basic religbility model for a hardware/software system can be prepared. However, the result is two
religbility models, one for the software and one for the hardware elements of the sysem. The basic
hardware reiability model congdts of al hardware elements of the system in series so that the overall
logistics support requirements for spares, maintenance personnd, training, etc., can be readily assessed
based on the failure rates of the equipment.

Individua software components (CSUs) as arule do not fail independently and are not subject to wear
out. Software components fail in association with the operationa profile and must be modeled that
way. Also, software components are not replaced independently like hardware units because they do
not wear out and the unit itsalf is not independent.

For hardware/software systems, the results of the basic software reliability mode can be used to
estimate the number and types of equipment that must be supplied when a software maintenance
facility isrequired as a part of the contractual effort.

5.2 Mission Reliability Model.
The misson rdiability model is used to support alocations of system requirements to individual
hardware and software elements and to support assessment of the compliance to requirements.

51

Rédiahility modeling methods used to modd combined HW/SW systems for the purposes of religbility
estimation and alocation need to accurately assess the interdependence between individua software
elements, the hardware platforms on which these software eements execute, and the services provided
by the system being analyzed.

Additionally, the methods used need to be based on and compatible with modern system engineering
methods. This resultsin amodeling procedure consisting of six steps:

1) Development of a system Failure Modes and Effects Analysis (FMEA)

2) Development of the top level reiability model based on the syssem FMEA results

3) Development of detalled religbility block diagrams and models based on the top leve rdiability
mode

4) Modeling the combined hardware/software elements of the system

5) Development of hardware models and appropriate hardware failure rates

6) Use of the appropriate software failure rate modeling and caculation procedures of this notebook
to predict software fallurerate.

The reiability model(s) developed using these steps can then be used to estimate the religbility of the
system being analyzed.

System rdiability modeling is based on sysem FMEA, a bottom-up reliability analysis technique that
provides a mapping between failures and their impact on system services. These FMEAS need not
aways be a formal anadlysis since the results are expressed in the reliability model block diagrams. A
system-level adaptation of Matrix FMEA techniques which results in a compact, readily usable display
of the needed FMEA information is used to support the development of system reliability models.

Egtimation of system reliability characterigtics is based on the religbility block diagrams and Markov
state diagrams developed from the syssem FMEA and the individua hardware and software component
failure rates. Egtimation techniques for hardware reliability and maintainability characteristics are well
known and can be applied to the hardware portions of combined hardware/software systems.

Software rdiability characteristics can be estimated using the procedures provided in this notebook.
For redundant, fault tolerant systems, software recovery characterigtics are system design and
implementation dependent. These recovery characteristics will need to be estimated on a case by case
basis in conjunction with performance modeling and estimation.

Complex, redundant systems and system elements are modeled using state diagrams to accurately
portray the possble operationa and non-operationd states. In generd, these state diagrams will be
complex enough to require access to automated tools for solution. They are not, strictly spesking,
intractable. However, the labor required to manually determine a specific closed form solution for a
state diagram that has been developed to model a specific design being analyzed is usualy prohibitive.
Automated solutions of these state diagrams are possible both analyticaly and through smulation. The

52

use of automated tools to support complex modeling is highly recommended. However, the user of
automated reliability modeling tools will need to determine whether or not the numerica accuracy
needed for their specific Stuation is supported.

Analytic solutions to complex diagrams often require the solution of a trangtion matrix with potentialy
significant losses in numerica accuracy due to the multiple arithmetic operations compounded by the
accuracy limitations of the processing platform used. Monte Carlo solutions to state diagrams can
result in both numerica inaccuracy due to the methods employed and may involve substantia cost for
multiple program runs. The costs associated with Monte Carlo solutions rise dramaticaly as the
accuracy requirements increase.

Maintainability, the time required to isolate and correct afault in the design, isnot used in the reliability
modeling and alocation discussed in this section. Software maintenance is expected to proceed in
paralld with ongoing system operation following a software fallure. Thus, the time required to re-
establish system operation following a software failure is used as the repair or recovery rate in the
modeling of software elements of combined HW/SW dements. Note that Mean Time to Software
Recovery (MTSWR) is not to be confused with MTTR. The MTSWR includes only the time to
recover operations and does not include time to permanently repair the software.

Software maintenance will result in a software fallure rate that is not constant over time due to the
software corrections being implemented. However, for the purposes of modeling and dlocation of
combined hardware and software systems, an assumption of constant software failure rate during any
operationd period (i.e., between fixes), when the software is under configuration control is justified.

5.2.1 System FMEA Development. Reliability modeling of combined HW/SW systems, whether for
reliability alocation or estimating purposes, is gpproached on a functiona service basis using a matrix
FMEA approach. The resultant FMEA can then be used to develop a HW/SW system reliability block
diagram of independent elements. The individud series/parallel eements of the religbility block
diagram can then be modeled. Non-redundant systems can be modeled as series strings of hardware
and HW/SW system elements.

Development of a sysem FMEA to support creation of rdiability models for use in religbility
estimation and alocation begins with the use of the functional decomposition that has been developed
as a part of the system engineering process. For smdl or relatively smple system structures, system
functional andyss may have been omitted as a formal procedure. If the system level functiona
decomposition is not available, the reliability engineer may find it necessary to recreste this anadysis
using Data Flow Diagrams.

The functional decomposition of the system is used to identify the Hardware Configuration Items
(HWCls), the Computer Software Configuration Items (CSCIls) along with the processng provided by
these CSCls, and the dlocation of CSCls to various HWCIs within the system. The anadyst can then
begin to create the system level FMEA that will support reliability modeling of the combined HW and
SW system.

5-3

The system level FMEA, illustrated in Figure 5-1, is a mapping of the hardware and software
components of the system onto the system services provided. To create the FMEA, the andyst first
congtructs a matrix with each of the hardware Cls and their associated software CSCls or CSCs as
appropriate along the vertical axis. The horizonta axis is formed by the system services or outputs of
the system grouped in convenient ways that support the desired analyss.

A grouping of system services by system operating mode often supports development of the various
models required by the system specification. The HWCIs and CSCls are then mapped onto the system
services or outputs based on the impact on system services caused by the failure of each hardware and

software dement. In performing this mapping, the analyst will need to assess the impact of failure of
both hardware platforms and software configuration items.

The failure impact of software elements will need to be examined in depth based on the data flow that
has been established for the system design. Similarly, the failure of hardware platforms will need to be

examined for its impact on software provided services using the data flow diagrams for the system
software resdent on the hardware platform.

[] L L]
(&

Operating Mode Degraded Service Full Service

CSCl a
£
e
2
Z .
=1
n CSCIn

CSCl a
Z
£
3
2
8
I ¢sCln

FIGURE 5-1. Example of System-Level Functional FMEA

Table 5-1 illustrates some of the generic failure modes for software systems. This chart is ussful when
andlyzing the software at any level of architecture.

54

TABLE 5-1. Software Failure Modes

Undesred Undesred Falssalarms | Error handling | Timing Sequences
outputs processes
Output is Output isvalid | Exception Exception Timing Functions
invalid but processfor | handling handling does window is executed
getting output | executes not execute missed correctly but
isnot whenthereis | whenthereisan in incorrect
acceptable no exception | exception order
Output isvalid | Making a Exception Software
but not caculation handling functions
expected based on executes properly but
invalid or incorrectly when | not within
incorrect thereisan expected time
inputs. exception

Once the system level FMEA has been completed, the analyst can examine the hardware and software
that are required for any particular mode or set of syssem services. A rdiability modd for these
services can then be developed.

5.2.2 System Level Reiability Model Development.

The system level rdiability model, expressed as a rdiability block diagram for combined HW/SW
systems, is developed based on system FMEA, using a procedure that is andlogous to that used for
purely hardware systems.

The FMEA reaults are used to determine which hardware and software elements are required to
provide a set of system services required by the system misson or mode being modeled. The anayst
then proceeds to develop a reiability block diagram that consists of a set of series blocks for each of
the independent HW/SW subsystems that must be operational to provide the services being modeled.

At the system level of modeling, separation of the hardware and software eements in the system is not
needed. For smal systems and equipment, "system” level modeling as a separate activity may not be
required. For these smdl systems, the methods discussed below under development of detalled
religbility models may be directly applied.

5.2.3 Developing Detailed Reliability Models.

The system leve rdiability models which have been developed are then further decomposed to produce
reliability models, expressed as reliability block diagrams, of increasing detail. These block diagrams
are developed. The decomposition process is sopped when the rdiability model block diagrams are
sufficiently detailed to show al hardware and combined hardware/software elements of the system as
single blocks.

55

The religbility andyst must use care in assessing the level of detail required by the syssem being
andyzed. The detailed block diagrams must alow separation of hardware and software elements as a
next sep. However, the block diagrams must not be so detailed prior to the separation of the
hardware and software eements that hardware and software interdependencies for redundant
structures are lost from the model(s).

5.2.4 Reiahility Modeling of Hardware/Software Elements.

Once the detailed rdiability models are complete, the reliability analyst must further decompose those
system elements containing hardware that hosts executing software. For the purposes of reliability
modding, software includes firmware which is configurable or under configuration control and
hardware includes firmware which is not. Also, the media that the software is stored on should be
treated as hardware. Decompostion of series eements which contain hardware and software is
sraightforward. Modeling of complex, redundant systems with recovery, is more difficult and requires
ahighly skilled analyst.

5.2.4.1 Modding Series Hardware/Software Elements.

Series hardware/software elements are modeled as a series string consisting of the hardware platform
and the software which executes on that platform as shown previoudy in Figure 4-3 and discussed in
Section 4.1.1. As shown in that figure, the software further decomposes into two eements, non-
developmental or re-used software, and newly developed software.

Failure rates for operating systems or executives, if available, can be obtained from the supplier of the
operating system or executive. Failure rates obtained from the operating system supplier are usualy
quoted in the number of outages caused over some period of time (eg., a year). Failure rates for
operating systems are generdly quoted with respect to system operating time because the operating
system is active at al times when the computer is powered and ready for processing. The rdiability
anadyst will need to convert the failure rate given to failures per hour for compatibility with hardware
fallure rates.

Defect data for re-used code can be obtained from applications where the code was previoudy used.
The availability of this data depends on the completeness of organizational record keeping and the
amount of code modification that has been necessary to alow the code re-use. The data for re-used
code can only be used if the operationd profile of the previoudy developed application resembles that
of the current gpplication. If the operational profiles are consstent, then the historical defect rates can
be used and then converted to failure rates using the techniques in Section 7.

Estimates of the failure rate for newly developed software are obtained using the prediction procedures
provided in Section 7 of this notebook. The failure rate estimates produced by these procedures is
provided in fallures per CPU operating second for each software eement being developed. These
fallure rates must then be combined as discussed in Section 5.2.6 to account for the specific software
topology and timing. Additiondly, the resultant software failure rate can be converted to a syssem
operating hour form as discussed in Section 5.2.6.5.

5-6

5.2.4.2 Modding Redundant Hardware/Software Elements.

Rdliability models of redundant and configurable or recoverable HW/SW eements are significantly
more complex than reliability models of series hardware/software eements. The addition of
redundancy introduces complexity associated with the ability of the hardware and software to correctly
respond to failure events.

Rdiability modeling of redundant HW/SW dements with hot standby and autometic switch-over
capability sgnificantly increases the complexity required to properly account for system behavior. Of
necessity, this discusson of modeling redundant hardware/software eements will focus on the state
diagrams which are used to accurately assess the behavior of these complex systems. Thisdiscusson is
designed to assst an experienced reiability analyst to determine the information which will need to be
included in the state diagrams developed for the system being analyzed.

5.2.4.2.1 Redundant Hardware Models.
A general model for hardware redundancy using identical equipment is shown in Figure 5-2.
Redundant system elements trangition to the next higher state upon occurrence of any hardware failure.

Hardware repairs trangtion the system element mode to the next lower state. The system is a closed-
form semi-Markov process that can be solved for the appropriate reliability measures using
conventiona methods. Closed-form solutions for the reiability measures of interest for this type of
modd under most common repair restrictions, types of standby, etc., are available in the technical
literature referenced by this notebook.

The model shown in Figure 5-2 provides an upper bound on the reiability of redundant hardware-only
sysems. Egtimation of the expected rdiability of hardware systems requires that the fault tolerance
employed in the redundancy be included in the modd. For cold standby systems, where backup
elements are not powered and thus immune to failure occurrence, the moded of Figure 5-2 provides a
reasonable estimate if the trangtion rates shown from each success state to the next higher number
state are adjusted to account for the constant number of elementsin operation (m units).

However, for hot standby systems with automatic switch-over, the modd of Figure 5-2 significantly
overdates the reiability achieved by the redundant hardware elements. Failures in the fault detection,
fault isolation, and fault recovery mechanisms that may lead to latent faults in backup equipment, or an
inability to activate redundant system elements and resume system services in response to primary
element fallures, are not included in the model shown in Figure 5-2.

NAyw
o (N-l)x%_ U (M—l))\%/_ .. .\‘A
N - 1 Units
N Units Operational M - 1 Units N Units
Operational 1 Unit e Operational e Failed
Failed
‘*/ UHW‘\'” —/pHW U\HW\ —/UHW
HW

FIGURE 5-2. Generd Hardware Redundancy Moddl

57

Figure 5-3 is a amplified reliability mode for a hardware system employing hot standby, and automatic
switch-over with one of two identical elements required. The mode accounts for falures in the fault
detection, isolation, and recovery mechanisms. The concept of three types of "coverage" is introduced
asapart of the modd.

» Fault detection coverage (Cd) isthe probaility of detecting afault given that a fault has occurred.

* Fault Isolation coverage (Ci) is the probability that a fault will be correctly isolated to the
recoverable interface (level at which redundancy is available) given that a fault has occurred and
been detected.

* Fault recovery coverage (Cr) is the probability that the redundant structure will recover system
services given that afault has occurred, been detected, and correctly isolated.

The modd shown in Figure 5-3 is a smplified model since it does not separately consder the possible
impact of trandent failures. To account for transent failures would represent an uplift of failure rate by
some percentage. The modd also assumes that Cd is the same for both the primary element and the
backup element. In practice, there may be different levels of fault detection coverage between primary
and backup equipment due to a difference in test exposure intensity.

Primary
Unit Failed
Backup Unit OK
Recovery Failed

Nan(1-C4C°C,)

Aw*Cy + A Cq*C*C,

1 Unit .
. . 2 Units
2 Units Operating Failed - IBein
Operating 1 Unit g

Being Repaired Repaired

Primary
Unit Operating

Backup Unit
Latent Failure

FIGURE 5-3. Hardware Reliability Mode

As shown in the state diagram of Figure 5-3, the structure can transition from the full up state (1) to
one of three states. The structure trangtions to state 1 whenever a hardware failure occurs in the
primary element that is correctly detected, isolated, and recovered from.

5-8

Similarly, a detected fallure in the backup eement results in a trangtion from state O to state 1. The
sructure trangtions from state O to state 4 when a failure occurs in the backup equipment which is not
detectable.

Failures in the primary hardware element that cannot be correctly detected, isolated, or recovered from
result in a trangtion from state O to state 3. State 3 is a system state to account for the failure time
accrued during manua intervention by system operations or maintenance personnel to restore lost
system services.

Trangtions from states 1, 3, and 4 to state 2 are caused by a hardware failure occurring prior to repair
of thefirgt faillure which occurred in the system structure,

For an analogy of this model, consider a hospital operating room where it is critical that power is
available for the equipment at al times. They might use a dua power supply system where both
are operating continuously. If one fails the backup will automatically take over, ensuring that an
operation can be carried out.

In actua practice, the model to be usaed will need to be based on the fault tolerant characteristics of the
design being analyzed. Models that incorporate system fault behavior, such as shown in Figure 5-3, do
not specificaly include software as a part of the modd. However, the system or structure control
processing, a software based functiondity, determines the model structure to account for system
behavior under fault conditions.

The reliability estimates which result from the use of system reliability models that account for fault
detection, isolation, and recovery are less optimistic than estimates from reliability models based only
on the quantity of hardware supplied and required. The rdliability of the sysem structure being
modeled is usualy very sengtive to the tota fault coverage provided by the system design.

System designs that feature well-designed fault detection and isolation coupled with rapid and effective
recovery of system services avoid most sudden losses of system services due to undetected latent
failures in backup equipment or due to the inability of backup equipment to successfully restore system
sarvices when failures to the primary equipment occur. Similarly, models of HW/SW systems that
include software as well as the fault tolerance characteristics of the system design are sensitive to the
overdl effectiveness of the fault detection, isolation, and recovery provided by the hardware and
software designs.

5.2.4.2.2 Redundant HW/SW Models.

Inclusion of software into hardware reliability redundancy models further increases the complexity of
the moddls. Asin the hardware-only reliability models, accurate modeling of system behavior requires
that fault coverage (Cd, Ci, Cr) be included into the model. Similarly, software fault coverage and the
impact of long persstence faults must be included in the system models where appropriate. This
results in each model of redundant HW/SW elements being uniquely tailored to the design.

59

5.24.2.2.1 Cold Standby Systems.

Redundant hardware/software systems that use cold standby techniques to provide fault tolerance can
be modeled without undue difficulty as long as automatic switch-over and startup schemes are not used
in the design. In generd, only the hardware and software failure rates for the HW/SW eements need
congderation in developing the rdiability model.

For designs that use manual restoration of system services through the activation of an unpowered
backup unit, an adaptation of the reliability model shown in Figure 5-4 can be usad to estimate the
religbility of the redundant structure. Structure state trangtions are caused by ether hardware or
software falures. Hardware failures cause a transtion to a state with one less hardware element and
initiation of repair actions on the failed eement if repair is alowed.

The reliability model of Figure 5-4 does not alow latent failures in the backup element to be modeled.
The model assumes that fallures of unpowered elements are impossible. Smilarly, problems in
recovering system services are not modeled since the recovery of system services must be directly
managed by the system operator.

MAyw

MA

M-1 HW/SW
Operational

N-1 HW/SW
Operational

N HW/SW
Operational

N HW Units

Elements
Failed

N-(M+1)HW

0 Failed 1 Failed

Yo oY

MA

M-1 HW/SW
Operational

N-1 HW/SW
Operational

N HW/SwW
Operational

N HW Units
Elements
Failed

1 Failed N-(M+1)HW

0 Failed

Sw

(A) Non-Repairable System

FIGURE 5-4. HW/SW Réliability Model

Software failures result in system recovery using the same processing hardware and a restart of the
falled software. Both repairable and non-repairable systems are dlowed to have software restarted to

5-10

enable recovery from software falures. Incluson of the transtion path allowing recovery from
software failures is optional for non-repairable systems. The existence or lack of this transtion path will
depend on how the equipment is operationally employed.

5.2.4.2.2.2 Hot Standby Systems.
Rdiability modeling of hot standby HW/SW structures requires consderation of hardware and
software failure rates, fault detection, isolation, recovery coverage, and repair/recovery rates.

The effect of long persstence software failures on the rdiability achieved by hot standby redundant
structures is included in the software fault coverage estimates for recovery coverage. Depending on
the system design being modeled, al or most of these parameters will be used to help identify states
and/or trangtion rates between structure states. The exact state diagrams that result from an FMEA of
the HW/SW redundant structure will depend on the design being evaluated. An example of ardliability
modd for avery smple redundant structure is discussed below.

Figure 5-5 presents a smplified state diagram for a hardware/software structure with one of two
identical elements required. The modd shown is for a hot standby system with automatic switch-over.
In modeling this structure, five parameters of interest are recognized. The modd states depend on
primary hardware platform state (operationa or failed), primary software state (operationd or faled),
backup hardware platform state, backup software state, and recovery status.

Recovery status is defined to have two states, successful or failed. A successful recovery indicates that
the structure has successfully transtioned from primary equipment to the backup equipment after
fallure of either the primary hardware or software. Alternatively, successful recovery can indicate that a
failure in a backup equipment was successfully detected, alowing repair of the backup equipment to
commence. A failed recovery indicates that either recovery from primary to backup equipment has
failed or that afailure has occurred in the backup equipment which has not been detected.

Since there are five parameters of interest, each of which has two possible values, atota of 32 possible
states would be expected. However, some of the 32 possible states cannot exist in practice. Also,
some of the states that can exist are functional duplicates that can be merged. For example, a state
with a hardware falure in the primary equipment and operational software in the primary egquipment
can by shown to be one of the 32 possible states. However, the state is impossible because software
cannot be operational on a falled hardware platform. The two States that can exist for (1) a failed
backup equipment with successful recovery and (2) a failed primary equipment with successful
recovery can be shown to be functionaly equivalent since successful recovery implies that whichever
hardware remains operationa has been assigned to primary processing as a part of the recovery
Process.

511

#: State Number

T: Type (Fail or
Success)

A: Primary HW:

B: Primary SW

C: Backup HW

D: Backup SW

E: Recovery }

Transition Rates

(0,1) = Asw*Cysw *

AsCasw*Cisw*Crsw
(0,2) = Agw(1 - Cysw)
(0,3) = A Cnw+
ACanw Citw*Crrw
(0,4) = Ayw(1 - Cyaw)
(0,5) = Agy/(1 -
Cusw*Cisw*Crsw)
(0,6) = Ayw(1 -
Carw*Cinw Crrw)

2,3) = Mw*Canw

=0 T l) 971y

NOTATION e

0 = Operational (No Failure)
F = Failed
- = Not Applicable for this State

S: Successful Recovery or Detection of Backup Failure
F: Failed Recovery or Latent Failure in Backup

FIGURE 5-5. Smplified State Diagram

For the modd of Figure 5-5, atota of ten states result, with the following definitions:

State 0: Success State - Fully Operationd State

State 1: Success State - Backup has a detected software failure which is being recovered from.

State 2: Success State - System is operationa with alatent software failure in the backup element.

State 3: Success State - System is operationa with a detected hardware failure in the backup element.
State 4: Success State - System operationa with alatent hardware failure in the backup element.

State 5: Failed State- Primary software has failed, recovery to the backup hardware and software has

not been successful. System operations intervention will be required to restore
system operation on either hardware platform.

State 6: Failed State - Primary hardware has falled. The recovery process has failed. Either incorrect

detection, isolation, or incomplete recovery has occurred. Manua intervention
by the system operator will be required to restore system services on the
backup equipment.

State 7: Falled State- Software failures have occurred on both primary and backup system elements.

512

State 8: Falled State - The primary hardware and backup software have failed. Both elements are
down, recovery is not possible without manua intervention by the system
operator and/or maintenance personnel.

State 9: Failed State - Both hardware elements have failed.

As shown in Figure 5-5, trangtions between states occur due to either failures in the hardware or
software or due to the status of the recovery process. Using state diagrams that model the impact of
hardware, software, and fault coverage for both hardware and software failures results in more
accurate assessment of the potentid reliability of redundant systems. Also, accurate models that reflect
the system design decisons which have been made provide a basis for evduating the rdiability
demands of candidate architectural approaches early in the design process.

5.2.5 Hardware Failure and Repair Rates.
Individual hardware components which are identified as blocks on the detaled reiability block
diagrams should be decomposed into detailed internal models of the hardware where appropriate.

Hardware failure rates for use in combined HW/SW models should be obtained from the same sources
as those traditiondly used for hardware only reliability models. In service, field reiability records are
the best estimators of expected hardware failure rates. When field reliability records are not available,
reliability test results are the next best estimator of expected hardware reliability performance.

5.2.6 Software Failure Rates.

Determining software failure rates for use in combined hardware/software models requires that the

software being analyzed be treasted as a subsysem. A software subsystem, like hardware, can be

viewed as a hierarchy. Asfar asrdiability is concerned, however, the hierarchy consists of functions or
operations rather than components (the term function is used for this discussion). A CSCI can perform

one or more functions. The term CSCI could be used interchangeably with the term function in this

section. It is used in Section 6 on Allocations in place of the function term. However, CSCI is not
completely accurate here. A function is a c#éipabf the system from the end user’s perspective.

This could be accomplished by a CSCI. It could also, however, be accomplished by a combination of
CSCs or CSCls. Therefore, the term function is used as it is more general. The concepts of functions
and operations are described thoroughly in Section 9 on Operational Profiles.

The software functions that comprise a system will be related to one another in two ways: a particular
timing configuration and a particular reliability topology.

Timing configuration is a concern when the various functions are active and inactive during a period of
interest. Topology concerns the number of functions in the system that can fail before the system fails.

5.2.6.1 Timing Configurations

Several different timing configurations are possible. The major timing relationships among software
functions are "concurrent” and "sequential.” Functions will be termed concurrent if they are active
simultaneously. The functions are sequential if they are active one after the other. It is also possible for
function times to partially overlap, resulting in a hybrid concurrent/sequential timing configuration.

513

Concurrently active software functions are found in systems that are serviced by more than one CPU,
for example in a multiprocessng system or a distributed system. They are dso found in single
processor systems with preemptive schedulers. Process synchronization is a reliability consideration in
concurrent processes.

5.2.6.2 Rdiability Topology.

Rdiability topology is the relationship between the failure of an individua function to the falure of the
aggregate syssem. Generdly, software functions or operations are related in a "series’ topology,
meaning that the failure of one function results in the failure of the software system. Software fault
tolerance techniques can result in systems that can survive the failure of one or more functions.
Software fault tolerance conssts of a set of techniques which are not covered by this notebook, but are
described in depth in the genera software engineering literature.

5.2.6.3 Notation.

Capitd letters will be used to refer to the aggregate system and lowercase letters to refer to a single
function. The average aggregate failure rate will be denoted A, and the aggregate reiability
representation will be denoted R(t). The functional fallure rate is denoted A, or A_ for the k-th
function.

5.2.6.4 Software Failure Rate Adjustment.
A computer program’s failure rate can be expressed with respect to three different time frames of
reference:

e executiontime
* System operating time
e caendar time

Execution time is CPU time; it only accumulates or increments when the program is executing
ingtructions. System operating time increments whenever the hardware/software system as awhole is
operating. Caendar time, short periods of which are caled wall-clock time, is dways incrementing.

The ratio of a CSCl’s execution time to system operating time is the CSCl'’s utilization u. The
utilization can exceed 100% if copies of the software run on multiple CPUs reading different input
sreams. The CSCl’s execution-time failure rate is multiplied by the CSCI’s utilization to obtain the
system-operating-time fallure rate.

A software program can only fail when it is executing. The failures uncover faults, and the removal of
the faults results in rdliability growth. Thus, software religbility growth curves are based on cumulative
execution time and express a sSingle program's failure rate in terms of execution time. For scheduling
purposes, execution time can be converted to calendar time.

514

During the operation of a system, programs may not operate continuoudly. For example, some of the
programs may time-share a sngle CPU. Also, multiple CPUs may be present, alowing program
executions to overlap. In order to combine the failure rates of the various programs with one another
to arrive a an overdl software falure rate, it is first necessary to trandate dl the program failure rates
into a common time frame of reference. This frame of reference is system operating time, the same
time frame used to express hardware failure rates.

If the programs are in a series configuration, then the (average) falure rate is smply the sum of the
system-operating-time failure rates of the individua functions. This result can be derived as follows.
Suppose there are N functions that run during the time period T. Let A; be the execution-time failure
rate for the i-th function. Let p(T) be the expected number of fallures during that period. The
expected number of failures contributed by thei-th functionis AuT. Thus

H(T) = ZAuT (5.1)
Theoverdl failurerateis

N = @ = YAiu (5.2

Thesum ZAju is seen to be the sum of the functions’ system-operating-time failure rates.

5.2.6.5 SW Reliability Combination Models
The solution for the reliability of an aggregate of series functions,, 1N is calculated by first
determining the average failure rate

N
Zﬂk T
- =

T

A

(5.3)

where A, is the failure rate of the i-th function amg’' is the amount of time function k is active
during period [0, T].

Procedures 5.2.6.5-1 through 5.2.6.5-3, below provide specific solutions for modeling the failure rate
of software which is sequentially active, concurrently active, and for mission software where the
activation times are indeterminate.

515

Procedure 5.2.6.5-1 - Sequentialy active software model.
In this Stuation, software functions 1 through N are active one after the other. The time ty is the point
at which function k finishes and function (k+1) is activated.

The missontime T will lie between the timest; and ti.,. The averagefailurerateis

2/\1' (tj ‘tj-l) + /\i+1(T‘ti)
= =

T

A (5.4)

Sometimes the functions are not active consecutively; a period during which no program is active can
be represented by a pseudo-function whose failure rate is zero. If a function is active intermittently,
that is, for severa piece-wise continuous periods, then a pseudo-function can be created for each such
period. All pseudo-functions created for a particular function will have the same failure rate as that
function.

Steps.
A. Determinethe falure rate and stopping time of each function.

B. For aparticular time T of interest, use the above formulato determine the average failure rate.

Example:
Suppose that there are four sequentialy active functions, whose characteristics are provided in Table 5-

2. Find R(100).

TABLE 5-2. Series Sequentid Example

Functioni Start Endtime Failure
Time Rate A

1 0 45 3x10°

2 45 200 6x10°

3 200 300 2x10°

4 300 800 8x10°

The average failurerate a timet = 100 is calculated by using equation (5.4):

5-16

N = iZAj(tj_tj-l)-l-AHl(T_ti) /T
=1

_ (45-0)(3x1079) + (6x1072)(100- 45)
- 100

= 0.0000465

The reiability at time 100 is obtained as
R(100) = exp[-/A(100)] = exp[-(0.0000465)(100)] = 0.995

Procedure 5.2.6.5-2 - Concurrently active software model.
If throughout a time interval software functions 1, ..., N are concurrently active, then the aggregate
falurerateis

A = i;“ (5.5)

If dl functions have the samefailurerate A, the aggregate failurerate will be A = NA.

Steps.
A. Start with the function failurerates A, .
B. Usethe above formulato determine the average failure rate for the aggregete.

Example:
Suppose that there are three functions that run concurrently. The first function has a failure rate of

1.0x10°, the second a failure rate of 4x10* and the third has a failure rate of 3x10°. Find the
aggregate falure rate.

The aggregate failure rate is the sum of the three failure rates:

3

A = ZAK = (1x10™) + (4x10% + (3x107°) = 0.00044
=1

517

Procedure 5.2.6.5-3 - Mission oriented software combination model.

In many practica cases, the exact function starting and stopping times are unknown or non-
determinigtic. Aslong asthefalurerate A, and totd activetime T', for each operationad mode are
known, the average failure rate, and hence the réliability, can be obtained.

A mission-oriented system is described by means of a misson operationd profile and conssts of V
consecutive time periods, caled phases. During each phase the mission has to accomplish a specified
task (gmilar to the function concept). An example of a gpace vehicle’s misson phases are ground
operation, launch, and orbit. Furthermore, a any point in time the system is in one of M possible
operational modes. The effective operating time X for thej-th operational mode is given by

<

X, = Ytg,, j=12...,M (5.6)

or

X=TQ (5.7)

wheret; isthe duration of the i-th misson phase and g; is the fraction of time the j-th mode is utilized
during that phase.

In order to determine the duration of each mode, phase and utilization of software functions, determine
the operational profile. Assgn probabilities to each customer type, user type within each customer
type and function profile within each user type and customer type. Findly determine the probabilities
for each CSCI in agiven mission or operational profile.

There are a variety of techniques for predicting the failure rate of the CSCI. Any of the techniques in
Section 7 can be employed. One of those techniques is shown here.

Suppose there are N components in the aggregate. Let SLOC, be the executable source lines of code
per function that are active during some mode . Then the total SLOC per operational mode is defined
as

N
s0c, = Y9oCk k=12....N
J Kzl “ (5.8)

j=12,..M
Where:

S.0C« =0 (5.9)

5-18

When function k is not active in operational mode|.

Using the techniques for predicting failure rate given source lines of code in Section 7, calculate
the failure rate for each operational mode.

Let A, bethe falure rate of the j-th operational mode. The (average) fallure rate over the misson can
be calculated as

M
Z/]JXJ
A = = _ 5.10
mission duration ()

Steps.
A. Determinethe operational misson profile usng Table 5-3.

TABLE 5-3. Operationd Profile

Step Description

Determine customer profile | Characterigtics of multiple customers and occurrence
probabilities

Determine user profile Characterigtics of multiple users within each customer
profile and occurrence probabilities

Determine system mode Characterigtics of execution behavior and occurrence

profile probabilities

Functiona profile Quantitatively describes relative use of different software
functions (tasks or work to be done by system).

B. Fromthe mission profile, form the row matrix of the durationsty, to, ..., ty Of the misson phases,
where V is the number of misson phases. Next determine g; which are the fraction of time the
j-th mode is utilized during the i-th phase, where M is the number of operational modes.

C. Compute the row matrix X by using equations (5.7) and (5.8).
The dements x;, Xz, ..., Xu ae the effective operating times for each operationa mode.

D. Use one of the prediction techniques in Section 7 to determine the failure rate of the CSCls or
functions. One technique is to determine the size of each CSCI or function that is executed in

each operational mode. Use equations (5.9) and (5.10).

E. Usng the function and/or operationd mode information, compute the falure rate for each
operational mode and denote the failure rates of each operational modeas A, A, ..., A

i

519

F. Calculate the average falure rate over the mission by applying equation 11.

G. Notethat thistechnique can also model HWCIsand CSClsby using the hardware prediction
techniques for the HWCIs.

Example:
A misson hasV = 8 phases. The names and durations are given by Table 5-4.

TABLE 5-4. Misson Phases

Phase Number i Phase Name Duration t; (hours)
1 Start-Up 0.1
2 Taxi 0.1
3 Climb 0.2
4 Loiter 1.0
5 Attack 0.3
6 Return 0.2
7 Land 0.1
8 Shutdown 0.2

During the mission, there are M=4 operational modes (see Table 5-5).

TABLE 5-5. Operationa Modes

Operationd Mode | Mode Name
1 Idle
2 Scan
3 Track
4 Maintenance

5-20

Suppose the mode utilization is

O
I

From Table 5-4, the phase durations are
T=]

O
ﬁ.o 0 0 og
@r.o 0 0 og
05 05 0 o0
O 0
00 08 02 0
0 0
00 033 067 0f
S).s 0.5 0 og
1.0 0 0 0O
0 0
Ho 0 0 1.00

]

01 01 02 10 03 02 01 0.2

Then the effective operating times are computed as follows and summarized in Table 5-6.

X=TQ= |

05 11 04 0.2

]

TABLE 5-6. Effective Operating Timein Modes

Operationd Mode| Mode Name Effective Time x;
1 Idle 0.5
2 Scan 11
3 Track 04
4 Maintenance 0.2

Suppose that thereare N = 5 software CSCl's (see Table 5-7).

521

TABLE 5-7. Software CSCls

SW CSCl k Name SLOC Op_erat_iond modes
activein
1 Exec 3,000 All
2 Test 3,000 Maintenance
3 Scan 10,000 Scan
4 Track 5,000 Track
5 Cdibrate 2,000 Idle and Maintenance

Assuming that equation (13) is used to caculate failure rate with r = 3 MIPS (million instructions per
second), K = 4.2%107, wy = .006 faults per SLOC, and the language is Ada the failure rates shown in
Table 5-8 are cdculated for each operationd mode j. The initid falure rate is 6.048 for each
operationd mode. In this example, 500 hours of system test is scheduled. Therefore, each operational
mode has the following test time expected, and therefore expected fallure rate.

TABLE 5-8. Operational Mode Failure Rates

Operationd Mode name A, SLOC | Expected Failure rate
mode | per sytemtest | per mode
mode time per
mode
1 Idle 6.048 5,000 30 5/2.2* 500 | .00211E-6
fallures per hours= fallures per
hour 113.7 hours | hour
2 Scan 6.048 13,000 | 78 1.1/2.2* .0608E-6
failures per 100 hours= | failures per
hour 250 hours hour
3 Track 6.048 8,000 48 A22* 100 | 114E-6
fallures per hours=90.9 | falures per
hour hours hour
4 Maintenance 6.048 5,000 30 .2/2.2* 100 | 1003E-6
failures per hours = fallures per
hour 45.45 hours | hour

5-22

From Table 5-4, the mission time is found by summing the phase durations, yielding 2.2 hours. The
average failure rate is found by multiplying the matrix A, by the matrix X;.

M
ZAJ X
=1

Mission duration

.00211E - 6+.0608E — 6+ 114E - 6+ 1003E - 6

2.2hours
failures per hour

=1117.06E - 6

5-23

