
OpenMP versus Threading in C/C++

Bob Kuhn, Paul Petersen
Kuck & Associates, Inc

Eamonn O’Toole
Compaq Computer Corporation

Abstract
When comparing OpenMP to other parallel
programming models, it is easier to choose
between OpenMP and MPI than between
OpenMP and POSIX Threads (Pthreads). With
languages like C and C++, developers frequently
have chosen Pthreads to incorporate parallelism
in applications. Few developers are currently
using OpenMP C/C++, but they should. We
show that converting Genehunter, a hand
threaded C program, to OpenMP increases
robustness without sacrificing performance. It is
also a good case study as it highlights several
issues that are important in understanding how
OpenMP uses threads.

Genehunter is a genetics program which
analyzes DNA assays from members of a family
tree where a disease is present in certain
members and not in others. This analysis is done
in an attempt to identify the gene most likely to
cause the disease. This problem is called linkage
analysis. The same sections of Genehunter were
parallelized first by hand threading and then with
OpenMP on Compaq Alpha Tru64 systems. We
present examples using both methods and
illustrate the tools that proved useful in the
process. Our basic conclusion is that although we
could express the parallelism using either
Pthreads or OpenMP, it was easier to express the
parallelism at a higher level of abstraction.
OpenMP allowed enough control to express the
parallelism without exposing the implementation
details. Also, due to the higher level specification
of parallelism with OpenMP, the tools available
to assist in the construction of correct and
efficient programs provide more useful
information than the equivalent tools available
for hand threaded programs.

The following concepts are presented:

• Differences between coding styles for
OpenMP and Pthreads.

• Data scoping specification for correct
parallel programming.

• Adapting a signal based exception
mechanism to a parallel program.

• OpenMP tools: Debuggers – Ladebug,
TotalView and Assure, Profilers – Hiprof
and GuideView.

• Performance tuning with memory allocation,
synchronization, and scheduling.

Genehunter does not cover a few important
topics in C/C++ programming style that will be
discussed separately. These are:

• Interfacing a GUI team of threads with an
OpenMP compute team.

• Coordinating data structure with scheduling.

Introduction
This paper serves two purposes. First, we present
some practical experiences comparing OpenMP
[1] to hand threading using POSIX Threads
(Pthreads) [2] in a C program called Genehunter.
The general availability of both Pthreads and
OpenMP implementations for C/C++ makes this
comparison interesting. Second, with respect to
the internal techniques of OpenMP, we use this
case to illustrate some threading issues that we
think are important for OpenMP implementers
and researchers.

Why use OpenMP when one can achieve the
same thing with Pthreads directly? We have
found that there is a difference between writing a
code from scratch for parallelism, and retrofitting
it into an existing code. Almost any parallelism
system looks good when the code is designed for
that system. It is much harder to take a serial
program and maintain its structure when
introducing parallelism. OpenMP excels at the
latter.

The same sections of Genehunter were
independently parallelized by hand threading and
with OpenMP on Compaq Alpha Tru64 systems.
We present both ways of parallelizing the

program and the tools that proved useful in the
process. Our basic conclusion is that hand-
threading can be used to implement anything in
an OpenMP runtime library, but why should the
application developer need to reinvent efficient
implementations of the most commonly used
operations in high performance computing for
every application.

Genehunter

What it does and how
Genehunter is a genetics program that analyzes a
set of DNA assays from members of a family
tree. This analysis is done in an attempt to
identify the gene most likely to cause a disease
based on its presence in certain members of the
family and not in others. This problem is called
linkage analysis [3,4,5].

The backbone of Genehunter is the very rapid
extraction of complete multipoint inheritance
information from pedigrees of moderate size.
Quick calculations involving dozens of markers
even in pedigrees with inbreeding and marriage
loops, is possible. The multipoint inheritance
information allows the reconstruction of
maximum-likelihood haplotypes for all
individuals in the pedigree and information
content mapping. The information content
mappings measure the fraction of the total
inheritance information extracted from the
marker data.

The program computes the likelihood that certain
markers on the gene are associated with the
disease. The essential method of Genehunter is
to construct a hidden Markov model representing
the likelihood of all possible Inheritance Vectors,
a way of representing inheritance of the disease
through the family tree.

Parallelism in the method
The number of Inheritance Vectors grows
exponentially with the size of the family tree

therefore there is not only interest in parallel
processing with respect to making the analysis
faster but also to use large amounts of shared
memory for the large number of inheritance
vectors.

The majority of the parallelism is in the
maximum likelihood computation, which uses
FFTs in treating the matrix computation as a
convolution.

OpenMP vs. hand threaded
parallelism

Code fragment from Genehunter
Compute bound parallelism for shared memory
parallel machines is frequently implemented the
same, from the application developer’s point of
view, in both Pthreads and OpenMP. Here we
compare the basic parallelization points in the
hand threaded and the OpenMP versions of
Genehunter.

In the OpenMP version, shown in Figure 1, one
parallel region is defined which contains one
worksharing for loop. By default, all variables
other than those specified in the private clause
are shared. In OpenMP C/C++, the block that
defines the parallel region sets the context
for additional private variables. In this example,
two private pointers, affected_allele, and
local_my_famtree are declared in this
block. The firstprivate clause can be used
to initialize per-thread variables. This is
sometimes used to enhance cache performance
or to initialize temporary variables. Rather than
having all threads reference shared variables,
local copies are made. In the OpenMP for
pragma, the lastprivate clause is used to
copy out the last index value of the loop for later
use. Two sum reductions occur (on the variable
exp, and exp_2). For serial compilation, the
pragmas can simply be ignored.

Although the hand-threaded version implements
similar parallel activity, the modifications to the
serial code are much larger. The parallel region
must be taken out-of-line and put into a separate
subroutine. A data structure containing all the
private information for each thread must be
created. This data structure is initialized in the
routine that contains the parallel region and it is
unpacked in the out-of-line routine. For the

parallel region in Figure 1, this structure has over
20 elements. Code is constructed to assign lower
and upper bounds for the iterations of the parallel

for loop that each thread will execute and the
loop must be tuned by hand; there is no schedule
parameter which can be easily changed. OpenMP
also avoids the need to create and fill an array of
local contribution to the sum reductions, which
are then added by the master thread upon
completion of the out-of-line routine.

Transformations to express the hand threading

do not include the utility subroutines and data
structure needed to manage the threads. Utility
routines are needed to create and destroy thread

Figure 1. Genehunter code fragment showing how OpenMP pragmas are used.

#pragma omp parallel private(i,j,dis_geno,num_aff,prob) \
firstprivate(vec, uninformative_mask)

 {
 int **affected_allele = NULL;
 MY_PED_MEMBER *local_my_famtree;

 local_my_famtree = my_famtree;
 matrix (affected_allele, num_in_ped, 2, int);

#pragma omp for nowait schedule(guided) lastprivate(new_vec) \
 reduction(+ : exp, exp_2)

 for (new_vec=0; new_vec<real_num_vecs; new_vec++) {

 /* Check to see if ^C was pressed. */
 if (has_hit_interrupt())

 continue;

 /* now every member of famtree has two placeholder alleles
 filled in and we can advance to the prob assignment
 for each of the markers */
 for (i=0; i<num_in_map_order; i++) {
 prob = graph_assign_probs(local_my_famtree, vec,

 originals, real_non_originals, map_order[i],
 NULL, FALSE);

 pvector[i][new_vec] = prob;
 }

 /* now obtain NPL score for this assignment of placeholder
 alleles for this pedigree */
 for (i=0,num_aff=0; i<num_in_ped; i++) {
 if (allele_data[i][0] == 2) {

 /* this individual is affected */
 affected_allele[num_aff][0] =
 local_my_famtree[i].place_allele[0];
 affected_allele[num_aff][1] =

 local_my_famtree[i].place_allele[1];
 num_aff++;

 }
 }
 score[new_vec] = apm_score(affected_allele, num_aff);
 exp += score[new_vec];
 exp_2 += (score[new_vec]*score[new_vec]);
 }
 unmatrix (affected_allele, num_in_ped, int);

 }
 /* Check to see if ^C was pressed. */
 has_hit_interrupt();

teams, point to and execute the out-of-line
routine, and to manage mutexes. These
additional routines are layered on top of Pthreads
to manage the data structures for thread pointers
and synchronization operations. These routines
also provide for portability between threading
packages. This thread utility package is put into a
separate file and made platform specific.

Data scoping specification for correct
parallel regions
Most of the work in parallelizing a section of
code for SMP is involved in determining the set
of variables that are shared and the set of
variables that are private. This work can be
thought of as making the data accessed in the
parallel region thread-safe.

Hand threading requires placing all variables that
are to be private into a data structure and passing
a pointer to each thread’s private copy down the
call tree. It is necessary to do the same with
shared variables because they may be allocated
in a stack frame entered before the parallel
region is excuted. For threads to access these
shared variables a data structure needs to be
created and a pointer passed. Since structures
need to be created either way, for read-only
shared data the hand-threaded version used a
mechanism similar to first private where a
separate copy of the shared data was created for
each thread. Overall, the changes to the serial
version were significant.

It was easier to use OpenMP. A combination of
private, shared and reduction clauses were used
with the thread private pragma. Very few
changes to the serial version were required.

Adapting a signal based exception
mechanism to a parallel region
Something that occurs more with C/C++
applications that with Fortran applications is that
the program uses a sophisticated user interface.
Genehunter is a simple example where the user
may interrupt the computation of one family tree
by pressing control-C so that it can go on to the
next family tree in a clinical database about the
disease. The premature termination is handled in
the serial version by a C++ like exception
mechanism involving a signal handler, setjump,
and longjump.

OpenMP does not permit unstructured control
flow to cross a parallel construct boundary. We
modified the exception handling in the OpenMP
version by changing the interrupt handler into a
polling mechanism. The thread that catches the
control-C signal sets a shared flag. All threads
check the flag at the beginning of the loop by
calling the routine has_hit_interrupt()
and skip the iteration if it is set. When the loop
ends, the master checks the flag and can easily
execute the longjump to complete the
exceptional exit (See Figure 1.).

Implementing a hand-threaded version of this
modified exception mechanism has not been
done because of the complexity in the hand-
threaded code but the polling technique could be
implemented.

OpenMP vs. Hand Threading
Tools

Debugger vs. Behavior Analyzers
A multithreaded debugger can be used to
examine both the hand threaded and the OpenMP
version on Tru64 Unix. The Tru64 Ladebug
debugger and the TotalView [6] debugger are
OpenMP aware in that they display directives in
source code within the debugger. However,
using the debugger requires the user to: set good
breakpoints, switch between threads and
examine the dynamic state of the data structures
for incorrect data, and mentally trace back to the
source of the bad data. Crucial timing between
threads is difficult to reconstruct.

Assure, in the KAP/Pro Toolset [7], takes a
different approach. It runs an instrumented copy
of the program which traces where multiple
threads touch the same virtual memory location.
When that occurs, it attempts to explain why that
may be valid in the parallel-programming model.
If no explanation is found, it records the
parallelism defect in a diagnostic database and
continues execution of the program. We ran
Assure on both the hand threaded and the
OpenMP version of Genehunter.

Figure 2 is a screen captured from the Assure for
Threads run on the hand-threaded version of
Genehunter. This figure shows a fragment of the
source code referred to in the report. The report
shows that it is possible for more than one thread
to modify or access the elements of the shared

famtree[].disease_prob[] vector in
routine the init_disease_probs()at lines
2110 through 2112. This diagnostic message
means that the final value of this variable would
be ambiguous depending on which thread wrote
the last value.

This pattern of data races in the diagnostic
messages indicates that the variable structure
famtree[].disease_prob[] should be
made private to each thread. Making this change
in the hand threaded version is difficult: (1) a
local copy of this structure must be defined; (2)
it must be allocated and freed in multi-threaded
mode; (3) the pointer must be passed down
through to call tree to these routines; (4) finally
the source code must be modified to use the local
copy.

One of the advantages of OpenMP is that its
parallel programming model is much more
structured than with hand-threading so that
Assure’s explanation mechanism is stronger. We
were confident that if Assure for OpenMP did

not record any diagnostics, the parallel version
would produce the same results as the serial
version. Assure for Threads is weaker. It is only
capable of detecting unsynchronized, shared
accesses by multiple threads.

The report from the Assure for OpenMP run on
Genehunter, shown in Figure 3, indicates a
problem with the double precision variable
pventropy. The highlighted diagnostic
indicates that several threads can write a value
for this variable in routine likelihood() at
line 1082 in an arbitrary order. The highlighted
diagnostic indicates that consequently the thread
that is reading the variable pventropy in the
routine calc_apm_scores() at line, 492
will get an ambiguous value.

As in the case above, a private copy of the
variable pventropy should be created. This is
much easy when using OpenMP. The variable
pventropy need only be added to the private
list.

Figure 2. Assure for Threads report showing data race conditions involving vector famtree[].disease_prop[].

We found that Assure could be used to
parallelize the OpenMP version by speculatively
putting in the OpenMP pragmas and letting
Assure tell us where the problems existed. To
use speculation in adding parallelism with only a
debugger would be almost useless.

Compaq has a new product called Visual
Threads which is available starting with Tru64
Unix V4.0D. This tool can be used to debug
threaded applications by looking at run-time
behavior. It can also provide some performance
analysis. Although it seems quite powerful,
because it is new, it has not been tried on the
hand-threaded version of Genehunter.

Profiling vs. GuideView
When executing the hand threaded version of
Genehunter, we found that it was running so
slowly that it appeared to have an infinite loop.
Rather than spending the time to track this
problem down with a profiler, we switched over

to the OpenMP version. GuideView (a
component of the KAP/Pro Toolset [7]) has the
ability to integrate data from multiple runs at the
same time. Seeing 1, 2, 3, and 4 processor runs
on each parallel region at the same time makes it
very easy to detect bottlenecks.

With hand-threading, the only choice is a
multithreaded profiler. The multithreaded
profiler Hiprof on Tru64 Unix produces one
profile per thread. This can provide useful
information but it can be awkward to integrate
information from several threads. Hiprof is an
atom tool that produces an instrumented and
somewhat slower executable. Profilers are most
useful for analyzing the serial parts of the code
before parallelization because they show which
paths through the code are frequently executed.

In the OpenMP version of Genehunter, we used
the GuideView performance analysis tool to
determine that there was excessive critical

Figure 3. Assure for OpenMP report showing data race conditions involving the variable pventropy.

section time around the memory allocation calls.
The left screenshot, in Figure 4, shows run on 1,
2, 3, and 4 thread. Although the parallel
overhead for the one thread run is not negligible,
it grows to dominate the running time. In fact,
for more than two threads, the wall-clock time
increases despite the fact that the productive
work appears to be parallelized correctly! The
biggest portion of that overhead is in lock time.
The time one thread spends waiting for other
threads to clear the critical section. To find out
where the lock time is coming from, the
GuideView user can view for all the parallel
regions in Genehunter sorted by overhead.

We fixed the problem with a multithreaded
memory allocation routine. When we reran the
modified executable with GuideView, the lock
time was virtually eliminated and the apparent
infinite loop disappeared. The right screenshot,
in Figure 4, shows Genehunter performance after
this improvement and with the best scheduling
options.

Competing ways to do Fine Grain
Parallelism

Scheduling
One of the advantages of OpenMP we found was
the simplicity of modifying the scheduling of
work. In the hand-threaded version, work
distribution must be directly coded in the
application. In the OpenMP version, we started
with dynamic scheduling. Performance analysis
(GuideView) showed us that there was little load
imbalance. However, the roundoff error of
reductions was higher than we, as non-experts in

genetics, could justify. Scheduling was switched
to an evenly distributed static schedule and
accuracy (as measured by reproducible results)
increased. The load imbalance increased slightly
but GuideView performance analysis shows that
the increase was relatively minor.

Figure 4.

(LEFT) Poor performance of Genehunter on 1 to 4 threads before tuning memory allocation.
(RIGHT) Better performance of Genehunter on 1 to 4 threads after tuning memory allocation.

Synchronization
OpenMP has an advantage in synchronization
over hand-threading where the developer has
either to use more expensive system calls than
present in OpenMP or to code efficient versions
of synchronization primitives. The code, in
Figure 5, was used to implement a barrier in the

hand-threaded version of Genehunter. We
discussed and reviewed whether this barrier is as
efficient as possible or entirely correct according
to the Alpha/Tru64 Unix architecture. In
OpenMP, one pragma accesses a well-tuned,
well-debugged version.

The code, shown in Figure 5, illustrates how
workers are signaled to start their work by the
master in the hand-threaded version of
Genehunter. All worker threads are sleeping at
the pthread_cond_wait until the master
wakes them. If the current worker thread is

among those the master has selected by setting
the proceed flag, then the worker is able exit
the while loop. Otherwise, it goes back to sleep.
To insure mutual exclusion start_mutex is
locked and unlocked appropriately by master and
worker.

Performance of Genehunter
Figure 6 shows speedup with a test pedigree on a
Compaq GS140 with 8GB RAM and eight
21264 EV6Alpha processors running at
525MHz. The flattening of the curve is to be
expected in this version of Genehunter with these
data sets. There are two significant parallel
regions and one is a parallel sections construct
with only two sections. Since the maximum
speedup in this region is 2, it starts to limit

Figure 5. Hand threaded worker code for signaling when to start.

 /* Wait on master to give start signal */
 status = pthread_mutex_lock(&start_mutex);
 check(status,"Start_mutex lock bad status in worker\n");

 while (thread_arg_t->proceed) {
 if (thread_exit) {
 /* printf("worker %i exits\n",my_num); */
 /* fflush(stdout); */
 pthread_mutex_unlock(&start_mutex);
 pthread_exit(&my_num); }

 status = pthread_cond_wait(&start_cond_var, &start_mutex);
 check(status,"Start_cond_wait bad status in worker\n");
 }

 status = pthread_mutex_unlock(&start_mutex);
 check(status,"Start_mutex unlock bad status in worker\n");

Master code for signaling when to start.

 /* Lock mutex */
 status = pthread_mutex_lock(&start_mutex);
 check(status,"Start_mutex lock bad status in main\n");

 /* Lower predicate on threads that are to be allowed work */
 for (worker_num = 0; worker_num < *num_workers; worker_num++) {
 (thread_arg+worker_num)->proceed = 0;
 }

 /* Wake all threads*/
 pthread_cond_broadcast(&start_cond_var);

 /* Unlock mutex */
 status = pthread_mutex_unlock(&start_mutex);
 check(status,"Start_mutex unlock bad status in main\n");

performance at 3 and 4 processors. The hand-
threaded version can not be benchmarked with
this data set at this time because this data set was
chosen to help debug the multithreaded version.

In hand-threading, the programmer normally
forces a thread to sleep when it is not doing
productive work. In the Compaq and KAI
implementations of OpenMP, the programmer
can effect this by a runtime library parameter
causing the thread to sleep after a selected
number of spin cycles. To illustrate what
happens if this parameter is not used, the wasted
processors for this job are shown in the lower
curve. This is computed first by subtracting the

speedup from the number of processors
requested by the job to determine the number of
idle processors:

Idle Processors = Processors Requested – Measured Speedup

Because the operating system timeslices a
threaded job, it is necessary to adjust the idle
processors by the percentage of time processors
actually spends in Genehunter.

Wasted Processors = Idle Processors * CPU Utilization

For this test CPU utilization ranged from 99%
for one thread (there is little I/O delay in this test
and no other significant jobs competing for the
processors) to 86% for 6 threads. The wasted
processors increase nonlinearly to 2 processors
for 6 threads because processors spend
considerable time spinning at the region with
two sections.

Some important C/C++ topics that
don’t appear in this application

Thread team interactions: e.g. GUI
vs. OpenMP
Some applications have a set of threads for the
user interface, which interacts with the team of
threads for the compute intensive part. Threads
are serving dramatically different functions. For
user interfaces, threads should spend most of
their time in sleep mode waiting for events to
occur. In the compute bound parts, threads
should be running nearly all the time.

If applications alternates between the compute
bound and the user interface part, the compute
threads need to be put to sleep quickly to avoid
wasting cycles. If an application runs the user
interface concurrently a signaling between thread
teams needs to be managed.

Efficient parallel regions scheduling
We have found that with C/C++ applications
more than with Fortran applications the parallel
regions are smaller and executed more
frequently. This is because C/C++ is more
frequently the choice of interactive or low
operations per I/O applications. Therefore, it
tends to be very important to:

• Keep the threads hot by extending the
parallel region to enclose several loops.

• Keep cache memory hot by insuring
consistent scheduling between work sharing
constructs.

Figure 6. Speedup versus number of processors (top) and wasted processors (bottom).

0
0.5

1
1.5

2
2.5

3
3.5

P=1 P=2 P=3 P=4 P=5 P=6

Speedup

Wasted Processors

Because dynamic data structures are frequently
used in C/C++ applications, multi-threaded
access to data structures is critical. For linked
data structures which are traversed many times,
that means that private pointers to different parts
of the structure should be computed and retained
from pass to pass.

Here OpenMP only has half an advantage.
OpenMP runtime scheduling mechanisms are
highly tuned and save the hand-threaded
developer the work of writing his own efficient
scheduling mechanism. However, partitioning
the data structures must be done in both models
and the OpenMP static scheduling should be
used to insure that the same work is assigned to
the same thread to keep the cache hot.

Summary
We concluded that developing this type of SMP
parallelism in C/C++ applications is overall
much easier with OpenMP:

• OpenMP facilitates making data structures
thread-safe and that is the biggest part of
parallelizing an application typically.

• Other features in OpenMP allow the
application developer to avoid rewriting
tricky threading synchronization. OpenMP
is already tuned for speed in compute bound
applications.

• The tools for OpenMP and hand threading
are similar but the OpenMP tools take
advantage of OpenMP to simplify
parallelizing, debugging, and tuning.
Overall, development goes much faster.

References
[1] OpenMP Architecture Review Board,
“OpenMP C and C++ Application Program
Interface”, October 1998. (see also
http://www.openmp.org/).

[2] IEEE., “IEEE P1003.1c-1995: Information
Technology-Portable Operating System Interface
(POSIX)”. (see also http://www.ieee.org/).

 [3] M. J. Daly, “The Computational Challenge
of Linkage Analysis: What Causes Disease?”,
Computing in Science & Engineering, pp. 18-32,
May-June 1999.

[4] L. Kruglyak, M. J. Daly, M. P. Reeve-Daly,
and E. S. Lander, “Parametric and
Nonparametric Linkage Analysis: A Unified

Multipoint Approach”. American Journal of
Human Genetics, 58: pp. 1347-1363, June 1996.

[5] L. Kruglyak and E. S. Lander, “Faster
Multipoint Linkage Analysis Using Fourier
Transforms”, Journal of Computational Biology,
no. 5, pp. 1-7, 1998.

[6] Etnus Inc., TotalView Multiprocess
Debugger User’s Guide Version 3.9.0, May
1999. (see also http://www.etnus.com/)

[7] Kuck & Associates Inc., Guide and Assure
Reference Manual (C Edition) Version 3.7, 1999.
(see also http://www.kai.com/).

