

 6-1

6.0 RELIABILITY ALLOCATION

Reliability Allocation deals with the setting of reliability goals for individual subsystems such that
a specified reliability goal is met and the hardware and software subsystem goals are well-
balanced among themselves. Well-balanced usually refers to approximate relative equality of
development time, difficulty, risk, or to the minimization of overall development cost.

6.1 System Reliability Allocation.
Reliability allocations for hardware/software systems can be started as soon as the system reliability
models have been created. The initial values allocated to the system itself should either be the specified
values for the various reliability metrics for the system, or a set of reliability values which are marginally
more difficult to achieve than the specified values. Reliability values that are slightly more aggressive
than the required values are sometimes allocated to the system to allow for later system functionality
growth and to allow those parts of the system which cannot achieve their allocated values to be given
some additional reliability margin later in the design process.

The apportionment of reliability values between the various subsystems and elements can be made on
the basis of complexity, criticality, estimated achievable reliability, or any other factors considered
appropriate by the analyst making the allocation. The procedures provided for allocation of software
failure rates can be applied to both hardware and system elements provided the user recognizes that
these elements typically operate concurrently.

System-level allocations are successively decomposed using the reliability model(s) until an appropriate
set of reliability measures has been apportioned to each hardware and hardware/software component of
the system.

6.2 Hardware Reliability Allocation.
The allocation of reliability values to lower-tiered hardware elements is a continuation of the allocation
process begun at the system level. The system level hardware reliability models are used to successively
apportion the required reliability measures among the various individual pieces of hardware and from
the hardware equipment level to the various internal elements. For existing hardware items, the
reliability allocations used should be based on the reliability performance of previously produced
equipment. Reliability allocations to internal elements of existing hardware are not typically performed.
Hardware equipment level allocations are further allocated to various internal elements within the
equipment.

6.3 Software Reliability Allocation.
The first step in the allocation process is to describe the system configuration (system reliability
model). Next, trial component reliability allocations are selected, using best engineering
judgment. Compute system reliability for this set of component reliability values. Compare the
result against the goal. Adjust component reliability values to move system reliability toward the

 6-2

goal, and component reliability values toward better balance. Repeat the process until the desired
goal and good balance are achieved1.

The allocation of a system requirement to software elements makes sense only at the software
system or CSCI level. Once software CSCIs have been allocated reliability requirements, a
different approach is needed to allocate the software CSCI requirements to lower levels. The
allocation of system requirements to hardware and software elements can be illustrated through a
simple example.

Example 6.1:
A space vehicle will use three identical onboard computers, each with an independently
designed and developed software program that performs the identical functions. The overall
reliability goal for the vehicle is 0.999 for a 100-hr mission. Estimated development costs are:

Software Hardware
Reliability
(100hr)

Cost

Reliability
(100hr)

Cost

0 91
0.92
0.93
0.94
0.95
0.97
0.99

$ 3M
$ 3.25M
$ 3.5M
$ 3.75M
$ 4M
$ 4.5M
$ 5M

0 91
0.93
0.95
0.96
0.97
0.98
0.99

$ 300K
$ 400K
$ 500K
$ 600K
$ 800K
$ 1.5M
$ 5M

The computers operate simultaneously. Outputs are subject to a Built-in-Test (BIT). If any
output passes, the system is operational. BIT is considered to have a reliability of 1. Allocate
reliability goals to minimize cost. This is a concurrently functioning system with an event
diagram of Figure 6-1.

RH

RH

RH

RS

RS

RS

FIGURE 6-1. Event Diagram for Reliability Allocation

1 Musa, John D;Iannino, A.; Okumoto, K; Software Reliability Measurement, Prediction, Application, McGraw-
Hill, 1987.

 6-3

RS denotes the reliability of the software and RH the computer hardware. Let Rsys be the
overall system reliability. Applying the rules for event logic, the system reliability is given by

Rsys = 1 - (1 - RHRS)
3 .

 For Rsys = 0.999, RHRS = 0.9

Try RH = 0.95 and RS = 0.95. This will give the required system reliability. Note that the
estimated cost of achieving this hardware reliability is relatively low and the total cost is
$4.5M.

Try a more difficult goal for hardware: RH = 0.96. An RS = 0.94 will give the required
combination to meet system reliability. Now the total cost is $4.35M.

A trial goal for hardware of RH = 0.97 and RS = 0.93 will give the required combination to
meet system reliability. Now the total cost is $4.3M.

A trial goal for of RH = 0.98 and RS = 0.92 shows that we have gone too far. Now the total
cost is $4.75M. Thus, it is best to choose RH = 0.97 and RS = 0.93 to meet Rsys at low cost.

The reliability model for software differs significantly from hardware due to its inherent operating
characteristics. For each mode in a software system’s (CSCI) operation, different software
modules (CSCs) will be executing. Each mode will have a unique time of operation associated
with it. A model should be developed for the software portion of a system to illustrate the
modules which will be operating during each system mode, and indicate the duration of each
system mode. An example of this type of model is shown in Table 6.1 for a missile system.

 6-4

TABLE 6-1. Software Functions By System Mode - Example

System Mode Modules SLOC

Standby - 2 Hours BIT
1760 Interface
Flight Sequencing
Prelaunch Initialization
TOTAL

4000
750
2000
900
7650

Prelaunch - 20 Minutes BIT
Navigation
Flight Sequencing
Prelaunch Initialization
Navigation Kalman Filter
TOTAL

4000
1000
2000
900
2000
9900

Post-Launch - 10 Minutes BIT
TRN
Navigation
IIR Seeker Control
Flight Sequencing
Terminal Maneuver
Other Post-Launch
Navigation Kalman Filter
TOTAL

4000
7000
1000
500
2000
1000
24500
2000
42000

The software reliability model will include the number of source lines of code (SLOC) expected
for each module. This data, along with other information pertaining to software development
resources (personnel, computing facilities, test facilities, etc.) are used to establish initial failure
intensity predictions for the software modules. These predictions can be derived using the Basic
Execution Model shown in Figure 6-2. This is just one example, other models could be used also.

 6-5

Reliability R = e-λτ

Failure Intensity λ(t) = λoe-(λo/νo)τ λ(µ) = λo(1 - µ/νo)

λ: failure intensity (failures/CPU hour)

τo: CPU execution time
λo: initial failure intensity
νo: total failures after infinite τ
µ: average or expected failures experienced

Total Faults νo = ωo/B

ωo: inherent faults @ initial system test
B: fault reduction efficiency factor

Initial Failure λo =ƒKωo

Intensity
ƒ: linear execution frequency
K: fault exposure ratio

Instruction ƒ = r / I
Execution Rate

r: instruction execution rate
I: number of object instructions

Object I = Qx * Is

Instructions

Qx: average code expansion ratio

Is: number of source instructions

Inherent Faults ωo = ρ * Is

ρ: fault density in faults/lines of code

Failure Identification ΧI = (ΘI)τ + (µI)µ
Personnel

ΘI: average failure identification effort per CPU hour
µI: average failure identification effort per failure

Failure Correction ΧF = µF ∗ µ
Personnel

µF: average failure correction effort per failure

FIGURE 6-2. Basic Execution Time Software Reliability Model

The Musa model is provided as a method here because it has been applied on software
development programs in the past. It may be a useful technique as a first course of action for
programs with no other known methods.

 6-6

A few of the parameters in the Musa model are considered in this notebook. These parameters
are important to software reliability allocation and estimation regardless of the model or
methodology used to calculate initial failure rates. A count of the inherent faults at the beginning
of system test is one parameter. These are faults in the code as opposed to failures, which are the
resulting incorrect outputs of executed faults. The inherent fault count can be used as a basis to
estimate the expected failure intensity. This is accomplished directly in Musa’s model.
Fundamental logic suggests that the higher the inherent fault count, the higher the expected failure
intensity of the software. In Musa’s model, for example, a fault density of 6 faults per thousand
Source Lines of Code (KSLOC) will translate into a higher failure intensity than 3 faults per
KSLOC, and require more testing time and resources to achieve a required reliability level. The
estimate for inherent fault density can be based on KSLOC, Function Points2 (see appendix for a
description of function points) or any other applicable primitive.

Another important parameter impacting reliability is the defect removal efficiency. (See Section 7.
for a prediction technique for defect removal efficiency). Musa calls this the fault reduction
factor. This is a measure of the proportion of faults removed from code to faults removed plus
new faults introduced. The more efficient the defect removal process, the higher the rate of
reliability growth during software testing. A related set of parameters are rate of failure
identification and rate of failure correction. These parameters affect the resources needed for
reliability growth.

The values used for the parameters in a chosen model for software reliability allocation and
estimation are highly dependent on the sophistication of both the software process and software
development personnel utilized on a program. The values should reflect this. For instance, a
project with a Software Engineering Institute (SEI) development maturity capability of Level 1 or
Level 2 should expect the fault content of their code to be greater than or equal to six faults per
KSLOC at the beginning of system test. They can also expect their defect removal efficiency to be
less than 90%. Many statistics have been developed correlating process capability to defect
levels. Some useful references are provided in Section 7 of this notebook.

Once system reliability requirements have been allocated to software, the predictions derived
using methods as described above become the basis for initial allocations of a software reliability
requirement to the system operational modes or functions. This is a very important point. The
software requirement is not allocated to modules (CSCs). It does not make sense to assign piece-
part reliability values to software components in the way it is done for hardware. The reliability of
software is impacted significantly by the environment in which it operates. This environment is
characterized by a set of inputs comprising the input space for the software system. At the
system, or CSCI level, it is possible to determine and enumerate the set and distribution of inputs
for the functions that the software is called on to operate. In this way, the software operates as a
black box. The reliability models for software have been developed for the software system, or
this black box.

2 Jones, Capers; Applied Software Measurement, McGraw-Hill, NY, 1991.

 6-7

The modules that make up a software system are contained within the black box and, during
system testing, are not accessible directly from the external environment. The controllable inputs
represent stimuli to the system, not the lower level software elements independently. For this
reason it is impractical to attempt to derive reliability values for software modules. Another
problem is that many of the software failures that occur result from interface problems between
software modules and timing problems somewhere in the system that may pertain to a specific
module. Piece part reliability values for software modules, even if they could be calculated,
would not roll up to a software system reliability value that is even close to the true reliability of
the system. Fortunately, there is another method for allocating system software reliability values,
and this method can use criticality and complexity for a basis of allocation, if desired.

A top software system reliability requirement can be allocated among system operational modes,
functions, or operations. This is accomplished using a system-mode profile, functional profile, or
operational profile, depending on level of detail needed and available for a particular system.
System-mode profile is the most appropriate for high-level allocations. The functional profile
breaks up the system modes into a set of functions carried out during a system mode. Finally, the
operational profile splits the functional profile into a distinct set of possible runs within a system
function. The system mode profile is most applicable for allocations. Functional and operational
profiles are normally used to develop and generate test cases during system testing, and are
described in further detail in Section 9.

A system mode is a set of functions or operations grouped for convenience in analyzing execution
behavior. A system can switch among modes so that only one is in effect at a time, or it can allow
several to exist simultaneously. A system mode profile is the set of system modes and their
associated occurrence probabilities. There are no technical limits on how many system modes can
be established. Some bases for characterizing system modes, with examples, include:

• User Group. Administration mode; maintenance mode.
• Significant environmental conditions. Overload versus normal traffic; Initialization vs.

operation.
• Criticality. Shutdown mode for nuclear power plant in trouble.
• User Experience. Novice vs. expert mode.

TABLE 6-2. Sample System Mode Profile

System Mode Occurrence Probability
Business Use 0.756
Personal Use 0.144
Attendants 0.062
System Administration 0.020
Maintenance 0.018

 6-8

Example 6.2:
A trade study conducted for a missile system resulted in the allocation of a mission reliability
requirement of 0.95 leading to 0.97 for hardware and R = 0.98 for the software system. The
reliability requirement allocated to the software portion of system will be further broken down and
allocated to mission segments (system modes) according to the software reliability model
description shown in Table 6.1. The three mission segments (system modes) execute sequentially,
and all three must execute failure-free for a reliable mission. A preliminary allocation has been
performed. The allocation, by segment, is shown below:

 Mission Segment SR Allocation
 Standby 0.9955
 Prelaunch 0.9969
 Post-Launch 0.9875

The allocation was optimized to minimize the amount of testing time needed to meet a system
level requirement software reliability requirement of 0.98. The calculations were derived from the
Musa model (Figure 6-2). The projected total testing effort in man-hours for system level
reliability testing is 1200 hours. This effort includes the time to write and run test cases, diagnose
faults, and repair software faults. This allocation also determines the initial predictions for each
operational mode. Note that it is not the modules that are being tested, per se, in determining the
software reliability values, rather it is the operational profile. In other words, it would be more
appropriate to say that the Prelaunch stage has a failure rate of 0.02 failures per CPU hour rather
than saying the Flight Sequencing software module has a failure rate of 0.002 failures/CPU hour.

Figure 6-3 shows the appropriate procedures used in different scenarios to allocate the failure rate
goals to software CSCIs. Once predicted failure rates for the software CSCIs are known, Procedure
6.3-7 is used to re-allocate an appropriate failure rate goal to each software CSCI.

 6-9

Given the:

Aggregate failure rate goal
Number of software CSCIs
Total mission time

And any one of these:

Series/Concurrent topology of CSCIs
Operational profile
Operational criticality for each CSCI
Complexity factor of each CSCI
Utilization of each CSCI

 Are the CSCIs
executed

sequentially?

 Are the CSCIs
executed

 concurrently?

Is the
mission or
operational

profile
known?

Equal
apportionment
for Sequential

CSCIs

Equal
apportionment
for Concurrent

CSCIs

Operational
 profile allocation

Yes

No No No

Yes

Is the
operational
criticality

available?

Operational
criticality
allocation

No

Yes

Is the
 complexity of
each CSCI

known?

Complexity
allocation

No

Yes

Use achievable
failure rate
allocation

Yes

FIGURE 6-3. Reliability Allocation Procedures

 6-10

Procedure 6.3-1 - Equal apportionment applied to sequential software CSCIs.
This procedure is used to allocate a failure rate goal to each individual software CSCI when the CSCIs
are executed sequentially. This procedure should be used only when ΛG, the failure rate goal of the
software aggregate, and N, the number of software CSCIs in the aggregate, are known. The
aggregate’s failure rate goal is either specified in the requirements or is the result of an allocation
performed at a higher level in the system hierarchy.

Steps
A. Determine ΛG, the failure rate goal for the software aggregate

B. Determine N, the number of software CSCIs in the aggregate

C. For each software CSCI, assign the failure rate goal

 λiG = ΛG failures per hour i=1,2,...,N (6.1)

Example:
A software aggregate is required to have a maximum of ΛG = 0.05 failures per hour. The aggregate
consists of N = 5 software CSCIs that are executed one after another, that is, the five CSCIs run
sequentially. All CSCIs must succeed for the system to succeed (this is a series system).

Then, using the equal apportionment technique, the failure rate goal for the i-th software CSCI is
assigned to be

 λiG = ΛG = 0.05 failures per hour i=1,2,...,5

Procedure 6.3-2 - Equal apportionment applied to concurrent software CSCIs.
This procedure is used to allocate the appropriate failure rate goal to each individual software CSCI,
when the CSCIs are executed concurrently. ΛG, the failure rate of the software aggregate, and N, the
number of software CSCIs in the aggregate, are needed for this procedure.

Steps
A. Determine ΛG, the failure rate goal for the software aggregate

B. Determine N, the number of software CSCIs in the aggregate

C. For each software CSCI, assign the failure rate goal to be

 λiG = ΛG / N i=1,2,...,N (6.2)

 6-11

Example:
A software aggregate has a failure rate goal ΛG = 0.05 failures per hour. The aggregate consists of N =
5 software CSCIs, which are in series and executed concurrently. Then, the allocated failure rate goal
of each of the 5 software CSCIs is

 λiG = ΛG / N

 = 0.05 / 5
 = 0.01 failures per hour i = 1,2,...,5

Procedure 6.3-3 - Optimized allocation based on system-mode profile.
This allocation procedure is the same as that introduced in Example 6.2. The optimization parameter
in that example was estimated system testing time. Musa’s Basic Execution Time Model was used in
conjunction with linear programming to determine an allocation of a top software reliability
requirement to operational modes which would minimize the amount of system testing required to
meet the reliability objective. This procedure assumes that all system modes are independent. That is,
no two system modes operate at the same time. The general procedure follows.

Steps.
A. Determine ΛG, the failure rate goal for the software aggregate

B. Determine N, the number of System Modes in the aggregate

C. For each system mode, determine the proportion of time that the system will be operating in that

mode. In other words, assign occurrence probabilities to the system modes. The failure rate
relationship of the software system can then be established by

 i=N

 ΛG = Σ piλiG (6.3)
 i=1

where pi is the occurrence probability of the i-th system mode.

The only unknowns in Equation 6.3 then are the λiG values. There are potentially an infinite number of
combinations of these values that will meet the ΛG requirement.

D. For each system mode, identify the software modules (CSCs or, in some cases, CSCIs) that are

utilized during the system mode operation. Add the estimated source lines of code (SLOC) for
each module (This was done in Table 6-1). Total the SLOC count for each system mode.

E. Use the SLOC count for each system mode as an input to the Musa model (Figure 6-2). This is

the source instruction parameter (IS) in Figure 6-2.

F. Supply values for each of the following parameters to the Musa model:

 6-12

 B: fault reduction efficiency factor (between 0 and 1)
 r: instruction execution rate (e.g., 25 MIPS)
 Qx: code expansion ratio (# of object instructions per SLOC)
 µi: failure identification effort per failure (manhours)
 µf: failure correction effort per failure (manhours)

G. Select a target failure rate for each system mode such that the combination results in the aggregate

system requirement being met. Note that the value for expected failures experienced (µ) will be
calculated by the model. Plugging this into the equations for failure identification personnel (XI)
and failure correction personnel (XF) provides the total test time (in manhours) required to meet
the target failure rate. (Failure identification includes time to set up and run tests and to identify if a
failure has occurred. Failure correction includes time to debug the software, find the underlying
fault causing the failure, and make the software change that fixes the associated fault).

H. Add the values for XF and XI for each of the system modes to arrive at total system test time.

Record this value.

I. Try N new values for failure rates for the N system modes. Record the total test time.

J. Tweak the failure rate values up and down until an optimal value which minimizes system test time

is achieved. These final failure rate values are the set to be allocated to the N system modes.

 Alternatively, the parameters required as described above could be entered into a linear

programming model. Setting Test Time as the objective function to minimize, the optimization will
determine the best individual failure rate values for the allocation. There are several linear
programming packages, including those supplied with spreadsheet programs, available to perform
this analysis.

Example 6.2 (continued):
The failure rate for the software CSCI is calculated by converting the reliability value of 0.98 to a
failure rate. The mission time in this case is 2.5 hours. Using the standard equation for reliability

(assuming exponential failure rates), R = e-λt, the aggregate failure rate goal is 8.078 X 10-3
failures/hour. The number of system modes is 3.

Probabilities for each system mode are simply the proportion of time that each operates. Therefore,

 p1 = 0.8
 p2 = 0.133
 p3 = 0.067

The SLOC (IS) count for the three system modes, as documented in Table 6-1, are:

 6-13

 Standby: 7,650
 Prelaunch: 9,900
 Post-launch: 42,000

The following values were assumed for each of the other required parameters:

 B: 0.95
 r: 25 MIPS
 Qx: 4.5
 µi: 5
 µf: 5

The parameters of the Musa Model were set up in a spreadsheet program. The values above were
entered. Using the built-in linear optimization utility, the linear program execution resulted in the
following allocation of failure rate values:

 Standby: 8.01 X 10-4 failures/CPU hr
 Prelaunch: 6.607 X 10-3 failures/CPU hr
 Post-launch: 9.8306 X 10-2 failures/CPU hr

The values determined by the model should be checked to ensure that the top failure rate will be met
with the combination of allocated failure rates. In this case, using Equation 6.3, they do. These values
then become the failure rates allocated to each of the respective system modes.

This procedure does not require that the System Mode factor be used as the basis of allocation. Any of
the other operational profile factors listed in Table 6-3 could be substituted in the allocation (pi values).
The System Mode factor, however, makes sense for most systems.

TABLE 6-3. Operational Profile Allocation Factors

Operational Profile Factors Description
Customer Profile The occurrence probabilities associated with

distinct customer types
User Profile The occurrence probabilities associated with

distinct end user types within the customer types
System Mode Profile The occurrence probabilities associated with

distinct system modes within each customer and
end user types

Functional Profile The occurrence probabilities associated with each
CSCI within each system mode, user and
customer profile.

 6-14

Procedure 6.3-4 - Allocation based on operational criticality factors.
The operational criticality factors method allocates failure rates based on the system impact of a
software failure. Criticality is a measure of

• The system’s ability to continue to operate
• The system’s ability to be fail-safe

For certain modes of operation, the criticality of that mode may call for a higher failure rate to be
allocated. In order to meet very high failure rates, fault-tolerance or other methods may be needed.

The following procedure is used to allocate the appropriate value to the failure rate of each software
CSCI in an aggregate, provided that the criticality factor of each CSCI is known.

A CSCI’s criticality refers to the degree to which the reliability and/or safety of the system as a whole is
dependent on the proper functioning of the CSCI. Furthermore, gradations of safety hazards translate
into gradations of criticality. The greater the criticality, the lower the failure rate should be allocated.

A criticality factor ci should be assigned to each CSCI. The value that should be assigned to ci is related
to the criticality of the CSCI i.

Steps
A. Determine ΛG, the failure rate goal of the software aggregate

B. Determine N, the number of software CSCIs in the aggregate

C. For each i-th CSCI, i = 1, 2, ..., N, determine its criticality factor ci. The lower the ci the more
critical the CSCI.

D. Determine τ'i, the total active time of the i-th CSCI, i = 1, 2, ..., N. Determine T, the mission time
of the aggregate.

E. Compute the failure rate adjustment ξ:

F. Compute the allocated failure rate goal of each CSCI

 λGi = ΛG ⋅ ci / ξ (6.5)

(Dividing by ξ makes the allocated CSCI failure rates build up to the aggregate failure rate goal.)

 ξ
τ

 =

c

T
i=1

N

i i∑ ′

 (6.4)

 6-15

Example:
Suppose a software aggregate consisting of N = 3 software CSCIs is to be developed. Assume the
failure rate goal of the aggregate is ΛG = 0.002 failures per hour. Suppose that the mission time is T =
4 hours. Furthermore, the criticality factors and the total active time of the software CSCIs are:

 c1 = 4 τ’1 = 2 hours
 c2 = 2 τ’2 = 1 hour
 c3 = 1 τ’3 = 2 hours

(Note: In this example, since c3 has the smallest value, it indicates that the third CSCI of this software
aggregate is the most critical.)

Compute ξ using equation (6.5):

Then, the allocated failure rate goals of the software CSCIs are

 λ1G = ΛG ⋅ c1 / ξ
 = (0.002)(4) / 3
 = 0.0027 failures/hour

 λ2G = ΛG ⋅ c2 / ξ
 = (0.002)(2) / 3
 = 0.0013 failures/hour

 λ3G = ΛG ⋅ c3 / ξ
 = (0.002)(1) / 3
 = 0.00067 failures/hour

Procedure 6.3-5 - Allocation based on complexity factors.
The following procedure is used to allocate a failure rate goal to each software CSCI in an aggregate,
based on the complexity of the CSCIs. There are several types of complexity as applied to software
that are summarized below. Note that several algorithms exist for computing function points and
feature points. The appendix contains a description of one method for computing each of the
complexity measures listed in Table 6-4.

=
(4)(2)+(2)(1)+ (1)(2)

4

= 3

 6-16

TABLE 6-4. Complexity Procedures

Complexity type Description When it can be used
McCabe’s Complexity A measure of the branches in

logic in a unit of code.
From the start of detailed design on.

Functional Complexity A measure of the number of
cohesive functions
performed by the unit.

From the start of detailed design on.

SPR Function points A measure of problem, code,
and data complexity, inputs,
outputs, inquiries, data files
and interfaces.

From detailed design on.

SPR Feature points A measure of algorithms,
inputs, outputs, inquiries,
data files and interfaces.

From detailed design on.

During the design phase an estimate complexity using any one of these techniques is available. The
greater the complexity, the more effort required to achieve a particular failure rate goal. Thus, CSCIs
with higher complexity should be assigned higher failure rate goals.

The complexity measure chosen must be transformed into a measure that is linearly proportional to
failure rate. If the complexity factor doubles, for example, the failure rate goal should be twice as high.

Steps.
A. Determine ΛG, the failure rate goal of the software aggregate

B. Determine N, the number of software CSCIs in the aggregate

C. For each CSCI i, i = 1,2,...,N, determine a complexity factor wi.

D. Determine τ'i, the total active time of the i-th CSCI, i = 1,2,..., N. Determine T, the mission time of
the aggregate

E. Compute ξ:

 ξ
τ

 =
w

T
i=1

N

i i∑ ′

 (6.6)

 6-17

G. Then, the allocated failure rate of the i-th CSCI is

 λiG = ΛG ⋅ wi / ξ (6.7)

Example:
A software aggregate consisting of N = 4 software CSCI is to be developed. The failure rate goal of
the aggregate is ΛG = 0.006 failures per hour. The mission time is T = 3 hours. Furthermore, the
complexity factors and the total active time of the software CSCIs are:

 w1 = 4, t1 = 2 hours
 w2 = 2, t2 = 1 hour
 w3 = 3, t3 = 3 hours
 w4 = 1, t4 = 2 hours

Compute ξ using equation (6.6):

Then, the failure rate goals of the software CSCIs are

 λ1G = ΛG ⋅ w1 / ξ
 = (0.006)(4)/7 = 0.0034 failures/hour

 λ2G = ΛG ⋅ w2 / ξ
 = (0.006)(2) / 7 = 0.0017 failures/hour

 λ3G = ΛG ⋅ w3 / ξ
 = (0.006)(3) / 7 = 0.0026 failures/hour

 λ4G = ΛG ⋅ w4 / ξ
 = (0.006)(1) / 7 = 0.0009 failures/hour

=
(4)(2)+ (2)(1)+ (3)(3)+(1)(2)

3

= 7

 6-18

Procedure 6.3-6 - Allocation based on achievable failure rates.
Allocation based on achievable failure rates uses each CSCIs utilization. The utilization governs the
growth rate a CSCI can be expected to experience during system test. All things being equal, the
greater a CSCI’s utilization, the faster its reliability will grow during system test.

The first step is forecasting each CSCI’s initial failure rate as a function of predicted size, processor
speed, and industry average figures for fault density and fault exposure ratio. Then the reliability
growth model parameter, the decrement in failure rate (with respect to execution time) per failure
occurrence, is predicted. Next, it is determined how much growth each CSCI can be expected to
achieve during system test. The growth is described by the software reliability growth model. From
the growth model, each CSCI’s failure rate at release is predicted, taking into account that CSCI’s
utilization. These predicted at-release failure rates provide relative weights, which are used to
apportion the overall software failure rate goal ΛG among the CSCIs.

Using the Proposal/Pre-Contractual Stage software reliability prediction equation, the i-th CSCI’s
initial failure rate λ0i (with respect to execution time) is obtained:

where:

ri is the host processor speed (average number of instructions executed per second)

K is the fault exposure ratio (Musa’s default is 4.20x10-7, however, it is strongly suggested that the
organization determine an estimate of fault exposure based on historical data.)3

ω0i is the CSCI’s fault content (use the number of developed lines of source code in the CSCI times the
predicted fault density, or use the function points times the predicted faults per function points as
discussed in Section 7)

Ii is the number of object instructions in the CSCI (number of source lines of code times the code
expansion ratio or the number of function points times the code expansion ratio (see Table 7-9).

It is thus assumed that each CSCI is developed by a mature, reproducible software development
process that produces code with the approximate industry average indicated in Section 7.2.3. Note
that, in this model, the initial failure rate is primarily a function of fault density (faults per lines of code
or faults per function points).

The software reliability growth model is employed to forecast the failure rate (with respect to system
operating time) λi(t) each CSCI will exhibit after t system operating time units of system test. Each

3 Musa, John D;Iannino, A.; Okumoto, K; Software Reliability Measurement, Prediction, Application, McGraw-
Hill, 1987.

 0 i 0i i = r K / Iλ ω• • (6.8)

 6-19

CSCI’s utilization ui is the CSCI’s ratio of execution time to system operating time. The growth model
provides the formula

For each CSCI the parameter βi can be computed from

integrated with one another all at once, but through a series of incremental builds, each CSCI can have
its own value of t.

A relative failure rate weight wi can now be associated with each CSCI. The weight is computed from
the formula

Finally, the failure rate goal (with respect to system operating time) λAi to be allocated to the i-th CSCI
is as follows

If desired, the failure rate allocation can be expressed in terms of execution time by dividing by ui.

The allocation uses failure rates expressed with respect to system operating time. Note that changing
to a faster or slower processor does not affect a system-operating-time failure rate; the reduction or
increase in the utilization is exactly offset by a proportionate increase (decrease) in the execution time
failure rate. Therefore, the allocation obtained from this method does not need to be modified if the
hardware platform changes to a faster or slower processor.

Steps.
A. Predict each CSCI’s initial failure rate (with respect to the CSCI’s execution time). Equation
number (6.8) is one method for doing this. There are other formulas used in industry as well.

B. Let t equal the number of system operating time units to be expended in system test. Compute
each CSCI’s using failure rate at release (with respect to system operating time) by the formulas (6.9)
and (6.10). Use the predicted fault removal efficiency described in Section 7.2.4.

C. Calculate each CSCI’s relative failure rate weight by using formula (6.11).

D. Calculate the failure rate goal of each CSCI using formula (6.12).

 i 0 i i i(t) = [- t u] uλ λ β• • • •exp (6.9)

 i
0i

0i

 = Bβ λ
ω

• (6.10)

 i
i

i
w =

(t)

(t)

λ
λ∑

 (6.11)

 Ai G i = wλ Λ • (6.12)

 6-20

Example:
A software subsystem consists of three CSCIs. The first CSCI, hosted on a 3-MIPS processor, is
predicted to contain ∆IS1 = 10,200 lines of newly developed Ada source code and 2,000 lines of reused
Ada source code, for a total of 12,200 lines of source code. The second CSCI, hosted on 4- MIPS
processor, is predicted to consist of ∆IS2 = 20,000 lines of Ada source code, all newly developed. The
third CSCI, hosted on a 4-MIPS processor, is predicted to consist of ∆IS3 = 45,000 lines of newly
developed Ada source code. Since the code expansion ratio for Ada is 4.5 object instructions per
source line of code, the number of object instructions are I1 = 54,900; I2 = 90,000; and I3 = 202,500.

The first CSCI has a utilization factor of 20%; the second CSCI, 20%, and the third, 40%. The failure
rate goal for the software subsystem is ΛG = 0.00005 failures per system operating second. Table 6-5
summarizes these figures. The software has an expectation of 250 hours of operation.

 TABLE 6-5. CSCI Characteristics

 CSCI i ∆ISi Ii ri ui

 1 10,200 45,900 3,000,000 0.2

 2 20,000 90,000 4,000,000 0.2

 3 45,000 202,500 4,000,000 0.4

The predicted fault contents ω01, ω02, and ω03 are

The initial failure rates λ01, λ02, and λ03 are

01 S1

02 S2

03 S3

 = I x0.006 = 10,200x0.006 61

 = I x0.006 = 20,000x0.006 = 120

 = I x0.006 = 45,000x0.006 = 270

ω

ω

ω

∆

∆

∆

≈

01 1 01 1
6 -7

02 2 02 2
6 -7

03 3 03 3
6 -7

 = r xKx / I = (3x10)(4.20x10)(61) / (54,900) = 0.0014

 = r xKx / I = (4x10)(4.20x10)(120) / (90,000) = 0.00224

 = r xKx / I = (4x10)(4.20x10)(270) / (202,500) = 0.00224

λ ω

λ ω

λ ω

 6-21

The software reliability growth model parameters β1, β2, and β3 are

Table 6-6 summarizes.

TABLE 6-6. Growth Model Quantities

 CSCI i ω0i λ0i per
system
operating
second

 βi per
system operating
second

 1 61 0.0014 0.0000219

 2 120 0.00224 0.0000178

 3 270 0.00224 0.0000079

The number of hours system test is expected to last is 250. Thus,

The failure rates (with respect to system operating time) at the end of the 900,000-second system test
period are predicted to be

1 01 1 1 1
-6

2 02 2 2 2
-5

3 03 3 3 3
-5

(900,000) = exp[-t u] u = 0.0014exp[-(0.0000219)(900,000)](0.2)](0.2) = 5.434632x10

(900,000) = exp[-t u] u = 0.00224exp[-(0.0000178)(900,000)(0.2)](0.2) = 1.805865x10

(900,000) = exp[-t u] u = 0.00224exp[-(0.0000079(900,000)(0.4)](0.2) = 5.214039x10

λ λ β

λ λ β

λ λ β

• • •

• • •

• • •

The sum of the failure rates is

1 01 01

2 02 02

3 03 03

 = Bx / = (0.955)(0.0014) / (61) = 0.0000219

 = Bx / = (0.955)(0.00224) / (120) = 0.0000178

 = Bx / = (0.955)(0.00224) / (270) = 0.0000079

β λ ω

β λ ω

β λ ω

 t = 250 x
3600

1
 = 900,000 hr

sec

hr
sec

 6-22

The computed failure rates weights are

The allocated failure rates (with respect to system operating time) are computed by multiplying the
system failure rate goal (ΛG = 0.00005 failures per system operating second) by each of the weights w1,
w2, and w3:

Procedure 6.3-7 - Re-allocation based on predicted failure rates.
Once failure rate predictions become available for the CSCIs, the allocations can be revised. If the
predicted failure rate of the aggregate is less than or equal the goal, the CSCIs are re-allocated failure
rates based on the ratio of the predicted failure rate of the CSCI to the predicted failure rate of the
aggregate. The failure rate "goal" is expressed in terms of the failure rate at release. The predicted
failure rates at release are obtained by using the appropriate software reliability prediction model and a
software reliability growth model. If the new failure rate goal of a particular CSCI is greater than its
predicted failure rate, it may be possible to use some resources from that CSCI and use the resources
to help other CSCIs reach their respective goals. If the predicted failure rate of the aggregate is greater
than the goal, then actions such as re-design or resource re-allocation should be considered.

Steps.
A. Using the procedures in Section 7, predict the failure rates the N CSCIs will have at release:

The P stands for "predicted."

B. Combine the predicted CSCI failure rates to obtain a predicted failure rate for the aggregate:

1

3

i
-5(900,000) = 5.9393847 10x∑λ

1 1
-5

2 2
-5

3 3
-5

w = (900,000) / x 10 =

w = (900,000) / x 10 = 0.

w = (900,000) / x 10 = 0.

λ

λ

λ

7 5633672 0718547

7 5633672 2387647

7 5633672 6893807

. .

.

.

G1 G 1
-6

G2 G 2
-6

G3 G 3
-

 = x w = 0.00005x = x 10

 = x w = 0.00005x = x 10

 = x w = 0.00005x0. = x 10

λ

λ

λ

Λ

Λ

Λ

0 0718547 3592735

2387647 11938235

6893807 34 469035 6

. .

. .

.

 1P 2P NP, , ..., λ λ λ (6.13)

 6-23

C. If ΛP ≤ ΛG, then the failure rates are re-allocated using the formula:

If ΛP > ΛG, then it is likely that the failure rate goal will not be met, and redesign and/or
management action is required.

Example:
A software aggregate consisting of N = 3 software CSCIs is to be developed with the failure rate goal
of ΛG = 0.8 failures per hour. The total active times of the software CSCIs are

 t1 = 2 hours
 t2 = 3 hours
 t3 = 1 hour

After the detailed design phase, the predicted failure rates of the software CSCIs are

 λ1P = 0.5 failures/hour
 λ2P = 0.9 failures/hour
 λ3P = 0.2 failures/hour

Compute Λp using equation (6.14):

The predicted failure rate of the aggregate is less than its failure rate goal ΛG = 0.8. Therefore, the re-
allocated failure rate goals of the software CSCIs are

 λ1G = λ1P ⋅ ΛG / ΛP
 = (0.5)(0.8)/(0.65)
 = 0.62 failures/hour

 P
i=1

N

iP i

 =
T

Λ
∑ ′λ τ

 (6.14)

 i
iP

P
G = , i = 1,2,..., Nλ

λ
Λ

Λ• (6.15)

 =
(0.5)(2)+ (0.9)(3)+ (0.2)(1)

6
 = 0.65

 6-24

 λ2G = λ2P ⋅ ΛG / ΛP
 = (0.9)(0.8)/(0.65)
 = 1.1 failures/hour

 λ3G = λ3P ⋅ ΛG / ΛP
 = (0.2)(0.8)/(0.65)
 = 0.25 failures/hour

6.4 Hardware/Software Allocations.
Once the hardware/software elements of the system have been allocated a set of reliability goals, these
allocations must be apportioned between the hardware platform and the executing software. To
apportion the allocated reliability measures between the hardware and software, the analyst should first
determine if the actual reliability of any of the elements of the hardware/software combination is
known. The hardware element may be an existing design with proven reliability.

Prior to apportioning the allocated reliability values to the hardware platform or software elements,
those elements with known reliability should be assigned a set of allocated values that reflect their
known reliability performance. These allocations should be subtracted from the hardware/software
total allocations.

The remaining elements can then be apportioned a set of reliability goals based on mission operational
profile, operational criticality, complexity, achievable failure rate, or such other factors as the analyst
may deem appropriate to the system being developed. Hardware elements of hardware/software
combinations which have allocations that need to be further developed should be treated in exactly the
same way as purely hardware elements.

The combination of hardware and software configuration items can also be modeled by using the
procedures used above. For example, the mission allocation can model the mission profile of HWCIs
as well as CSCIs.

