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6.0 RELIABILITY ALLOCATION 

 
Reliability Allocation deals with the setting of reliability goals for individual subsystems such that 
a specified reliability goal is met and the hardware and software subsystem goals are well-
balanced among themselves.  Well-balanced usually refers to approximate relative equality of 
development time, difficulty, risk, or to the minimization of overall development cost.   
 
6.1 System Reliability Allocation.   
Reliability allocations for hardware/software systems can be started as soon as the system reliability 
models have been created. The initial values allocated to the system itself should either be the specified 
values for the various reliability metrics for the system, or a set of reliability values which are marginally 
more difficult to achieve than the specified values. Reliability values that are slightly more aggressive 
than the required values are sometimes allocated to the system to allow for later system functionality 
growth and to allow those parts of the system which cannot achieve their allocated values to be given 
some additional reliability margin later in the design process.  
 
The apportionment of reliability values between the various subsystems and elements can be made on 
the basis of complexity, criticality, estimated achievable reliability, or any other factors considered 
appropriate by the analyst making the allocation. The procedures provided for allocation of software 
failure rates can be applied to both hardware and system elements provided the user recognizes that 
these elements typically operate concurrently.  
 
System-level allocations are successively decomposed using the reliability model(s) until an appropriate 
set of reliability measures has been apportioned to each hardware and hardware/software component of 
the system. 
 
6.2 Hardware Reliability Allocation.   
The allocation of reliability values to lower-tiered hardware elements is a continuation of the allocation 
process begun at the system level. The system level hardware reliability models are used to successively 
apportion the required reliability measures among the various individual pieces of hardware and from 
the hardware equipment level to the various internal elements. For existing hardware items, the 
reliability allocations used should be based on the reliability performance of previously produced 
equipment. Reliability allocations to internal elements of existing hardware are not typically performed. 
Hardware equipment level allocations are further allocated to various internal elements within the 
equipment. 
 
6.3 Software Reliability Allocation.   
The first step in the allocation process is to describe the system configuration (system reliability 
model).  Next, trial component reliability allocations are selected, using best engineering 
judgment.  Compute system reliability for this set of component reliability values.  Compare the 
result against the goal. Adjust component reliability values to move system reliability toward the 
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goal, and component reliability values toward better balance.  Repeat the process until the desired 
goal and good balance are achieved1. 
 
The allocation of a system requirement to software elements makes sense only at the software 
system or CSCI level.  Once software CSCIs have been allocated reliability requirements, a 
different approach is needed to allocate the software CSCI requirements to lower levels.  The 
allocation of system requirements to hardware and software elements can be illustrated through a 
simple example. 

Example 6.1:   
A space vehicle will use three identical onboard computers, each with an independently 
designed and developed software program that performs the identical functions.  The overall 
reliability goal for the vehicle is 0.999 for a 100-hr mission.  Estimated development costs are: 

Software  Hardware  
Reliability        
(100hr) 

 
Cost 

Reliability        
(100hr) 

 
Cost 

0 91 
0.92 
0.93 
0.94 
0.95 
0.97 
0.99 

$ 3M 
$ 3.25M 
$ 3.5M 
$ 3.75M 
$ 4M 
$ 4.5M 
$ 5M 

0 91 
0.93 
0.95 
0.96 
0.97 
0.98 
0.99 

$ 300K 
$ 400K 
$ 500K 
$ 600K 
$ 800K 
$ 1.5M 
$ 5M 

 
The computers operate simultaneously.  Outputs are subject to a Built-in-Test (BIT).  If any 
output passes, the system is operational.  BIT is considered to have a reliability of 1.  Allocate 
reliability goals to minimize cost.  This is a concurrently functioning system with an event 
diagram of Figure 6-1.   
 

RH

RH

RH

RS

RS

RS   
 

FIGURE 6-1.  Event Diagram for Reliability Allocation 

                                                        
1 Musa, John D;Iannino, A.; Okumoto, K; Software Reliability Measurement, Prediction, Application, McGraw-
Hill, 1987. 
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RS denotes the reliability of the software and RH the computer hardware.  Let Rsys be the 
overall system reliability.  Applying the rules for event logic, the system reliability is given by 

Rsys = 1 - (1 - RHRS)
3 . 

 For Rsys = 0.999, RHRS = 0.9 
 
Try RH  = 0.95 and RS = 0.95.  This will give the required system reliability.  Note that the 
estimated cost of achieving this hardware reliability is relatively low and the total cost is 
$4.5M.   
 
Try a more difficult goal for hardware: RH = 0.96.  An RS = 0.94 will give the required 
combination to meet system reliability.  Now the total cost is $4.35M. 
 
A trial goal for hardware of RH = 0.97  and RS = 0.93 will give the required combination to 
meet system reliability.  Now the total cost is $4.3M. 
 
A trial goal for of RH = 0.98  and RS = 0.92 shows that we have gone too far.  Now the total 
cost is $4.75M.  Thus, it is best to choose RH = 0.97  and RS = 0.93 to meet Rsys at low cost. 
 

The reliability model for software differs significantly from hardware due to its inherent operating 
characteristics.  For each mode in a software system’s (CSCI) operation, different software 
modules (CSCs) will be executing.  Each mode will have a unique time of operation associated 
with it.   A  model should be developed for the software portion of a system to illustrate the 
modules which will be operating during each system mode, and indicate the duration of each 
system mode.  An example of this type of model is shown in Table 6.1 for a missile system.
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TABLE 6-1.  Software Functions By System Mode - Example 

System Mode Modules SLOC 

Standby - 2 Hours BIT 
1760 Interface  
Flight Sequencing  
Prelaunch Initialization 
TOTAL 

4000 
750 
2000 
900   
7650 

Prelaunch - 20 Minutes BIT 
Navigation 
Flight Sequencing  
Prelaunch Initialization 
Navigation Kalman Filter 
TOTAL 

4000 
1000 
2000 
900   
2000 
9900 

Post-Launch - 10 Minutes BIT 
TRN 
Navigation 
IIR Seeker Control 
Flight Sequencing  
Terminal Maneuver 
Other Post-Launch 
Navigation Kalman Filter 
TOTAL 

4000 
7000 
1000 
500 
2000 
1000 
24500 
2000 
42000 

 
The software reliability model will include the number of source lines of code (SLOC) expected 
for each module.  This data, along with other information pertaining to software development 
resources (personnel, computing facilities, test facilities, etc.) are used to establish initial failure 
intensity predictions for the software modules.  These predictions can be derived using the Basic 
Execution Model shown in Figure 6-2.  This is just one example, other models could be used also. 
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Reliability R = e-λτ 

Failure Intensity λ(t) = λoe-(λo/νo)τ λ(µ) = λo(1 - µ/νo)

λ: failure intensity (failures/CPU hour)

τo: CPU execution time
λo: initial failure intensity
νo: total failures after infinite τ 
µ: average or expected failures experienced

Total Faults νo = ωo/B

ωo: inherent faults @ initial system test 
B: fault reduction efficiency factor 

Initial Failure λo =ƒKωo 

Intensity
ƒ: linear execution frequency
K: fault exposure ratio 

Instruction ƒ = r / I
Execution Rate

r: instruction execution rate
I: number of object instructions

Object I = Qx * Is 

Instructions

Qx: average code expansion ratio

Is: number of source instructions

Inherent Faults ωo = ρ * Is 

ρ: fault density in faults/lines of code 

Failure Identification  ΧI = (ΘI)τ + (µI)µ
Personnel

ΘI: average failure identification effort per CPU hour 
µI: average failure identification effort per failure 

Failure Correction ΧF = µF ∗ µ
Personnel

µF: average failure correction effort per failure 

 
 

FIGURE 6-2.  Basic Execution Time Software Reliability Model 

The Musa model is provided as a method here because it has been applied on software 
development programs in the past. It may be a useful technique as a first course of action for 
programs with no other known methods. 
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A few of the parameters in the Musa model are considered in this notebook.  These parameters 
are important to software reliability allocation and estimation regardless of the model or 
methodology used to calculate initial failure rates.  A count of the inherent faults at the beginning 
of system test is one parameter.  These are faults in the code as opposed to failures, which are the 
resulting incorrect outputs of executed faults.  The inherent fault count can be used as a basis to 
estimate the expected failure intensity.  This is accomplished directly in Musa’s model.  
Fundamental logic suggests that the higher the inherent fault count, the higher the expected failure 
intensity of the software.  In Musa’s model, for example, a fault density of 6 faults per thousand 
Source Lines of Code (KSLOC) will translate into a higher failure intensity than 3 faults per 
KSLOC, and require more testing time and resources to achieve a required reliability level.  The 
estimate for inherent fault density can be based on KSLOC, Function Points2 (see appendix for a 
description of function points) or any other applicable primitive.  

Another important parameter impacting reliability is the defect removal efficiency. (See Section 7. 
for a prediction technique for defect removal efficiency).  Musa calls this the fault reduction 
factor. This is a measure of the proportion of faults removed from code to faults removed plus 
new faults introduced.  The more efficient the defect removal process, the higher the rate of 
reliability growth during software testing.  A related set of parameters are rate of failure 
identification and rate of failure correction.  These parameters affect the resources needed for 
reliability growth.   

The values used for the parameters in a chosen model for software reliability allocation and 
estimation are highly dependent on the sophistication of both the software process and software 
development personnel utilized on a program.  The values should reflect this.  For instance, a 
project with a Software Engineering Institute (SEI) development maturity capability of Level 1 or 
Level 2 should expect the fault content of their code to be greater than or equal to six faults per 
KSLOC at the beginning of system test. They can also expect their defect removal efficiency to be 
less than 90%.  Many statistics have been developed correlating process capability to defect 
levels.  Some useful references are provided in Section 7 of this notebook. 

Once system reliability requirements have been allocated to software, the predictions derived 
using methods as described above become the basis for initial allocations of a software reliability 
requirement to the system operational modes or functions.  This is a very important point.  The 
software requirement is not allocated to modules (CSCs).  It does not make sense to assign piece-
part reliability values to software components in the way it is done for hardware.  The reliability of 
software is impacted significantly by the environment in which it operates.  This environment is 
characterized by a set of inputs comprising the input space for the software system.  At the 
system, or CSCI level, it is possible to determine and enumerate the set and distribution of inputs 
for the functions that the software is called on to operate.  In this way, the software operates as a 
black box.  The reliability models for software have been developed for the software system, or 
this black box. 

                                                        
2 Jones, Capers; Applied Software Measurement, McGraw-Hill, NY, 1991. 
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The modules that make up a software system are contained within the black box and, during 
system testing, are not accessible directly from the external environment.  The controllable inputs 
represent stimuli to the system, not the lower level software elements independently.  For this 
reason it is impractical to attempt to derive reliability values for software modules.  Another 
problem is that many of the software failures that occur result from interface problems between 
software modules and timing problems somewhere in the system that may pertain to a specific 
module.  Piece part reliability values for software modules, even if they could be calculated, 
would not roll up to a software system reliability value that is even close to the true reliability of 
the system.  Fortunately, there is another method for allocating system software reliability values, 
and this method can use criticality and complexity for a basis of allocation, if desired. 

A top software system reliability requirement can be allocated among system operational modes, 
functions, or operations.  This is accomplished using a system-mode profile, functional profile, or 
operational profile, depending on level of detail needed and available for a particular system.  
System-mode profile is the most appropriate for high-level allocations.  The functional profile 
breaks up the system modes into a set of functions carried out during a system mode.  Finally, the 
operational profile splits the functional profile into a distinct set of possible runs within a system 
function.  The system mode profile is most applicable for allocations.  Functional and operational 
profiles are normally used to develop and generate test cases during system testing, and are 
described in further detail in Section 9. 

A system mode is a set of functions or operations grouped for convenience in analyzing execution 
behavior.  A system can switch among modes so that only one is in effect at a time, or it can allow 
several to exist simultaneously.  A system mode profile is the set of system modes and their 
associated occurrence probabilities.  There are no technical limits on how many system modes can 
be established.  Some bases for characterizing system modes, with examples, include: 
 

• User Group.  Administration mode; maintenance mode. 
• Significant environmental conditions.  Overload versus normal traffic; Initialization vs. 

operation. 
• Criticality.  Shutdown mode for nuclear power plant in trouble. 
• User Experience.  Novice vs. expert mode. 

TABLE 6-2.  Sample System Mode Profile 
 

System Mode Occurrence Probability 
Business Use 0.756 
Personal Use 0.144 
Attendants 0.062 
System Administration 0.020 
Maintenance 0.018 
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Example 6.2:   
A trade study conducted for a missile system resulted in the allocation of a mission reliability 
requirement of 0.95 leading to 0.97 for hardware and R = 0.98 for the software system. The 
reliability requirement allocated to the software portion of system will be further broken down and 
allocated to mission segments (system modes) according to the software reliability model 
description shown in Table 6.1.  The three mission segments (system modes) execute sequentially, 
and all three must execute failure-free for a reliable mission.  A preliminary allocation has been 
performed.  The allocation, by segment, is shown below: 

   Mission Segment  SR Allocation 
   Standby        0.9955 
   Prelaunch        0.9969 
   Post-Launch        0.9875 
 
The allocation was optimized to minimize the amount of testing time needed to meet a system 
level requirement software reliability requirement of 0.98.  The calculations were derived from the 
Musa model (Figure 6-2). The projected total testing effort in man-hours for system level 
reliability testing is 1200 hours.  This effort includes the time to write and run test cases, diagnose 
faults, and repair software faults. This allocation also determines the initial predictions for each 
operational mode.  Note that it is not the modules that are being tested, per se, in determining the 
software reliability values, rather it is the operational profile.  In other words, it would be more 
appropriate to say that the Prelaunch stage has a failure rate of 0.02 failures per CPU hour rather 
than saying the Flight Sequencing software module has a failure rate of 0.002 failures/CPU hour. 
 
Figure 6-3 shows the appropriate procedures used in different scenarios to allocate the failure rate 
goals to software CSCIs.  Once predicted failure rates for the software CSCIs are known, Procedure 
6.3-7 is used to re-allocate an appropriate failure rate goal to each software CSCI. 
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Given the:

Aggregate failure rate goal
Number of software CSCIs
Total mission time

And any one of these:

Series/Concurrent topology of CSCIs
Operational profile
Operational criticality for each CSCI
Complexity factor of each CSCI
Utilization of each CSCI

  Are the CSCIs
executed

sequentially?

  Are the CSCIs
executed

 concurrently?

Is the
mission or
operational

profile
known?

Equal
apportionment
for Sequential

CSCIs

Equal
apportionment
for Concurrent

CSCIs

Operational
   profile allocation

Yes

No No No

Yes

Is the
operational
criticality

available?

Operational
criticality
allocation

No

Yes

Is the
  complexity of
each CSCI

known?

Complexity
allocation

No

Yes

Use achievable
failure rate
allocation

Yes

 
  

FIGURE 6-3.  Reliability Allocation Procedures  
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Procedure 6.3-1 - Equal apportionment applied to sequential software CSCIs. 
This procedure is used to allocate a failure rate goal to each individual software CSCI when the CSCIs 
are executed sequentially. This procedure should be used only when ΛG, the failure rate goal of the 
software aggregate, and N, the number of software CSCIs in the aggregate, are known.  The 
aggregate’s failure rate goal is either specified in the requirements or is the result of an allocation 
performed at a higher level in the system hierarchy. 
 
Steps 
A.  Determine ΛG, the failure rate goal for the software aggregate 
 
B.  Determine N, the number of software CSCIs in the aggregate 
 
C.  For each software CSCI, assign the failure rate goal 

 
             λiG = ΛG failures per hour     i=1,2,...,N     (6.1) 

 
Example: 
A software aggregate is required to have a maximum of ΛG = 0.05 failures per hour.  The aggregate 
consists of N = 5 software CSCIs that are executed one after another, that is, the five CSCIs run 
sequentially.  All CSCIs must succeed for the system to succeed (this is a series system). 
 
Then, using the equal apportionment technique, the failure rate goal for the i-th software CSCI is 
assigned to be 
 
                 λiG = ΛG = 0.05 failures per hour    i=1,2,...,5 
 
Procedure 6.3-2 - Equal apportionment applied to concurrent software CSCIs. 
This procedure is used to allocate the appropriate failure rate goal to each individual software CSCI, 
when the CSCIs are executed concurrently.  ΛG, the failure rate of the software aggregate, and N, the 
number of software CSCIs in the aggregate, are needed for this procedure. 
 
Steps 
A.  Determine ΛG, the failure rate goal for the software aggregate 
 
B.  Determine N, the number of software CSCIs in the aggregate 
 
C.  For each software CSCI, assign the failure rate goal to be 

 
       λiG = ΛG / N             i=1,2,...,N       (6.2) 
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Example: 
A software aggregate has a failure rate goal ΛG = 0.05 failures per hour.  The aggregate consists of N = 
5 software CSCIs, which are in series and executed concurrently.  Then, the allocated failure rate goal 
of each of the 5 software CSCIs is 
 
              λiG = ΛG / N 

              = 0.05 / 5 
              = 0.01 failures per hour i = 1,2,...,5 

 
Procedure 6.3-3 - Optimized allocation based on system-mode profile. 
This allocation procedure is the same as that introduced in Example 6.2.  The optimization parameter 
in that example was estimated system testing time.  Musa’s Basic Execution Time Model was used in 
conjunction with linear programming to determine an allocation of a top software reliability 
requirement to operational modes which would minimize the amount of system testing required to 
meet the reliability objective.  This procedure assumes that all system modes are independent.  That is, 
no two system modes operate at the same time.  The general procedure follows. 
 
Steps. 
A.  Determine ΛG, the failure rate goal for the software aggregate 
 
B.  Determine N, the number of System Modes in the aggregate 
 
C.  For each system mode, determine the proportion of time that the system will be operating in that 

mode.  In other words, assign occurrence probabilities to the system modes.  The failure rate 
relationship of the software system can then be established by 

      i=N 

     ΛG    = Σ piλiG          (6.3) 
      i=1 

 
where pi is the occurrence probability of the i-th system mode. 
 
The only unknowns in Equation 6.3 then are the λiG values.  There are potentially an infinite number of 
combinations of these values that will meet the ΛG requirement. 
 
D. For each system mode, identify the software modules (CSCs or, in some cases, CSCIs) that are 

utilized during the system mode operation.  Add the estimated source lines of code (SLOC) for 
each module (This was done in Table 6-1).  Total the SLOC count for each system mode. 

 
E. Use the SLOC count for each system mode as an input to the Musa model (Figure 6-2).  This is 

the source instruction parameter (IS) in Figure 6-2. 
 
F. Supply values for each of the following parameters to the Musa model:  
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   B:   fault reduction efficiency factor (between 0 and 1) 
   r:    instruction execution rate (e.g., 25 MIPS) 
   Qx: code expansion ratio (# of object instructions per SLOC)  
   µi:   failure identification effort per failure (manhours) 
   µf:   failure correction effort per failure (manhours) 
 
G. Select a target failure rate for each system mode such that the combination results in the aggregate 

system requirement being met.  Note that the value for expected failures experienced (µ) will be 
calculated by the model.  Plugging this into the equations for failure identification personnel (XI) 
and failure correction personnel (XF) provides the total test time (in manhours) required to meet 
the target failure rate.  (Failure identification includes time to set up and run tests and to identify if a 
failure has occurred.  Failure correction includes time to debug the software, find the underlying 
fault causing the failure, and make the software change that fixes the associated fault). 

 
H. Add the values for XF and XI for each of the system modes to arrive at total system test time.  

Record this value. 
 
I. Try N new values for failure rates for the N system modes.  Record the total test time. 
 
J. Tweak the failure rate values up and down until an optimal value which minimizes system test time 

is achieved.  These final failure rate values are the set to be allocated to the N system modes. 
 
 Alternatively, the parameters required as described above could be entered into a linear 

programming model.  Setting Test Time as the objective function to minimize, the optimization will 
determine the best individual failure rate values for the allocation.  There are several linear 
programming packages, including those supplied with spreadsheet programs, available to perform 
this analysis. 

 
Example 6.2 (continued):   
The failure rate for the software CSCI is calculated by converting the reliability value of 0.98 to a 
failure rate.  The mission time in this case is 2.5 hours.  Using the standard equation for reliability 

(assuming exponential failure rates), R = e-λt, the aggregate failure rate goal is 8.078 X 10-3 
failures/hour.  The number of system modes is 3. 
 
Probabilities for each system mode are simply the proportion of time that each operates.  Therefore, 
 
 p1 = 0.8 
 p2 = 0.133 
 p3 = 0.067 
 
The SLOC (IS) count for the three system modes, as documented in Table 6-1, are: 
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 Standby:   7,650 
 Prelaunch: 9,900 
 Post-launch: 42,000 
 
The following values were assumed for each of the other required parameters: 
 
   B:    0.95 
   r:  25 MIPS 
   Qx:  4.5 
   µi:    5 
   µf:    5 
 
The parameters of the Musa Model were set up in a spreadsheet program.  The values above were 
entered.  Using the built-in linear optimization utility, the linear program execution resulted in the 
following allocation of failure rate values: 
 
 Standby:   8.01 X 10-4 failures/CPU hr 
 Prelaunch: 6.607 X 10-3 failures/CPU hr 
 Post-launch: 9.8306 X 10-2 failures/CPU hr 
 
The values determined by the model should be checked to ensure that the top failure rate will be met 
with the combination of allocated failure rates.  In this case, using Equation 6.3, they do.  These values 
then become the failure rates allocated to each of the respective system modes.   
 
This procedure does not require that the System Mode factor be used as the basis of allocation.  Any of 
the other operational profile factors listed in Table 6-3 could be substituted in the allocation (pi values).  
The System Mode factor, however, makes sense for most systems. 
 

TABLE 6-3. Operational Profile Allocation Factors 
 

Operational Profile Factors Description 
Customer Profile The occurrence probabilities associated with 

distinct customer types 
User Profile The occurrence probabilities associated with 

distinct end user types within the customer types 
System Mode Profile The occurrence probabilities associated with 

distinct system modes within each customer and 
end user types 

Functional Profile The occurrence probabilities associated with each 
CSCI within each system mode, user and 
customer profile. 
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Procedure 6.3-4 - Allocation based on operational criticality factors. 
The operational criticality factors method allocates failure rates based on the system impact of a 
software failure. Criticality is a measure of 
 
• The system’s ability to continue to operate 
• The system’s ability to be fail-safe 
 
For certain modes of operation, the criticality of that mode may call for a higher failure rate to be 
allocated. In order to meet very high failure rates, fault-tolerance or other methods may be needed. 
 
The following procedure is used to allocate the appropriate value to the failure rate of each software 
CSCI in an aggregate, provided that the criticality factor of each CSCI is known.  
 
A CSCI’s criticality refers to the degree to which the reliability and/or safety of the system as a whole is 
dependent on the proper functioning of the CSCI.  Furthermore, gradations of safety hazards translate 
into gradations of criticality.  The greater the criticality, the lower the failure rate should be allocated. 
 
A criticality factor ci should be assigned to each CSCI. The value that should be assigned to ci  is related 
to the criticality of the CSCI  i. 
 
Steps 
A.  Determine ΛG, the failure rate goal of the software aggregate 
 
B.  Determine N, the number of software CSCIs in the aggregate 
 
C.  For each i-th CSCI, i = 1, 2, ..., N, determine its criticality factor ci.  The lower the ci the more 
critical the CSCI. 
 
D.  Determine τ'i, the total active time of the i-th CSCI, i = 1, 2, ..., N.  Determine T, the mission time 
of the aggregate. 

 
E.  Compute the failure rate adjustment ξ: 

F.  Compute the allocated failure rate goal of each CSCI 
 
             λGi = ΛG ⋅ ci / ξ          (6.5) 
 
(Dividing by ξ makes the allocated CSCI failure rates build up to the aggregate failure rate goal.) 

 ξ
τ

 =  

c  

T
i=1

N

i i∑ ′

 (6.4) 
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Example: 
Suppose a software aggregate consisting of N = 3 software CSCIs is to be developed.  Assume the 
failure rate goal of the aggregate is ΛG = 0.002 failures per hour.   Suppose that the mission time is T = 
4 hours.   Furthermore, the criticality factors and the total active time of the software CSCIs are:  
 
    c1 = 4  τ’1 = 2 hours 
    c2 = 2  τ’2 = 1 hour 
    c3 = 1  τ’3 = 2 hours 
 
(Note: In this example, since c3 has the smallest value, it indicates that the third CSCI of this software 
aggregate is the most critical.) 
 
Compute ξ using equation (6.5): 

Then, the allocated failure rate goals of the software CSCIs are  
 
    λ1G = ΛG ⋅ c1 / ξ 
        = (0.002)(4) / 3 
         = 0.0027 failures/hour 
 
    λ2G = ΛG ⋅ c2 / ξ 
        = (0.002)(2) / 3 
         = 0.0013 failures/hour 
 
    λ3G = ΛG ⋅ c3 / ξ 
        = (0.002)(1) / 3 
         = 0.00067 failures/hour 
 
Procedure 6.3-5 - Allocation based on complexity factors. 
The following procedure is used to allocate a failure rate goal to each software CSCI in an aggregate, 
based on the complexity of the CSCIs.  There are several types of complexity as applied to software 
that are summarized below.  Note that several algorithms exist for computing function points and 
feature points. The appendix contains a description of one method for computing each of the 
complexity measures listed in Table 6-4. 

 

=  
(4)(2)+(2)(1)+ (1)(2)

4
 

=  3
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TABLE 6-4. Complexity Procedures 

 
Complexity type Description When it can be used 
McCabe’s Complexity A measure of the branches in 

logic in a unit of code. 
From the start of detailed design on. 

Functional Complexity A measure of the number of 
cohesive functions 
performed by the unit. 

From the start of detailed design on. 

SPR Function points A measure of problem, code, 
and data complexity, inputs, 
outputs, inquiries, data files 
and interfaces. 

From detailed design on. 

SPR Feature points A measure of algorithms, 
inputs, outputs, inquiries, 
data files and interfaces. 

From detailed design on. 

 
 
During the design phase an estimate complexity using any one of these techniques is available.  The 
greater the complexity, the more effort required to achieve a particular failure rate goal. Thus, CSCIs 
with higher complexity should be assigned higher failure rate goals. 
 
The complexity measure chosen must be transformed into a measure that is linearly proportional to 
failure rate. If the complexity factor doubles, for example, the failure rate goal should be twice as high. 
 
Steps. 
A.  Determine ΛG, the failure rate goal of the software aggregate 
 
B.  Determine N, the number of software CSCIs in the aggregate 
 
C.  For each CSCI i, i = 1,2,...,N, determine a complexity factor wi. 
 
D.  Determine τ'i, the total active time of the i-th CSCI, i = 1,2,..., N.  Determine T, the mission time of 
the aggregate 
 
E.  Compute ξ:  

 

 ξ
τ

 =  
w  

T
i=1

N

i i∑ ′

 (6.6) 
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G.  Then, the allocated failure rate of the i-th CSCI is  
 

              λiG = ΛG ⋅ wi / ξ (6.7) 

 
Example: 
A software aggregate consisting of N = 4 software CSCI is to be developed.  The failure rate goal of 
the aggregate is ΛG = 0.006 failures per hour.  The mission time is T = 3 hours.  Furthermore, the 
complexity factors and the total active time of the software CSCIs are:  
 
    w1 = 4,          t1 = 2 hours 
    w2 = 2,          t2 = 1 hour 
    w3 = 3,          t3 = 3 hours 
    w4 = 1,          t4 = 2 hours 
 
Compute ξ using equation (6.6): 

Then, the failure rate goals of the software CSCIs are  
 
    λ1G = ΛG ⋅ w1 / ξ 
        = (0.006)(4)/7 = 0.0034 failures/hour 
 
    λ2G = ΛG ⋅ w2 / ξ 
        = (0.006)(2) / 7 = 0.0017 failures/hour 
 
 
    λ3G = ΛG ⋅ w3 / ξ 
        = (0.006)(3) / 7 = 0.0026 failures/hour 
 
    λ4G = ΛG ⋅ w4 / ξ 
        = (0.006)(1) / 7 = 0.0009 failures/hour 

 

=  
(4)(2)+ (2)(1)+ (3)(3)+(1)(2)

3
 

=  7
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Procedure 6.3-6 - Allocation based on achievable failure rates. 
Allocation based on achievable failure rates uses each CSCIs utilization.  The utilization governs the 
growth rate a CSCI can be expected to experience during system test.  All things being equal, the 
greater a CSCI’s utilization, the faster its reliability will grow during system test.   
 
The first step is forecasting each CSCI’s initial failure rate as a function of predicted size, processor 
speed, and industry average figures for fault density and fault exposure ratio.  Then the reliability 
growth model parameter, the decrement in failure rate (with respect to execution time) per failure 
occurrence, is predicted.  Next, it is determined how much growth each CSCI can be expected to 
achieve during system test.  The growth is described by the software reliability growth model.  From 
the growth model, each CSCI’s failure rate at release is predicted, taking into account that CSCI’s 
utilization.  These predicted at-release failure rates provide relative weights, which are used to 
apportion the overall software failure rate goal ΛG among the CSCIs. 
 
Using the Proposal/Pre-Contractual Stage software reliability prediction equation, the i-th CSCI’s 
initial failure rate λ0i (with respect to execution time) is obtained: 

where: 
 
ri is the host processor speed (average number of instructions executed per second) 
 
K is the fault exposure ratio (Musa’s default is 4.20x10-7, however, it is strongly suggested that the 
organization determine an estimate of fault exposure based on historical data.)3 
 
ω0i is the CSCI’s fault content (use the number of developed lines of source code in the CSCI times the 
predicted fault density, or use the function points times the predicted faults per function points as 
discussed in Section 7) 
 
Ii is the number of object instructions in the CSCI (number of source lines of code times the code 
expansion ratio or the number of function points times the code expansion ratio (see Table 7-9).   
 
It is thus assumed that each CSCI is developed by a mature, reproducible software development 
process that produces code with the approximate industry average indicated in Section 7.2.3.  Note 
that, in this model, the initial failure rate is primarily a function of fault density (faults per lines of code 
or faults per function points). 
 
The software reliability growth model is employed to forecast the failure rate (with respect to system 
operating time) λi(t) each CSCI will exhibit after t system operating time units of system test.  Each 

                                                        
3 Musa, John D;Iannino, A.; Okumoto, K; Software Reliability Measurement, Prediction, Application, McGraw-
Hill, 1987. 

 0 i 0i i =  r K / Iλ ω• •  (6.8) 
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CSCI’s utilization ui is the CSCI’s ratio of execution time to system operating time.  The growth model 
provides the formula 

 
For each CSCI the parameter βi can be computed from 

integrated with one another all at once, but through a series of incremental builds, each CSCI can have 
its own value of t. 
 
A relative failure rate weight wi can now be associated with each CSCI.  The weight is computed from 
the formula 

Finally, the failure rate goal (with respect to system operating time) λAi to be allocated to the i-th CSCI 
is as follows 

If desired, the failure rate allocation can be expressed in terms of execution time by dividing by ui. 
 
The allocation uses failure rates expressed with respect to system operating time.  Note that changing 
to a faster or slower processor does not affect a system-operating-time failure rate; the reduction or 
increase in the utilization is exactly offset by a proportionate increase (decrease) in the execution time 
failure rate.  Therefore, the allocation obtained from this method does not need to be modified if the 
hardware platform changes to a faster or slower processor. 
 
Steps. 
A.  Predict each CSCI’s initial failure rate (with respect to the CSCI’s execution time).  Equation 
number (6.8) is one method for doing this.  There are other formulas used in industry as well. 
 
B.  Let t equal the number of system operating time units to be expended in system test.  Compute 
each CSCI’s using failure rate at release (with respect to system operating time) by the formulas (6.9) 
and (6.10). Use the predicted fault removal efficiency described in Section 7.2.4. 
 
C.  Calculate each CSCI’s relative failure rate weight by using formula (6.11). 
 
D.  Calculate the failure rate goal of each CSCI using formula (6.12). 

 i 0 i i i(t) =  [- t u ] uλ λ β• • • •exp  (6.9) 

 i
0i

0i

 =  Bβ λ
ω

•  (6.10) 

 i
i

i
w  =  

(t)

(t)

λ
λ∑

 (6.11) 

 Ai G i =  wλ Λ •  (6.12) 
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Example: 
A software subsystem consists of three CSCIs.  The first CSCI, hosted on a 3-MIPS processor, is 
predicted to contain ∆IS1 = 10,200 lines of newly developed Ada source code and 2,000 lines of reused 
Ada source code, for a total of 12,200 lines of source code.  The second CSCI, hosted on 4- MIPS 
processor, is predicted to consist of ∆IS2 = 20,000 lines of Ada source code, all newly developed.  The 
third CSCI, hosted on a 4-MIPS processor, is predicted to consist of ∆IS3 = 45,000 lines of newly 
developed Ada source code. Since the code expansion ratio for Ada is 4.5 object instructions per 
source line of code, the number of object instructions are I1 = 54,900; I2 = 90,000; and I3 = 202,500. 
 
The first CSCI has a utilization factor of 20%; the second CSCI, 20%, and the third, 40%.  The failure 
rate goal for the software subsystem is ΛG = 0.00005 failures per system operating second.  Table 6-5 
summarizes these figures. The software has an expectation of 250 hours of operation. 
 
 TABLE 6-5.  CSCI Characteristics 
 

  CSCI      i      ∆ISi       Ii       ri    ui 

    1     10,200     45,900  3,000,000    0.2 

    2     20,000     90,000  4,000,000    0.2 

    3     45,000    202,500  4,000,000    0.4 

 
 
The predicted fault contents ω01, ω02, and ω03 are 

 
The initial failure rates λ01, λ02, and λ03 are 

 

01 S1

02 S2

03 S3

 = I x0.006 =  10,200x0.006  61

 

 =  I x0.006 =  20,000x0.006 =  120

 

 =  I x0.006 =  45,000x0.006 =  270

ω

ω

ω

∆

∆

∆

≈

  

 

01 1 01 1
6 -7

02 2 02 2
6 -7

03 3 03 3
6 -7

 =  r xKx / I  =  (3x10 )(4.20x10 )(61) / (54,900) =  0.0014

 

 =  r xKx / I  =  (4x10 )(4.20x10 )(120) / (90,000) =  0.00224

 

 =  r xKx / I  =  (4x10 )(4.20x10 )(270) / (202,500) =  0.00224

λ ω

λ ω

λ ω
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The software reliability growth model parameters β1, β2, and β3 are 

Table 6-6 summarizes. 
 

TABLE 6-6.  Growth Model Quantities 
 

   CSCI i    ω0i    λ0i per 
system 
operating 
second 

     βi per 
system operating 
second 

      1     61   0.0014 0.0000219 

      2    120   0.00224 0.0000178 

      3    270   0.00224 0.0000079 

 
 
The number of hours system test is expected to last is 250.  Thus, 

The failure rates (with respect to system operating time) at the end of the 900,000-second system test 
period are predicted to be 
 

   

1 01 1 1 1
-6

2 02 2 2 2
-5

3 03 3 3 3
-5

(900,000) =  exp[-t u ] u  =  0.0014exp[-(0.0000219)(900,000)](0.2)](0.2) =  5.434632x10

 

(900,000) =  exp[-t u ] u  =  0.00224exp[-(0.0000178)(900,000)(0.2)](0.2) =  1.805865x10

 

(900,000) =  exp[-t u ] u  =  0.00224exp[-(0.0000079(900,000)(0.4)](0.2) =  5.214039x10

λ λ β

λ λ β

λ λ β

• • •

• • •

• • •

  

 
The sum of the failure rates is 

 

1 01 01

2 02 02

3 03 03

 =  Bx /  =  (0.955)(0.0014) / (61) =  0.0000219

 

 =  Bx /  =  (0.955)(0.00224) / (120) =  0.0000178

 

 =  Bx /  =  (0.955)(0.00224) / (270) =  0.0000079

β λ ω

β λ ω

β λ ω

  

 t =  250  x 
3600 

1 
 =  900,000 hr

sec

hr
sec   
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The computed failure rates weights are 

The allocated failure rates (with respect to system operating time) are computed by multiplying the 
system failure rate goal (ΛG = 0.00005 failures per system operating second) by each of the weights w1, 
w2, and w3: 

Procedure 6.3-7 - Re-allocation based on predicted failure rates. 
Once failure rate predictions become available for the CSCIs, the allocations can be revised.  If the 
predicted failure rate of the aggregate is less than or equal the goal, the CSCIs are re-allocated failure 
rates based on the ratio of the predicted failure rate of the CSCI to the predicted failure rate of the 
aggregate.  The failure rate "goal" is expressed in terms of the failure rate at release.  The predicted 
failure rates at release are obtained by using the appropriate software reliability prediction model and a 
software reliability growth model.  If the new failure rate goal of a particular CSCI is greater than its 
predicted failure rate, it may be possible to use some resources from that CSCI and use the resources 
to help other CSCIs reach their respective goals. If the predicted failure rate of the aggregate is greater 
than the goal, then actions such as re-design or resource re-allocation should be considered. 
 
Steps. 
A.  Using the procedures in Section 7, predict the failure rates the N CSCIs will have at release: 

The P stands for "predicted." 
 

B.  Combine the predicted CSCI failure rates to obtain a predicted failure rate for the aggregate: 

 
1

3

i
-5(900,000) =  5.9393847 10x∑λ   

 

1 1
-5

2 2
-5

3 3
-5

w  =  (900,000) / x 10  =

 

w  =  (900,000) / x 10  =  0.

 

w  =  (900,000) / x 10  =  0.

λ

λ

λ

7 5633672 0718547

7 5633672 2387647

7 5633672 6893807

. .

.

.

  

 

G1 G 1
-6

G2 G 2
-6

G3 G 3
-

 =  x w  =  0.00005x  =  x 10
 

 =  x w  =  0.00005x  =  x 10

 

 =  x w  =  0.00005x0.  =  x 10

λ

λ

λ

Λ

Λ

Λ

0 0718547 3592735

2387647 11938235

6893807 34 469035 6

. .

. .

.

  

 1P 2P NP, , ..., λ λ λ  (6.13) 
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C.  If ΛP ≤ ΛG, then the failure rates are re-allocated using the formula: 

If ΛP > ΛG, then it is likely that the failure rate goal will not be met, and redesign and/or 
management action is required. 
 

Example: 
A software aggregate consisting of N = 3 software CSCIs is to be developed with the failure rate goal 
of ΛG = 0.8 failures per hour. The total active times of the software CSCIs are 
 
       t1 = 2 hours 
       t2 = 3 hours 
       t3 = 1 hour 
 
After the detailed design phase, the predicted failure rates of the software CSCIs are 
 
    λ1P = 0.5 failures/hour 
    λ2P = 0.9 failures/hour 
    λ3P = 0.2 failures/hour 
 
Compute Λp  using equation (6.14): 

The predicted failure rate of the aggregate is less than its failure rate goal ΛG = 0.8.  Therefore, the re-
allocated failure rate goals of the software CSCIs are 
 
    λ1G = λ1P ⋅ ΛG / ΛP 
        = (0.5)(0.8)/(0.65) 
        = 0.62 failures/hour 
 

 P
i=1

N

iP i

 =  
T

Λ
∑ ′λ τ

 (6.14) 

 i
iP

P
G =      ,    i = 1,2,..., Nλ

λ
Λ

Λ•  (6.15) 

 =  
(0.5)(2)+ (0.9)(3)+ (0.2)(1)

6
 =  0.65   
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    λ2G = λ2P ⋅ ΛG / ΛP 
        = (0.9)(0.8)/(0.65) 
        = 1.1 failures/hour 
 
    λ3G = λ3P ⋅ ΛG / ΛP 
        = (0.2)(0.8)/(0.65) 
        = 0.25 failures/hour 
 
6.4 Hardware/Software Allocations.  
Once the hardware/software elements of the system have been allocated a set of reliability goals,  these 
allocations must be apportioned between the hardware platform and the executing software. To 
apportion the allocated reliability measures between the hardware and software, the analyst should first 
determine if the actual reliability of any of the elements of the hardware/software combination is 
known. The hardware element may be an existing design with proven reliability.  
 
Prior to apportioning the allocated reliability values to the hardware platform or software elements, 
those elements with known reliability should be assigned a set of allocated values that reflect their 
known reliability performance. These allocations should be subtracted from the hardware/software 
total allocations.  
 
The remaining elements can then be apportioned a set of reliability goals based on mission operational 
profile, operational criticality, complexity, achievable failure rate, or such other factors as the analyst 
may deem appropriate to the system being developed. Hardware elements of hardware/software 
combinations which have allocations that need to be further developed should be treated in exactly the 
same way as purely hardware elements. 
 
The combination of hardware and software configuration items can also be modeled by using the 
procedures used above.  For example, the mission allocation can model the mission profile of HWCIs 
as well as CSCIs.  


