8.0RELIABILITY GROWTH AND DEMONSTRATION TESTING

Rdiability growth testing is performed to assess current religbility, identify and diminate faults, and
forecast future reiability. The religbility figures are compared with intermediate reliability objectivesto
measure progress S0 that resources can be directed to achieve the reliability goasin atimely and cost-
effective manner. Whenever afallure occurs, corrective action is undertaken to remove the cause. For
hardware, growth testing is the process of testing the equipment under both naturad and induced
environmental conditions to discover latent faillure modes and mechanisms to ensure that all
performance, design, and environmenta problems have been resolved.

Reiahility demonstration is employed toward the end of the growth testing period to verify that a
specific reliability level has been achieved. During a demongration test, the software code is frozen,
just asit would be in field use.

Software growth testing and demonstration testing should be performed under the same conditions as
fiedd use. That is, the environment in which the software executes must emulate what the software will
experience in the field, and environmenta conditions must be maintained throughout the test period.

8.1 Software Operationa Profile.

The software execution environment includes the hardware platform, the operating system software,
the system generation parameters, the workload, and the operational profile. The operational profile is
described in detail in Section 9.

Software religbility testing is based on selecting input states from an input space. Aninput stateisaset
of input variable values for a particular run. Each input variable has a declared data type (arange and
ordering of permissible values). The set of al possible input states for a program is the input space.
Each input state is a point in the input space. An operationa profile is a function p that associates a
probability p(i) with each point i in an input space . Since the points in the input space are mutually
exclusve and exhaudtive, dl the probabilities must add up to one:

; p() = 1 (8.1)

Example:
To illugtrate the operationd profile concept, consder a program with three input variables. Each is of

data type Boolean, meaning that it has two possble values: TRUE or FALSE. The input space has
eight points:

(FALSE,FALSE,FALSE), (FALSE,FALSE,TRUE),
(FALSETRUEFALSE), (FALSE,TRUETRUE),
(TRUEFALSEFALSE), (TRUE,FALSE,TRUE),
(TRUE, TRUE,FALSE), (TRUE, TRUE, TRUE).

8-1

Letting T stand for TRUE and F for FALSE, an operationa profile for the program might look like:

p(FFF) = 0.1
p(FFT) = 0.2
p(FTF) = 0.1
p(FTT) = 0.3

p(TFF) = 0.025

p(TFT) = 0.2
p(TTF) = 0.025
p(TTT) = 0.05

The digtribution of input states is thus established by the operationd profile. Thisis anexplicit profile,
as described in Section 9.

During growth and demongtration testing the operationd profile must be kept stationary (i.e., the p(i)’s
should not change). The input states chosen for test cases should form arandom sample from the input
state in accordance with the distribution of input states that the operationa profile specifies.

It is generally not practical to fully express or specify an operationa profile, because the number of
input states for even asimple program can be unworkable. Asan example, if a program has three input
variables, each of which isa 32-hit integer, the number of distinct input statesis

2% o 2% o 2% = 2% = 7.9x10%

Once the operationd profile is established, a procedure for selecting a random sample of input statesis
required, so that test cases can be generated for growth testing and demongtration testing. Random
input-state selection is recommended for selecting the input states during testing.

It may be desirable to test severd operationa profiles that represent the variation in use that can occur
among different system ingtallations to determine the resulting variation in reliability.

8-2

8.2 Random I nput-State Selection.

The operationd profile is used to select operations in accordance with their occurrence probabilities.
Testing driven by an operationa profile is very efficient because it identifies failures, on average, in
order of how often they occur. This gpproach rapidly increases reliability per unit of execution time
because the failures that occur most frequently are caused by the faulty operations used most
frequently.

Sdlection should be with replacement for operations and run types by alowing resdlection of an
element from the population. Because the number of operationsisreatively small, at least one of them
islikely to be repeated. But the run typeswill amost certainly be different and the failure behavior may
aso differ. Ingenerd, run categories should be selected with replacement.

Selecting operations. Random selection is feasible for operations with key input variables that are not
difficult to change. However, some key input variables can be very difficult and expengve to change,
such as one that represents a hardware configuration. In that case some key input variables must be
SHected deterministically.

Selecting within operations. Consider partitioning the operationsinto run categories. If thereislimited
interaction among the input variables with respect to falure behavior, it may be possible to use
satistical experimental design techniques to reduce the number of run categories that must be selected.
Because the god is to reduce the number of sdlections, these should be made without replacement.
One experimenta design approach uses orthogona arrays to set up test input states. This approach
assumes that failures are influenced only by the variables themselves (A, B, and C) and their pair-wise
interactions (AB, AC and BC). Ciriteriafor determining in practice how to select input variables using
orthogonal arrays and related techniquesiis the subject of current research as of 1996.

During growth and demondgtration testing, the software must be exercised with inputs randomly
selected from a specified operationa profile or, if appropriate, from a specified functional profile. The
methods described here can be followed for ether an operational profile or a functional profile (the
functiond profile is used here). The first step is to associate each end-user function with a subinterval
of thered interva [0,1] whose size is equd to the input state's probability of selection p(i).

Example:
Suppose that there are only three possble end-user functions, ADD, UPDATE, and DELETE. The

functiond profile indicates that the ADD function occurs 28% of the time, UPDATE occurs 11% of
the time, and DELETE occurs 61% of the time. The ADD end-user function should be associated
with the red interval [0,0.28]; the UPDATE function should be associated with the red interval
[0.28,0.39]; and DELETE should be associated with the redl interval [0.39,1.0].

The next step is to generate a random number in the interva [0,1] for each test case. Any number of

short computer or programmeable calculator programs are available that can generate random or
pseudo-random numbers in that range.

8-3

Assume three test cases are to be performed. Three random numbers in the interva [0,1] are
generated. The numbers are 0.7621, 0.5713, and 0.1499. Since the first random number, 0.7621, lies
in the subinterva [0.39,1], the first test caseisa DELETE. Since the second random number, 0.5713,
aso lies in the subinterva [0.39,1], the second test case is also a DELETE. Since the third random
number, 0.1499, liesin the subinterval [0,0.28], the third test caseisan ADD.

Testing efficiency can be increased by recognizing equivalence classes. An equivalence classis aset of
input states such that if a run with one input state results in afallure, then, in theory, a run with any of
the other input states in the class would aso result in a failure. Conversdly, if the program would
succeed on arun with one input state in the class, then it would also succeed on any other input state in
the class. Once an equivalence class is identified, only one representative input state from the class
needs to be tested; if arun starting from the representative input state results in success, then it can be
concluded that runs starting from al members of the class would result in success.

The input states that are members of an equivalence class are removed from the operational profile and
replaced by their one representative input state. The probability associated with the representative
input state is assigned the sum of the probabilities of the members of the equivalence class.

Since the probability of sdlection of the representative of an equivalence class is a sum, it can be
relatively large compared to individual input states. The equivalence class representative input will
likely be selected more than once during testing. After thefirst selection, the test case does not have to
be re-run, only the results from the original run recounted.

The use of equivalence classes requires that the class developer(s) do a perfect job of creating the
classes. In practice, this is not likely to ever be the case. This method, however, till provides an
approximation to the operationa profile that will reduce testing time significantly if the analyst does a
reasonably good job of partitioning into equivalence classes.

8.3 Multiple Copies.

The time on test during growth or demonstration testing can be accumulated on more than one copy of
the software. The copies can run smultaneoudly to accelerate testing. This procedure can be
especialy helpful in testing when the religbility requirement is very high. Because the total amount of
calendar time on test is reduced, the use of multiple copies can provide economic and scheduling
advantages. To retain the satistical integrity of the test, certain precautions must be taken.

Each copy must have its own separate data areas, both in main memory and secondary storage, to
prevent cross-contamination. Each copy must use independently selected test inputs. The test inputs
are selected randomly from the same operationd profile. The time on test at any point in calendar time
is the execution time accumulated on al versons. When one copy falls, it done is recovered and
restarted. |If the processors on which the copies are running are of differing speed, the contributions to
total time on test might need to be adjusted. For example, if the target processor in the operationa
environment has a speed of three million instructions per second (MIPS), and the three test processors

8-4

run a 4 MIPS, 2 MIPS, and 3 MIPS, respectively, then the first test processor’s cumulative execution
time must be multiplied by 4/3, the second processor’s time must be multiplied by 2/3, and the third test
processor’s time requires no adjusment. This adjustment assumes that processor speed is the
congraining factor on the system. That is, dataiis adways ready to be processed.

Each tester should execute a set of test cases selected independently from the same operationa profile.
When a failure occurs on one copy, the execution time accumulated on al copies is recorded. When
the programisrepaired, all copies must be changed so asto remain identical.

8.4 Software Reliability Growth Moddling/Tegting.

Reiability growth for software is the postive improvement of software religbility over time,
accomplished through the systematic remova of software faults. The rate a which the rdiability
grows depends on how fast faults can be uncovered and removed. A software reliability growth mode
alows project management to track the progress of the software’s reiability through datistical
inference and to make projections of future milestones.

If the assessed growth falls short of the planned growth, management will have sufficient notice to
develop new dtrategies, such as the re-assignment of resources to attack identified problem aress,
adjustment of the project time frame, and re-examination of the feasibility or validity of requirements.

Measuring and projecting software rdiability growth requires the use of an appropriate software
reliability model that describes the variation of software reliability with time. The parameters of the
model can be obtained either from prediction performed during the period preceding system test, or
from egtimation performed during system test. Parameter estimation is based on the times a which
fallures occur.

The use of a software rdiability growth testing procedure to improve the rdiability of a software
system to a defined reliability goa implies that a systematic methodology will be followed for a
sgnificant duration. 1n order to perform software religbility estimation, alarge sample of data must be
generated to determine dtatisticaly, with a reasonable degree of confidence, that a trend has been
established and is meaningful.

8.4.1 A Checkligt of Software Rdliability Growth Models.
There are severa software reiability growth models available. Table 8-1 summarizes some of the
software reliability models used in industry.

8-5

TABLE 8-1. Software Rdliability Models'

M odd name Formula for Data and/or esimation | Limitationsand
hazard function required congraints
Generd Exponentid | K(Eo-E(X)) e Number of corrected | « Software must be
faults at sometime x. operationd.
(Generd form of the « Egimate of Ey e Assumesno new faults
Shooman, Jdinski- areintroduced in
Moranda, and correction.
Keene-Cole e Assumes number of
exponential models) residual faults decreases
linearly over time
MusaBasic Ao[1-p/vg] * Number of detected | » Software must be
faults at sometime x operationd.
(W. * Asumesno new faults
e Edimateof Ag areintroduced in
correction.

e Assumes number of
resdua faults decreases

linearly over time
MusaLogarithmic | Agexp(- @u) » Number of detected | » Software must be
faults at some time x operationd.
(W. * Assumesno new faults
» Egimateof Ao areintroduced in
» Rédative change of correction.
falurerate over time | ¢ Assumes number of
() residual faults decreases
exponentidly over time
Littlewood/ Verrdl a » Edimate of » Software must be
(t+W(0)) o (Number of operationa
fallures) * Assumesuncertainty in
» Edimate correction process
of W (Reiability
growth)

e Time between
fallures detected or

YFor more information on these models see American Ingtitute of Aeronautics and Astronatics, Recommended
Practice for Software Reliability ANSI/AIAA R-013-1992, February 23, 1993; Farr, Dr. William, A Survey of Software
Rdiability Modding and Estimation, NSWC TR 82-171, Naval Surface Wespons Center, Dahlgren, VA, Sept. 1983;Dr.
Samud Keene, G.F. Cale, Rdiability Growth of Fidded Software, Reliability Review, Val 14, March 1994; Musa, JD.,
lannino, A. and Okumoto, K., Software Rdiability: Measurement, Prediction, Application. McGraw Hill Book Company,
New York, NY. 1987.

8-6

the time of thefailure
occurrence.

8-7

TABLE 8-1. Software Rdiahility Models (Continued)

Model name Formulafor hazard | Data and/or estimation Limitationsand
function required congraints

Schneidewind aexp (-PBi) » faultsdetectedinequal |« Software must be

mode interval i operationdl.

* Egimationof a (fallure | « Assumesno new faults
rate at start of first areintroduced in
interval) correction.

* Egtimation of » Rate of fault detection
B(proportiondity decreases exponentialy
congtant of falurerate over time
over time)

Duane’s model AtP * Time of each failure » Software must be
i occurrence operational

b estimated by
nZIn(t,+t)fromi=1to
number of detected
failures n.

Brook’s and
Motley's IBM
model

Binomial Model

Expected number of
failures =

N
R -gym

Poisson Model

Expected number
failures =

Number faults
remaining at start of ith

test (R

Test effort of each test

(Ki)

Total number of faults
found in each test {jn

Probability of fault
detection in ith test

Software developed
incrementally

Rate of fault detection
assumed constant ove
time

Some software
modules may have
different test effort ther
others

(Rg)" exp R4 * Probability of
ol correcting faults
t without introducing
new ones
Yamada, Ohba, | abt exp™ » Time of each failure |+ Software is operationa

and Osaki's S-
Shaped model

detection
Simultaneous solving

ofaand b

Fault detection rate is
shaped over time

8-8

=

TABLE 8-1. Software Rdiahility Models (Continued)

Model name Formulafor hazard | Data and/or estimation Limitationsand
function required congraints
Weibull model MTTF = * Totd number faults * Falureratecanbe
b_m found during each increasing, decreasing
a r %ﬁ testing interval or constant
» Thelength of each
testing interva
* Parameter estimation of
aandb
Geometricmodel | D@™ « Either time between « Softwareis operationa
fallureoccurrences X; | » Inherent number of
or thetime of the faults assumed to be
failure occurrence infinite
« Edimationof constant | « Faults are independent
D which decreasesin and unequal in
geometric progresson probability of
(0<@x1) asfailuresare occurrence and severity
detected.
Thompson and (fi+ fo + 1)/ e Number of failures e Software is corrected
Chelson’s (Ti+To) detected in each at end of testing
Bayesian Model interval (f) interval
» Length of testing time | » Software is operational
foreachintervali(() |+ Software is relatively
fault free

The following checklist determines which model or models to choose from given the following
constraints. This checklist is summarized in Figure 8-1.

» Failure profiles

» Maturity of software product

» Characteristics of software development
» Characteristics of software test

» Existing metrics and data

8-9

Step A- Is the plot of
failure intensity vs.
cumulative failures

increasing,

FQT or systems integration

Step 1 - What phase
of the life cycle is the

decreasing or a
combination?

software development
currently in?

Coding, Unit Testing or CSC integration

Preliminary or Detailed
Systen Design
or Software —
The S Shaped, Requiremen)t‘s Step D - The
Schneidewind, Step C -The ADandS
Combination Weibull models Step B - The A,D and some factors of the
) Decreasin can be used. Ap dD S factors of Rome
Increasing 9 ‘ an fth the Rome Laboratory
Step A3 - Are the act;rosn?et € Laboratory Tr- TR-92-52
data points for Laborator 92-52 model model can be
the later failure TR-92-52y can be used. used. The
Step A2 - Has the events model can be The Musa Musa
software been in decreasing? Execution execution
Step Al - The S- : HYes— used. time model
; operation for some model can be
Shaped and Weibull ’ - : used can be used.
time without a failure? :
models can be used.
‘ The
i Thompson
Is the corrective No on IP Discard the
action process N elson earlier data
imperfect or the Model can be —Yes—» oints and go to
failure data reporting Step A2A - Is the plot used p Ste Ag
in periodic summary in Step A a curved P
form? shaped or a relatively
straight line Straight
Curved Line i
Shaped
Step A2AL1 - The Schneidewind model, S Shaped and Step A2A2 -The Schneidewind, S Shaped, and
Imperfect . .
. . Weibull model can be used. Weibull models can be used.
corrective action
Is there historical or collected data to predict initial Is there historical or collected data for initial failure
failure rate or estimated number of inherent faults, or rate, estimated number of inherent faults? |s the
Littlewood- Periodic the expected rate of change of the failure intensity? development process incremental?
Verrall model Data I I I
can be used. o 1 T ‘ 1
Calculations Initial failure Inherent rate of change B) Incremental
are complex, rate faults of failure intensity Initial failure rate Inherent faults development
however. { { v process
The Musa The Goel- Both the Goel- The General
Logarithmic Okumoto Okumoto model and Th? Musa Exponential The Brooks
The . : Basic Model Motley model
. model can be model can be the Musa Logarithmic models can be
Geometric can be used can be used
used used model can be used used
model can be
used.
FIGURE 8-1. Software Reliability Growth Models

8-10

Step 1 - What isthe current software life cycle phase?

If the software is currently in Formal Qualification Test or System Integration -

Step A - Is the plot of cumulative unique failures per cumulative test time (failure intengty)
versus cumulative falures detected or versus cumulative time, going from the top left hand
corner to bottom right hand corner of graph? Is there a positive y intercept for either one of
these graphs? In other words, is the failure intensity increasing or decreasing or a combination

of increasing and decreasing with respect to either time or cumulative failures detected?

Rate of faults detected

Rate of faults detected Rate of faults detected

Cumulativetest time
or cumulative failures

Decreasing rate

Cumulativetest time Cumulativetest time
or cumulative failures or cumulative failures

Increasing rate

Combination rate

FIGURE 8-2 Failure Rate Profiles

Step Al - If increasing,

1. Make sure that the software isin an operationa state.

2. Make sure that only unique software failures are being counted.

3. Make sure that estimate of time is accurate.

8-11

4. If dl of the above check out, then the software is likely to be in an early stage of
system testing and/or development.

It is possible that the S-Shaped and Weibull models can be used. If it gppearsthat there

is an imperfect corrective action process then use the Littlewood-Verral modd. If the
test results are in periodic summary form then use the Geometric mode!.

Step A2 - If the failure intengity is decreasing, has the software been tested or used in
an operational environment representative of its end usage, with no failures for a
significant period of time?

If yes, the Thompson Chelson model can be used.

Otherwise go to Step A2A.

Step A2A - Does the plot discussed in step A better represent the curved shape failure
intensity in the first picture or any of the curvesin the second picture?

Rate of faults detected Rate of faults detected

Cumulativetest timeor

. . Cumulativetest time
cumulative failures

or cumulative failures

Concave curve

Any of these

Figure 8-3 Failure Rate Curves

8-12

Step A2A1 - If there is a curved falure rate profile, the Schneidewind,
Weibull, Musalogarithmic mode or the Goedl-Okumoto models can be used.

If higtorical data on the failure rate at the start of system testing is available,
then use the Musa logarithmic modd. If historical data on the estimated
number of inherent faults or the expected rate of faults detected per time is
available, then use the Goel-Okumoto model or the Musa logarithmic moddl.

The Schneidewind and Weibull models can be used, but require estimation of
two unknowns using Smultaneous equations.

Step A2A2- If any of the straight line profiles more closely represent the plot,
then the Musa Basic, genera exponential, Schneidewind, Weibull, and Brooks-
Motley models can be used.

If there is historica data on the fallure rate at the start of system testing then
the Musa Basic model can be used.

If there is historicd data on the estimated number of inherent faults or the
expected rate of faults detected per time, then the genera exponential model
can be used.

If the software is being tested and/or developed incrementaly the Brooks
Motley mode can be used.

The Welbull, S-Shaped and Schneidewind models can be used, but require
estimation of two unknowns using simultaneous equations.

Step A3 - If the plot has a combination of increasing and decreasing failure intensities
then the S-Shaped, Schneidewind, and Weibull models can be used. Also, if the data
points which are increasing are earlier data and the later data points are decreasing over
the x axis, then the earlier data points can be discarded and a model selected by going
to step A2. Note that in order to discard the earlier data points, there should be a
relatively sgnificant number of data points that are decreasing.

Step B - Is software development effort currently in the requirements phase?

It is too early to perform reliability estimations or growth assessments. The predictive Rome
Laboratory RL-TR-92-52 Software Rdiability Measurement and Test Integration Techniques
mode can be used by solving for just the A and D factors. See Section 7 for a description of
predictive models.

Step C - Isthe software in the design phase?

8-13

It is ill too early to perform reliability estimations or growth assessments. The predictive
Rome Laboratory RL-TR-92-52 Software Réiability Measurement and Test Integration
Techniques mode can be used by solving for the A, D and any of the S factorsthat are known.
The Musa execution time model can be used to predict initia failure rate at start of testing. See
Section 7 for other predictive techniques that can be used in this phase.

Step D - Isthe software in the coding phase, unit testing phase or CSC integration phase?

It istoo early to perform system religbility estimations or growth assessments. However, results
form unit testing can be tracked to derive an estimate of the number of functional faults that
the software contains. This can be combined with the predictive Rome Laboratory RL-TR-92-
52 Software Reliability Measurement and Test Integration Techniques modd. The Musa
execution time model can aso be used to predict initid failure rate at start of testing. See
Section 7 for other predictive techniques that can be used in this phase.

8.4.2 Goodness-of-Fit/Recdibration.

When the time-domain software reliability models are employed, it is not sufficient to blindly apply the
model. Thetester should monitor how well the modd isfitting the failure data. Figures8-2 and 8-3 in
Section 8.4-1 are intended to be a guide for making sure the mode fits the data

If the modd is not fitting well, then the user should switch to an aternative model and/or parameter
estimation technique. Some software rdiability modeling tools alow models to be combined, or to
develop your own model. Another option is to employ a technique known as adaptive reiability
modeling or recdibration. This technique uses the data on the historical performance of the software
religbility model on the program in question to modify the mode itsalf. The accuracy of recalibrated
models has been shown generaly to be better than that of the original modd. See the appendix for
more information on this technique.

8.4.3 Collecting the Data Required for the Models.

There are avariety of tools available for collecting the data necessary for using any or al of the models
discussed in the previous section. The tool used should be capable of tracking fault events as well as
plotting and projecting reliability growth. Generally, most of the effort required is to implement and/or
automate one model. Automeating additional models typicaly requires less relative effort. 1t isagood
ideato be prepared to automate/implement at least one mode from each category of models.

* Moddsthat assume fault detections are uniform over time
* Moddsthat assume some faults are more likely to occur then others
* Modesthat take into account mixed fault profiles

8.5 Software Rdiability Demongtration.

8-14

The purpose of reliability demondration testing is to verify, with a stated degree of Hatistical
confidence, that the system or the software product meets the specified rdiability requirement.

An executing program can be modeled as having a congtant failure rate when its code isfrozen and it is
being subjected to inputs randomly selected from a stationary operationa profile. An operationd
profile associates each possible input state with a probability of sdection. A sationary operationa
profile means that those probabilities stay the same throughout the test period.

The ideal operational profile is the one the software system will experience in its intended operating
environment, because then the system's failure behavior will be representative of what the end-user
would experience if the program were released.

The best source of data to determine occurrence probabilities is historical data congsting of usage
measurements taken on a latest release, asmilar system, or amanual function that is being automated.

There are two ways to determine occurrence probabilities for operations: (1) record the input statesin
the field, group them into operations, and count them; or (2) rely on estimates derived by refining the
functional profile. The first ismore accurate, but can be done only if aprevious release exists.

Recording. It may take some effort to develop recording software, but the benefits for the application
and, perhaps more important, for the company as a whole, can far outweigh the effort. 1t may be
possible to develop a generic recording routine that requires only an interface to each application. The
recording software must instrument the system so that it extracts sufficient data about input variablesto
identify the operations being executed. Then the task reduces to smply counting the execution of each
operation. An operationa profile may then be recorded explicitly.

Because the operational profile used in test may not match the true operationd profile in the field, it is
cdled the test operational profile. In this case, an appropriate transformation will be required to
convert failure intensity experienced under this profile to what would occur in the field. This will not
be feasible until after the software isfielded.

In generd, the following types of hardware are modeled by a congstant failure rate: (1) partsthat arein
their "useful life" period, which is after burn-in but before wearout; (2) assemblages of those parts,
when in a series reliability configuration; and (3) complex, maintained equipment that does not have
redundancy. When software runs concurrently and in series with such hardware, the overdl failure rate
will be a congtant that is the sum of the constant hardware failure rate and the constant software failure
rate. Intheremainder of this section, the item under test will be referred to as "software,”" but the term
should be understood as applying to both software products and to combined hardware/software
systems in which the hardware can be modeled by a constant failure rate.

Let A be the true failure rate of the software. In designing a demonstration test, two failure rates, A
and A1, must be specified (Ao < A;). A good test plan will rgject, with high probability, software with a

8-15

true failure rate that approaches A;. A good test plan will accept, with high probability, software with a
true failure rate that approaches Ao.

Relying on the results of the demongtration test for making an accept/reject decison entails two basic
risks. Frg, if good software happens to perform poorly (fails too many times during the test), then it
could be rgjected. Conversdly, if alow quality software configuration item performs well during the
test, fault-laden software could be accepted. These two risks must be specified in advance as
parameters to the test. The producer’s risk is the probability of rgecting software with a true failure
rate equal to Ag. The consumer’s risk is the probability of accepting software with a true failure rate
greater than or equal to A;.

Three types of demondration tests are recommended for software: fixed duration test, failure-free
execution interval test, and sequential test.

A fixed duration test is used when the amount of test time and cost must be known in advance. A fixed
duration test provides demonstrated failure rate to adesired confidence level.

A sequential test will accept software that has afailure rate much lower than Ao and reject software that
has a falure rate much higher than A;, more quickly than a fixed duration test having Smilar
parameters. However, the totd test time may vary significantly according to the true failure rate.

A fallure-free execution interva test will accept software that has a falure rate lower than Ao more
quickly than afixed duration test.

Producer’s and consumer’s risks usudly range from 10% (low risk) to 30% (high risk). The lower the
risks, thelonger thetest. Theratio

5= M (8.2)

8-16

is called the discrimination ratio. The discrimination ratio establishes the power of the demonstration
test in distinguishing between reliable and unrdliable items. The lower the discrimination ratio, the
more test time required. The simultaneous execution of multiple copies will alow a lower
discrimination ratio or save test time. Some low failure rates may be impossble to demondtrate
without using multiple copies.

The standard fixed duration and sequentid test can be used for software because these plans assume a
congtant failure rate (exponentia time-to-failure distribution). These test plans are parameterized in
terms of Mean Timeto Failure (MTTF).

If it is assumed that the program cannot be perfect fault-free, then the MTTF 0 will dways exist. The
MTTF isthereciprocd of thefallurerate:

1
0= n (8.3

The higher the MTTF the greater the software rdiability. The lower test MTTF is 6, =1/ A;. The
upper test MTTF is8y =1/ Ao. To usethetests, one must specify a, 3, and 8. The tabulated values of
the decision risks are 10%, 20%, and 30%. The available values for 6 are 1.5, 2.0, and 3.0. Not all
combinations appear.

In a falure-free execution period test, the software is given T time units to achieve a failure-free
interval of t time units. In the most stringent version of thistet, t = T; the software must get through
the test with zero failures. In the zero-failure test, the discrimination ratio will be In 3/ In (1-a) and the
test timewillbet =T =-InB/A1=-In(1-0a)/A. Forlower discrimination ratios, tests can be
designed inwhicht < T. Since 3 issmall, the test time will tend to be just alittle longer than 6.

The parameters of the test are the a and 3 risks, Ao, and A;. Table 8-2 provides test plans for various
combinations of a, 3, and 8. The test time T is obtained by dividing either column 4 by A, or dividing
column 5 by Ao. Once T isobtained, the duration t of the failure-free interva is obtained by multiplying
column 6 by T. The Expected Test Time (ETT) depends on what the true falure rate is. The true
fallure rateisnot known. The ETT when the true failure rate is A, is obtained by multiplying column 7
by T. The ETT whenthetruefailurerateisA, isobtained by multiplying column 8 by T.

Before the test, clear definitions must be established as to what congtitutes satisfactory operation and
what condtitutes failure. The definitions need to be agreed on by both developer and customer.

The software environment must emulate the field operating conditions. These include the operating
system verson and the versions of other system software with which the application will interact,
system parameter settings, workload (transactions per second, for example), as well as the operationa
profile. The hardware environment should be the actual hardware used in the field. To maintain the
satistica integrity of the test, each failure must be statistically independent of the others. Thus, when a
failure occurs, any corrupted files or databases must be restored and the software restarted.

8-17

8-18

TABLE 8-2. Failure-Free Execution Interval Test Plans

1 2 3 4 5 6 7 8
a B o MT AT t/T ETT/T ETT/T
A Ao

.10 .10 2442 63.308 25.925 .10 .88 43
.10 .10 2.814 38.581 13.710 a5 84 45
.20 .20 1.793 54.330 30.301 .10 84 52
.20 .20 1.968 32.618 16.574 A5 8l .53
.20 .20 2.147 22.445 10.454 .20 .78 S4
.20 .20 2.338 16.640 71.117 25 .76 .55
.20 .20 2.547 12.927 5.075 .30 73 .56
.20 .20 2.779 10.365 3.730 .35 71 .58
.20 .20 3.052 8.501 2.785 40 .68 .59
.30 .30 1.438 48.707 33.871 .10 .80 .59
.30 .30 1.695 14.361 8.473 25 74 .61
.30 .30 1.995 7.088 3.553 40 .68 .62
.30 .30 2454 4.086 1.665 .55 .62 .63
.30 .30 3.059 2.526 .826 .70 .58 .66

For the purposes of demondration testing, only one software failure can occur per run. This is
different from growth testing where every discrepancy between the actud values of output variables
and their required values is counted as a separate failure, if caused by a different fault.

Procedure 8.5-1 - Demongtration test.

Steps.
A. Obtain the specification of the lower test MTTF 8,, an unacceptable vaue.

B. Obtain the consumer’srisk, the probability of accepting software whosetrue MTTF is 6.

C. Obtain the value of the upper tet MTTF 6. Thisisthegoa the producer attempted to achieve.

8-19

D. Obtainthe producer's risk, the probability of rejecting software whose true MTTF is 6.
E. Cdculate the discrimination ratio as 6y/6;.

F. Choose a fixed length or sequentia test plan, or choose a failure-free execution interval test plan
from Table 8-2.

Example 1 - Fixed-length test plan:

The customer specifies the lower test MTTF 0, as 500 hours. The producer’s and consumer’s risks are
st a 20%. The reiability goa for the software was specified as 750 hours to failure. Design a fixed
duration tet.

A. Thediscrimination ratio is caculated at 750/ 500 = 1.5.

B. The duration of the test is provided as 215 x 500 hours = 10,750 hours. The acceptable number of
fallures, therefore, is 17 or fewer.

Example 2 - PRST test plan:
The customer specifies the lower test MTTF 6, as 600 hours. The producer’s and consumer'srisks are
st at 10%. The reiability goal for the software was specified as 1200 hours. Design a PRST test plan.

The discrimination ratio is calculated as 1200 / 600 = 2.0. The minimum time to accept decison is4.40
x 600 hours = 2640 hours. The expected time to an accept decision (assuming atrue MTTF equd to
Bo) is 10.2 x 600 hours = 6120 hours. The maximum time to reach an accept decison (assuming atrue
MTTF equd to A1) is20.6 x 600 hours = 12360 hours.

Example 3 - Failure-free execution interva test plan:
The customer specifies A, as 0.0001 failures/hour. The producer’s and consumer’srisks are set at 30%.
The reiability goa for the software was specified as Ao = 0.00005 failureshour.

The discrimination ratio is caculated as 0.0001/0.00005 = 2.0.
Entering Table 8-2 at a=.30 (column 1), 3=.30 (column 2), and 3=1.995 (column 3) provides A, T =
7.088 (column 4), or T = 70880 hours. Sincet/T = .40 (column 6), t = 28352.

8-20

