Assumptions Underlying Agile Software Development
Processes

Submitted to
Journal of Database Management
May 29, 2003
Revised and Resubmitted as a Research Review Paper

November 16, 2003
June 15, 2004
October 19, 2004

Daniel Turk, Robert France
Colorado State University
Fort Collins, Colorado, USA
dan.turk@colostate.edu
france@cs.colostate.edu

Bernhard Rumpe
Software Systems Engineering
Braunschweig University of Technology
Braunschweig, Germany
b.rumpe@tu-bs.de

Assumptions Underlying Agile Software Development
Processes

ABSTRACT

Agile processes focus on facilitating early and fasduction of working code,
and are based on software development process mtidglsupport iterative,
incremental development of software. Althougheagiethods have existed for a
number of years now, answers to questions conagthm suitability of agile
processes to particular software development envirents are still often based
on anecdotal accounts of experiences. An appreciaif the (often unstated)
assumptions underlying agile processes can leaditetter understanding of the
applicability of agile processes to particular stions. Agile processes are less
likely to be applicable in situations in which cassumptions do not hold. This
paper examines the principles and advocated prestaf agile processes to
identify underlying assumptions. The paper alsaiifies limitations that may
arise from these assumptions and outlines howitttigations can be addresses by
incorporating other software development technicaed practices into agile
development environments.

KEYWORDS

Agile Development, Extreme Programming, LimitatipAssumptions

INTRODUCTION

As more organizations seek to gain competitive athge through timely deployment of
services and products that meet and exceed custosads and expectations, developers are
under increasing pressure to develop new or endangdementations quickly (Cusumano &
Yoffie, 1999). While iterative processes have bleelpful in developing, modifying, and
maintaining systems more quickly and more succéggBasili & Turner, 1975; Boehm, 1986),
Agile software development processes have beenveygrimarily to support timely and
economical development of high-quality software thaets customer needs at the time of

Understanding Agile Software Development Procesgesge 2

delivery. It is claimed by agile process advocabes this can be accomplished by using
development processes that continuously adapt@uodtdo (1) collective experience and skills
of the developers, including experience and sigimed thus far in the development project, (2)
changes in software requirements and (3) changiee idevelopment and targeted operating
environments. Examples of published agile proceaseg&xtreme Programming (XP) (Auer &
Miller, 2002; Beck, 2000; Beck & Fowler, 2001; Je#6, Anderson, and Hendrickson, 2001,
Newkirk & Martin, 2001; Wake, 2002), the Crystabpess family (Cockburn, 2001), SCRUM
(Rising & Janoff, 2000; Schwaber & Beedle, 2001daptive Software Development
(Highsmith, 2001), and the AUP (Agile Unified Presg (Larman, 2001) which has grown out
of work on the UML (Jacobson, Booch, & Rumbaug9%Rational Corporation, 1998; UML,
2004).

Proper use of agile processes requires an undéistpof the situations in which agile processes
are and are not applicable. One way of determimihgther an agile process is applicable in a
particular situation is to check whether the asgionp underlying the process hold in that
situation. If the assumptions do not hold then ofsthe agile process may not be appropriate.
Prevailing descriptions of agile processes seldoasent the underlying assumptions explicitly
and thus it is difficult for developers and projgtanners to determine the applicability of agile
processes to their projects and environments.

This paper identifies some of the assumptions uyidgragile processes that can be used to help
determine the applicability of agile processes aatipular situations. The paper also discusses
some of the limitations that may be inherent ineagpproaches because of these assumptions.
The assumptions were identified by examining phleliswork on Extreme Programming (XP)
Auer & Miller, 2002; Basili, Caldiera, & Rombach994), Scrum (Schwaber & Beedle, 2001),
the Agile Unified Process as described by Craigmaar (2001), Agile Modeling (Ambler,
2004), critiques of agile processes (Boehm, 2002Biden, 2003), and the principles stated by
the Agile Alliance (2004).

It is important to note that our critique of agitrocesses is concerned with identifying
assumptions underlying a family of agile proces€&aker critiques (Boehm, 2002; Boger, Baier,
Wienberg, & Lamersdorf, 2001; McBreen, 2003) andeasments (Abrahamsson, Warsta,
Siponen, & Ronkainen, 2003; Boehm & Turner, 200/sS, 2001; Kontio, Hoglund, Ryden, &
Abrahamsson, 2004; Sfetsos, 2004) of agile prosdsaee been published, but none of the ones
we have examined have focused on identifying assangunderlying agile processes for the
purpose of determining the scope of their applidgbiFor example, in the booRuestioning
Extreme ProgrammingVcBreen (2003) presents a critique of XP in whiuh poses some
important open questions and provides answers leroguestions based on his personal
experience, but he does not explicitly identify uasptions underlying agile processes.
McBreen’'s critique was used as a source in our waddng with other experience reported
elsewhere (Crocker, 2001; Lindvall et al, 2002).

Understanding Agile Software Development Processssge 3

The remainder of the paper is structured as folldwsection 2 we give an overview of a typical
agile process, eXtreme Programming, to give thdeea concrete example of an agile process.
In section 3 we describe the assumptions that we itentified. In section 4 we identify some

of the limitations that arise in situations in whithese assumptions are not met and suggest how
they can be addressed by adapting some of the@gitess techniques and practices. We
conclude in section 5 with an overview of the resof our work and an outline of issues that
require further investigation.

OVERVIEW OF EXTREME PROGRAMMING — A
REPRESENTATIVE AGILE PROCESS

There are a variety of software development prasefisat currently claim to be agile. Space
does not allow us to give an overview of all of dggle processes we have reviewed. However,
since Extreme Programming (XP) is probably the mgedt-known agile process (Beck, 2000;
Strigel, 2001), we use it to illustrate represeméaqgile process concepts.

Extreme Programming (XP)

It can be argued that the popularity of XP helpadepthe way for other agile processes. Kent
Beck, one of the chief architects of XP, states ¥Rais a “lightweight” development method
that is tolerant of changes in requirements. ‘lexidreme” in that “XP takes commonsense
principles and practices to extreme levels” (B&£0QO, p. xv).

XP is based on the following values:

» Communication and Feedbadkace-to-face and frequent communication among
developers and between developers and customienpastant to the “health” of the
project and the products under development. Fe&dbaough delivery of working code
increments at frequent intervals, is also consdlergical to the production of software
that satisfies customer needs.

» Simplicity XP assumes that it is more efficient to develofvgare for current needs
rather than attempt to design flexible and reusabletions. Under such an assumption,
developers pursue the simplest solutions thatfgatisrent needs.

* ResponsibilityThe responsibility of producing high-quality codsts ultimately with
the developers.

XP consists of technical and managerial practicasdre integrated in a complementary manner.
The architects of XP take great care to point bat the individual techniques and practices of
XP are not new; it is the manner in which they wven together that is unique. They also
stress that the techniques and practices have mprolveir worth in industrial software
development environments.

Understanding Agile Software Development Procesgesge 4

XP Process and Practices

The four core activities of XP are (1) coding, {&3ting, (3) listening to the customer and to
other developers, and (4) designing as an imganit of the coding process. XP encourages an
informal design specification process in which depers discuss solutions by sketching
informal models on some presentation medium (elgiteboard, flip chart). These models are
created primarily to help developers understandcamimunicate ideas during development, and
are not intended to be precise descriptions ofthation.

In order to support the five fundamental princippéXP — namelyrapid feedbacksimplicity,
incremental changegmbracing changeandquality work— XP offers a number of practices.
The early accounts of XP (Beck, 2000) offered twglvactices, but since then the number of
practices has increased (Martin, 2003; Wells, 2004 give an overview of some of the
original practices in what follows.

Pair programmingone of the more well-know XP practices, is a téghe in which two
programmers work together to develop a single pid@®de. The two programmers typically
work together at one computer, collaborating taglesmplement and test a software solution
(program) (Fraser et al, 2000; Williams et al, 2000lliams & Upchurch, 2001). At any point in
time one programmer is working directly on the caaleile the other observes, provides
alternative approaches, acts as a reviewer andda®instant feedback. The two programmers
switch their roles often, sometimes even after guw minutes. This approach has been shown
to yield significantly higher productivity and codeality than is achieved by two programmers
working separately (Wells, 2004). The intent ig tiweo programmers working and evaluating
the code and design are likely to complement e#lotr's skills, continually propose and
evaluate alternatives and are more likely to recegerrors in the code while it is being
developed (Williams et al, 2000). Pair programmsgased on two assumptions: (1) active
reviews are the most effective way to detect errams (2) different people see a problem from
different perspectives and will thus have a comthigyeproach to problem-solving that is more
effective than individually applied approaches.

Refactoringunit and acceptance testllective code ownershipndcontinuous integration
together tackle the problem of evolving code dupiiRybased development. Refactoring occurs
when a change to the internal structure of a sygt@serves the externally observable
functionality of the system. Refactoring is esplgieffective when large changes can be
decomposed into smaller steps that can be caruedsing refactorings that have been
developed by Fowler (1999) and others. These @fiagis can be viewed as code transformation
patterns, and their use allows one to reduce 8tedfvalidating code after a complex change to
validation of smaller change steps.

Understanding Agile Software Development Procesgssge 5

After a refactoring, tests are run to ensure thatspthat should not be affected by the changes
are intact and that the changes are implementedatly: Collective code ownership allows
developers to appropriately change parts of the ¢toakt they did not write in order to implement
a change, while continuous integration allows dapets to demonstrate the current status of
development more frequently.

XP: An Assessment

Although XP is considered an extreme processribtsdevoid of rigor. In particular, XP’s focus
on code should not be interpreted as an endorsavheatle “hacking”. XP stipulates that
developers follow all its practices in order toliaathe benefits of agile development. As has
been pointed out by McBreen (2003) and otherskiéd enormous discipline to apply XP and,
for this reason, some projects may find it difficial adopt an XP-compliant process.

A significant problem with XP is its reliance onusoe code for documentation. This usually
leads to situations in which in-depth knowledgesaitware products (e.g., design rationale,
trade-off considerations) exist only in the heafithe developers who developed the products.
Loss of these developers could lead to significaganizational memory loss that could impair
an organization’s ability to complete projects itimely manner.

XP specifically targets small- to medium-sized potg. XP proponents claim that XP’s unique
composition of best practices, and its omissiotiné-intensive software engineering activities
(e.g., detailed specification or modeling of reqments and design), can help downsize
otherwise large projects. There have also beerogadg for scaling the XP process to large
projects (Crocker, 2001), including an approacth itheolves hierarchically structuring XP and
installing a steering committee to guide the indinal projects (Jacobi & Rumpe, 2001).

To date, there are few objective surveys of prsjetdaiming to use XP. One such survey (Rumpe
& Schroder, 2002) was conducted on 45 projectsvilea¢ labeled as XP projects by the
developers. The results show that XP is still im‘thype phase”: it was not clear whether the
claimed successes were based on developer entinusias the XP practices. A summary of

the survey results is given below:

* More than 90% of the projects claimed to be sudukéss judged by the developers, not
by the customers)

» All surveyed said they would like to use XP ag&ione blamed failures on XP.

» The unavailability of customers was frequently tinghest risk identified.

» Use of unit tests and pair programming were comstlanportant practices.

* 33% used XP because it seemed more attractivealtematives; 28%, because it fit the
project requirements best; and 9% because the rearayg or customer wanted it.

Understanding Agile Software Development Procesgesge 6

The results of this survey also indicate that tmeas be situations in which the basic
assumptions underlying XP are valid. XP assumdghieacost of change slowly approaches
some limit over time, rather than increasing exmbiadly as has been traditionally assumed
(Beck, 2000). XP practices are based on the assumip@at correcting requirements errors and
design flaws later does not cost significantly mibvan if they were detected and removed
earlier. This assumption allows developers to ds than thorough analysis and design in the
early phases and, instead, make improvements thootighe course of the project by
refactoring the code. There is no objective evigehat this assumption is valid in general, but it
can be argued that the cost of change curve céattened by using reusable design experiences
in the form of architectural and design patterms| @apitalizing on new technologies supporting
rapid program development (e.g., libraries, comptsand frameworks, and more powerful
compilers that enable short and incremental cornipilg).

In the testing area, an issue that XP practitiofears is determining the tests needed to
adequately cover the code. It has been recognizedrne advocates that knowledge of
systematic testing techniques can be beneficiahvdeseloping unit and acceptance tests in XP
(McBreen, 2003).

The set of tests developed for an application eanidwved as a model of the system: it describes
an exemplar set of data with intended behavior.t€bes are not necessarily readable by
customers, but developers can use the tests taigderstanding of code they did not write, by
exercising the code using the tests. This impfiwdel of the system is a necessary prerequisite
for collective code ownership and refactoring teghas. However, if the rationale behind a test
is not documented, over time it may become uncidet aspects are being tested.

IDENTIFYING ASSUMPTIONS UNDERLYING AGILE
PROCESSES

In recent years a number of processes claiming t@gile” have been proposed in the literature.
To avoid confusion over what it means for a prod¢edse “agile”, seventeen methodologists and
proponents of agile processes met to discuss ané tm an agreement on what “agility” means.
The result of the meeting was the formation of Aggle Alliance and the publication of a
manifesto that included a list of principles agitecesses should support (Agile Alliance, 2004).
A summary of these principles, as numbered andrdleroas reported by the Agile Alliance
(2004), are given in Figure 1 below.

Understanding Agile Software Development Procesgesge 7

1. “Our highest priority is to satisfy the customeraihgh
early and continuous delivery of valuable software.

2. “Business people and developers must work togethe
daily throughout the project.”

3. “Welcome changing requirements, even late in

development.”

“Deliver working software frequently.”

“Working software is the primary measure of progrés

“Build projects around motivated individuals. Gitreem

the environment and support they need, and tresh th

to get the job done.”

7. “The best architectures, requirements, and designs
emerge from self-organizing teams.”

8. “The most efficient and effective method of conveyi
information to and within a development team isfac
to-face conversation.”

9. “Agile processes promote sustainable development.’

10.“Continuous attention to technical excellence aoddy
design enhances agility.”

11.“Simplicity is essential.”

12.“Project teams evaluate their effectiveness atlezgu
intervals and adjust their behavior accordingly.”

Figure 1: Principles of the Agile Alliance

=

o0k

The manifesto of the “Agile Alliance” is a condeds#efinition of the values and goals of “Agile
Software Development” and is detailed through theseciples which can be viewed as a set of
policies and rules that should be supported bygeees claiming to be “agile”. These principles
provide a good base for identifying assumptionseullythg agile processes. In the next section
we review these principles and identify assumptitias appear to be made when accepting these
principles.

Assumptions, Principles, Practices, and Limitations

Assumptions are premises or beliefs that are téegranted and are not expected to be proven
(Dictionary.Com, 2004). They are taken as a stgmioint because they are thought to be true or
are generally accepted by a person, group, orgamizar theory. Principles are basic truths,
laws, or assumptions (Dictionary.Com, 2004) thetkasth derived from assumptions and

provide a foundation upon which assumptions areda®ractices are habitual or customary
actions or ways of doing something (Dictionary.C@®04). Practices support or implement
principles and naturally derive from assumptioret tire held. Predetermined or “rule-of-

thumb” practices result from the principles anduagstions that are accepted. Limitations are
restrictions, shortcomings, or defects (Diction@gm, 2004) and derive directly from the

Understanding Agile Software Development Procesgesge 8

accepted assumptions and the practices that havede¢in place. Figure 2 shows our view of
the relationship between Assumptions, Principleactites, and Limitations, and Figure 3
summarizes each of these concepts. While thisewark evaluates assumptions underlying
agile system development processes and the liontathat result from these assumptions, other
models have looked at the relationship betweenctibags / goals and systems development
(Basili, 1992; Lyytinen, 1987).

based on
Principles derived from ASSUMptions
4—

A lead to

based on

support

Practices

v

» Limitations

have

Figure 2: Relationships Between Principles, Practies, Assumptions, & Limitations

We have taken the view that there are assumptisns|ly unstated, that led to the acceptance of
the Agile Alliance’s principles. There are alsg@®ptions made by developers (again usually
unstated) regarding what these principles mearttaidrelative importance. Based on these
principles and assumptions, development practiceset in place. Whether intended or not,
these assumptions lead to limitations in the rexyHgile processes. The limitations discussed
later in this paper are based in part on our ass=#sof the assumptions that exist behind agile
process principles and practices. In this seatiendentify assumptions underlying the Agile
Alliance principles, as we perceive them. Theusston in this section is organized around
clusters of related principles, where each clugitezs rise to a distinct set of assumptions. We
also identify examples of situations in which tilssmptions may not hold.

Understanding Agile Software Development Processssge 9

Concept Definition
Assumptions| Premises or beliefs that are takengi@nted and are not
expected to be proven. Taken as a starting p@oalse they
are thought to be true or are generally accepte Iperson
group, organization, or theory.

Principles Basic truths, laws, or assumptions #rat both derived from
assumptions and provide a foundation upon whichrapsons
are based.

Practices Habitual or customary actions or waysaifig something.

Limitations Restrictions, shortcomings, or defectsLimitations derive
directly from the accepted assumptions and thetipesc that]

have been set in place.
Figure 3: Definitions of Assumptions, Principles, Pactices, and Limitations

Principle 1. “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.”

Principle 4. “Deliver working software frequently.”

Principle 5. “Working software is the primary measue of progress.”

The prominence of Principle 1 serves to remind bigpers that software is developed to perform
services that add value to users at the time ofetgl (Principles 4 & 5 can be viewed as
consequences of principle 1, and thus are discuegether here.) Developers and project
planners need to keep in mind that customer neeagesthrough use of systems. Support for
Principle 4 allows developers to gauge and addreslying customer needs. Agile processes
provide support for these principles by structuritegyelopment activities into short fixed-time
iterations that each produces working code. Thiese-{time iterations make agile processes
predictable along the time dimension. The pricel pgthat product scope can be unpredictable:
in meeting an iteration deadline, developers caosé not to implement features originally
marked for implementation in the iteration. Agil®pesses utilize practices that help developers
minimize the time it takes to realize elicited regments in working code. In XP, these practices
include building simple designs, continuous intégrg collective code ownership, and
refactoring.

The frequent delivery of working code gives thejgcbvisibility in terms that the customer can
relate to (i.e., in terms of an evolving executgieduct), rather than in terms of evolving plans
in the form of requirements and design documerasate often not presented in terms a
customer can relate to or understand. Customerasmthe increments delivered by iterations as
the basis for (1) determining project progresspeitied by Principle 5 and (2) clarifying and
refining requirements. Short iteration lengthslftate timely customer feedback that can help
ensure that the end product will meet customer siaetime of delivery.

Understanding Agile Software Development Procesgesge 10

The importance of involving end-users and custorimetise software development process is
widely recognized, and was the primary motivatibmork in the early 1980s on “end-user”
software development (Briefs, Siborra, & Schneid®83). Much of this early work focused on
developing mechanisms that would allow end-usediraxtly contribute to the development of
requirements and designs, and understand thecéstifeeated by software designers. The work
at that time focused on developing requirementsdasign notations that are “customer-
friendly”, that is, that can be used to create meguoents specifications and designs that provide
customers with significant insight into requirengeand designs. Mechanisms such as fourth-
generation programming languages (4GLs) and exisleutaquirements (Barghouti & Kaiser,
1992; Osterweil, 1987; Sutton, Heimbigner, & Ost@inl 995; Sutton & Osterweil, 1997) and
design specifications were considered to be engbdichnologies for end-user software
development. Rather than emphasize technical fataiis of customer interaction, agile
processes emphasize continual collaboration ofldpgeand customer teams.

Assumptions Underlying Principles 1, 4, and 5

Visibility Assumption: Project visibility can be achieved solely throwdgiivery of working
code.

Visibility of software development projects is titamhally accomplished through reports,
specifications, and measures of quality and prodtgtand the working application (code) is
only seen after the developer has done a large minodwork and spent a great amount of time
working on the project. For customers, it is eaiegain a sense of whether the project is
progressing in the direction needed if they canallit seethe user interface and actuadlgethe
softwaredo the things they need it to do, rather than simelying on reports, specifications,
and other measures. Because it is the end-prdoeiciustomer really cares about, the primary
measure of progress in agile processes is bastttt@ode developed in the project.

This works well for software that is equipped wither interfaces that evolve over time. In
projects in which the user-interface is not alwpgg of a deliverable increment, or projects
concerned with developing systems with no humaarfate (e.g., embedded systems) some
other means of visibility is needed. For such mtgesoftware simulations, coverage of
acceptance tests, and formal reviews and inspeactibdeliverable increments can provide some
visibility.

Iteration Assumption: A project can always be structured into shoredixtime iterations.

Agile processes require developers to group redudeatures into loosely coupled bundles that
can each be addressed in short, fixed-time itaratiSBuch decomposition is usually based on an

implicitly imposed architecture consisting of lobseoupled modules and is thus desirable. The
assumption here is that the developing applicatambe broken into small, discrete increments,

Understanding Agile Software Development Processesge 11

that can be developed and demonstrated in shed-tixne intervals, and that after each of these
iterations the customer will be able to observatamthl functionality in the product. Because of
this, the customer will be able to give frequemdieack as to the progress of the project,
indicating whether it is being developed as neddegbected or not.

Structuring work in small bundles that can be impated quickly may not always be possible.
For example, in some complex systems an applicatiay be required to interface with a

number of subsystems in complex ways just to pebiasic services that are of value to
customers. In these situations it may not be ptestibcreate small enough bundles of features to
tackle in an iteration because of the tight depaois.

Principle 2. “Business people and developers must ork together daily
throughout the project.”

The interaction between developers and end-usegil|m processes is concerned primarily with
resolving feature-related issues and determiniegstiope of effort. This interaction does not
occur only at the start of a project; it occurstighout the process. Specifically, agile processes
advocate interactions that could involve custonigygroviding inputs in the form of informal
descriptions of expected behavior (for exampleajesdn Extreme Programming), (2) answering
guestions about desired features, (3) collaboratitiy developers in resolving issues pertaining
to features to be implemented, and (4) collabogatiith developers to evolve project plans

One of the most important effects of this closéatmration between users and developers is the
better understanding of each other’s problems a&edi$y which reduces human interaction
problems and thus significantly enhances the chorce successful project result.

This principle is not only applicable to the intetians between developers and customers; it also
extends to interactions among developers as Wwedlquent interaction allows developers to
quickly resolve problems and misunderstandings,tamdore quickly and reliably move forward
on the project.

Assumptions Underlying Principle 2

Customer I nteraction Assumption: Customer teams are available for frequent intenaevhen
needed by developers.

Some major assumptions here are that the custenagrilable at the time the developers need
to interact with them, and that the customer carags reschedule other work so that there is
time for frequent interactions with the developdise reality is that it may not always be
possible for a customer to reschedule other work.

Understanding Agile Software Development Procesgesge 12

Team Communication Assumption: Developers are located in time and place suclthiegtare
able to have frequent, intensive communication wahh other.

This assumption is very similar to the Customeerdattion Assumption, but is focused on the
ability of developers to interact with each oth8ust as the Customer Interaction Assumption
assumes a certain amount of common time, placeyress, and availability, so does the Team
Communication Assumption. Time, place, resouraad,availability must all be coordinated
and provided in order to allow this principle tosgported. Examples of projects in which this
assumption does not hold are plentiful. It is nmisual to have development teams on a single
project that are dispersed in wide geographicasamevolving many time zones.

Principle 8. “The most efficient and effective metbd of conveying information
to and within a development team is face-to-face nwersation.”

In agile processes, face-to-face communicatiomighasized over formal and precise
documentation, but also over tele-/video-confersrareemail conversations. The agile process
community claims that more is gained through infalrpersonal communications than through
communication based on formal documentation, elveangh the ability to track all information
disappears. An advantage of face-to-face commuaoica that the parties involved can change
the direction of the discussion as needed to geights into the topic under discussion, and can
observe and respond to non-verbal communicatios as&evelopers and/or customers interact.

Even though formal and technical communication rma@ms are discouraged, protocols or “to
do” lists should be used to keep track of thingd ttave been discussed.

Assumptions Underlying Principle 8

Face-to-Face Assumption: Face-to-face interaction is the most productiethod of
communicating with customers and among developers.

It is hard to imagine Principle 8 being realizedhout having co-located customers and
developers and without schedules that allow fretjurearaction during a project. If customers
and developers are all co-located, even to theneitey can walk down the hall and talk with
each other, then any time questions, issues, bitgns arise, they can be addressed immediately
and clear resolution may be immediately obtain@fithout face-to-face contact there is

increased potential for mis-communication, andehgmlways the difficulty of getting in

contact — the “telephone tag” or “e-mail tag” preol.

The de-emphasis of documentation as a communicaiibis based on an assumption that tacit
knowledge is to be valued over externalized knoggedProponents point out that developers
need to internalize externalized knowledge to makseful and that learning can be

Understanding Agile Software Development Processesge 13

accomplished by sharing of tacit knowledge throoghversations (McBreen, 2003). Critics
have argued that the focus on tacit knowledge mpkascts that use agile processes dependent
on experts (Boehm, 2002). Another concern is thhtimg tacit knowledge over externalized
knowledge can lead to corporate memory loss arediaced ability for an organization to
systemically learn from its collective experiende.organization that is concerned with its
ability to effectively learn from past experienaseds to value both tacit and externalized
knowledge and understand their interactions. Tkamtvledge is critical to building externalized
knowledge, as pointed out by Takeuchi & Nonaka €)@hd Nonaka and Hirotak (1995), and
externalized knowledge can interact with tacit kfexlge to reveal hidden or create new tacit
knowledge. Organizations that value systemic egrneed to foster environments that not only
support the sharing of tacit knowledge but alsqsuipexternalizing tacit knowledge.

Documentation Assumption: Developing extensive (relatively complete) andsistent
documentation and software models is counter-pribgric

Given agile developers’ code-centric focus (seeqgples 1, 4, & 5 above), this downplaying of
documentation and software models is not surprisifige assumption is that it is more reliable
to determine specifications and design from code from other documents — especially since
specifications, requirements, design documentspaodkels may not be kept up-to-date when
code is changed. Thus, the code is the most aecand reliable description of what a system
does and how it was designed.

A reason for the agile process community’s disenthant with modeling may be a result of
prior experiences with commercial modeling tookst tivere nothing more than tailored drawing
environments. Such tools provided very little suppor the more difficult tasks of maintaining
(1) traceability links across models and (2) caesisy between models and their
implementations. Current modeling tools have ma@uewhat beyond this and now provide
support for code generation and round-trip engingeMore importantly, major tool vendors
are currently extending their offerings to suppbet Object Management Group’s model-driven
software development approach, known as the Modiekb Architecture (MDA) (MDA,

2004). MDA is based on a separation of platforreedic system details from platform-
independent details. MDA-based tools provide meismas for mapping platform-independent
details to platform-specific implementations, wétlsignificant portion of the mapping being
automated through the use of patterns, templatelsotiner forms of reusable experiences. In the
MDA approach, models are the central artifacts, taeduse of MDA tools can help speed up
development through automated generation of sigamti portions of application and middleware
code and by raising the level of abstraction atcWhievelopers work.

For customers who contract with developers to gl@gystems, precise models may not be
necessary. However, there are situations in whictlels are valuable in their own right, and in

Understanding Agile Software Development Procesgesge 14

which it would be beneficial to maintain these mleder future use. Some of these situations are
described below:

» Evolving large complex systems that have longdifeles: The availability of good models
can reduce the cost and effort of modifying sugdteays. Without these models, developers
are forced to analyze source code to understaardliietermine the impact of change.
Studies have shown that a significant portion efeffort required to evolve systems is spent
understanding the code. Good models can help besseask.

* Managing enterprise systems to ensure alignmehtbhusiness goals: Good models of
business processes and systems can be used kyrisetarchitects to (1) check that planned
and implemented systems align with business g@@lsdentify how existing systems
services can be composed to create new servigadge(8ify redundancies in systems
(particularly when organizations or sub-organizasionerge with other organizations or sub-
organizations), (4) identify reusable developmeiegiences, and (5) determine the impact
of change on existing systems. Business- and syseshmodels, well-defined mappings
between them, and the correspondence with codegreatly enhance the management of
enterprise systems.

Good models and documentation can also be usathgpreew hires up to speed on the business
and the systems being developed, and help compaserg determine whether a software
component really addresses their requirements.

Principle 3. “Welcome changing requirements, everate in development.”

Requirements will change during software developgrt@neflect changes in (1) the environment
in which the software will be implemented, and2iy the development environment. This has
been widely recognized (within and outside of tggegprocess community) and is one major
reason for rejecting the simple waterfall modeloking requirements is often viewed as an
inherent problem of software development. The guiteeess community views requirements
changes as providing opportunities for evolvingwafe that can enhance the customer’s
competitiveness in a rapidly evolving environmédgvelopment teams that can handle such
changes and produce software that is useful touk®mer at the time of delivery (rather than at
the start of the project) are more likely to hasisfied customers. Short iteration cycles and the
“plan one iteration at a time” approach are clairteedrovide the flexibility needed to
accommodate changes in agile processes. Agile ssgeponents claim that adhering to this
principle significantly increases the competitivemef a company.

Assumptions Underlying Principle 3:

Understanding Agile Software Development Procesgesge 15

Changing Requirements Assumption: Requirements always evolve, because of changes of
technology, customer needs, business domains aramgiisition of new customers.

The assumption here is basically a re-statemetttegprinciple. Changing requirements are not
regarded as necessarily bad, but are welcomed @gpamtunity to satisfy customer needs even
better than when inflexibly sticking to old requirents. If customer needs change late in the
project, then making sure that the project adaptedse changes is important to making the
project a success.

Cost of Change Assumption: Cost of change does not dramatically increase tve.

Agile processes challenge the widely-accepted fdblét errors introduced early and detected
late in the process have significantly higher ctis&® errors detected early. Agile process
proponents argue that appropriate use of new denedot technologies and practices can reduce
the cost of uncovering errors late in the develapnpeocess. One can make a credible case that
the use of technologies and practices such asey)fast compilers with sophisticated type
systems, (2) integrated development environmeBjsystematic improvement of code through
refactoring, and (4) automated test suites caninelpage the cost of detecting and removing
errors even when the errors are uncovered latesiprtocess. It is also clear that the cost of
correcting errors that can be fixed by localizedraes — that is, changes with limited impact —
should be relatively stable over time. On the otiaard, it is also clear that certain types of error
— for example, architectural design flaws that@gesly compromise the integrity of the design, or
errors that require corrective actions that havdevimpact — are more costly to correct the later
they are uncovered.

Principle 6. “Build projects around motivated individuals. Give them the
environment and support they need, and trust themd get the job done.”
Principle 7. “The best architectures, requirementsand designs emerge from

self-organizing teams.”
Principle 12. “Project teams evaluate their effectieness at regular intervals
and adjust their behavior accordingly.”

Agile processes such as XP and Scrum emphasizeedteto shelter developers from
distractions so that they can focus solely on ptagetivities. Management'’s role is to facilitate
development by ensuring that developers have swmirees they need when needed, and that
they are not distracted by concerns outside thpesobthe project. Management should also
refrain from imposing and micro-managing the depeient team: developers should be trusted
to get the work done using a process that is basebeir collective experiences (i.e., the team
should be self-organizing). Motivation is one of tinost important properties humans need in
order to achieve ambitious goals with good quaksults.

Understanding Agile Software Development Procesgesge 16

It can be difficult to transform a traditional teamto an agile, self-organizing team. In some
agile processes this can require team leaderaniefer some of their traditional responsibilities
to team members. The short iterations of agile gsses allow the project leader to test transfer
of responsibility, and thus incrementally buildgrin a team’s ability to get the job done.

It is claimed that support for Principle 6 leadptoducts that are of higher quality, meet
customer requirements at delivery time, are bstteictured, and require less effort to build than
those created using more predictive (heavy-weigittgesses. However, we are not aware of any
empirical studies that provide evidence of improgedlity and reduced effort as a result of

using agile processes.

The frequent reviews advocated by agile processrssfon the products and the process used to
develop the products. The planning of iteratios® alllows for reflection on previous results and
adjustment of future iterations. As the customeoistinuously involved, different viewpoints on
the effectiveness of the project team can be obtiamd flexible reaction to this reflection is
possible. The agility in agile processes is actdgheough continuous self-examination of the
processes used and corresponding adaptation pfdabess.

A self-evaluation and adjustment of a project, heaveneeds a project environment that allows
flexible adaptations. If the environment is “hastjlthis means it is inflexible to change, its
customers are not willing to actively participats,contractors insist on written specifications to
be fulfilled, etc. It becomes much more diffictdtact in an agile manner.

Assumptions Underlying Principles 6, 7, and 12

Team Experience Assumption: Developers have the experience needed to ddfitha@dapt their
processes appropriately.

Another way of saying this is that an organizatian always form a team consisting of bright,
experienced problem solvers capable of evolving firecess effectively. A development team
that (1) consists of developers with solid prograngskills and relevant process and product
experience, and (2) has the ability to convergeudin rational discussions will likely be able to
effectively define and adapt their project proces&nfortunately, not all development teams
have these qualities. Some need guidance in deiegrappropriate processes. For such teams,
a “standard” process may work better than an abppmocess that they could find difficult to
control. Indeed, the Team Experience Assumptiamiigal to the success of agile development
projects.

It is generally accepted that there is no singteess that will be applicable to all projects. On
the other hand, there are a number of best practieehniques, and experiences that developers

Understanding Agile Software Development Processesge 17

can use in appropriate situations. Software devedop teams that consist of leading members
that understand the situations in which particplacesses and practices are applicable are more
likely to be successful within an agile environmenis therefore the responsibility of future

agile developers to cultivate such an understanoyngaining experiences with a variety of
approaches. Teams consisting of developers witethkills are more likely to benefit from the
use of agile processes.

Embedded within the Team Experience Assumptioreteeem to be two more assumptions:
The Self-Evaluation Assumption and the Self-OrgagZAssumption.

Self-Evaluation Assumption: Teams are able and willing to evaluate themselve

A team must evaluate its process if it hopes talile to adapt and/or improve the process. The
assumption is that the team is able and willindddhis. This is difficult in a project culture,
where less than optimal behavior is regarded asiaus liability, and thus team members may
be reticent to give honest self-evaluations. Furtizee, even if the team is willing to self-assess,
the team also needs to have the skills to do s@rder to do this, team members need to have
gained experience on previous successful projedis able to compare this project’s
effectiveness with earlier ones and identify pdssilmprovements.

Sdf-Organization Assumption: The best architectures, requirements, and desigesge from
self-organizing teams.

The assumption here is that not only are the behttactures, requirements-elicitation, and
designs produced from self-organizing teams, laitttie resources exist for self-organizing
teams to be created, and that management allowsugmabrts this approach.

While this assumption is basically a restatemerraiciple 7 it should not be regarded as
simply redundant. It is assumed that teams will@®anize, drawing from the most highly-
qualified talent-pool available, thus creating teashdiverse capabilities, and thus the ability to
create the best products possible. The concesgtlbbrganizing teams is very different from
how many organizations work. Thus, if an orgammaexpects to gain the most from applying
Agile processes it should be aware that its managenf teams may need to be radically re-
designed.

Principle 9. “Agile processes promote sustainableedelopment.”
Principle 10. “Continuous attention to technical exellence and good design
enhances agility.”

Using agile processes, developers focus on datigguist the functionality needed and timely
evolution of the software in response to changesigtomer needs and the market. Agile

Understanding Agile Software Development Procesgesge 18

process advocates stress the importance of fogteritevelopment environment that continually
stimulates and motivates developers. Rules, sudtiPas40-hour weeks and No-Overtime,
target this principle.

The primary quality control activities in agile pesses are code testing and customer feedback.
Frequent review meetings are advocated in procassgbsas Scrum, while Extreme
Programming advocates continuous reviews throughdeaelopment of code. Extreme
Programming also advocates the building of testsagfore the building of code, and the use of
regression tests to ensure that implemented chaltgest have undesirable effects.

As systems grow through time, an initially well-dged architecture may become increasingly
blurred. Extreme programming uses the refactoeehriique to constantly redesign the system
and therefore keep the design quality at an optimithis keeps implementations enhanceable
for further iterations and maintainable for theuhet

Assumptions Underlying Principles 9 and 10

Quality Assurance Assumption: Evaluation of software artifacts (products andgasses) can be
restricted to frequent informal interviews, revieswvsl code testing.

XP replaces the traditional review with pair pragraing, collective code ownership, and a
rigorous “test first” approach. These approacheside opportunities for continuous review and
improvement of the product during development. 8camd Crystal advocate the frequent use of
workshops, review meetings, and interviews to eatglproducts and the process, and use the
results to adapt the process accordingly.

Despite their apparent strengths, it seems thahtbanal evaluation techniques of agile
processes may not be sufficient for establishiregoinality of safety-critical systems — systems in
which in which failure can result in direct injury humans or cause severe economic damage.
Development and testing techniques which are naradl and/or rigorously planned may help
ensure the quality of these types of systems. &Huswvever, require significantly more effort
and are thus a lot more expensive. Validating@rieémentation against its requirements
through analysis techniques, for example, meansathgecise and detailed specification model
must be derived from the requirements.

Continuous-Redesign Assumption: Systems can be continuously redesigned (refattamed
still maintain their structural and conceptual grity.

One major assumption behind agile developmentaisatdesign can and should be continuously
redesigned. Day after day the design is re-evadlj@nd as better designs are determined,
refactoring and re-development are carried outcddise, a big assumption here is that this

Understanding Agile Software Development Processesge 19

redesign can be carried out for a significant amhofitime without destroying the structural and
conceptual integrity of the design and the product.

Principle 11. “Simplicity is essential.”

This principle is a direct reaction to what is m@ved as unnecessary complexity imposed by
heavyweight processes. Agile processes therefa@cate simplicity both in the code and the
tools used. Code generators or frameworks are atdonly if they provide clear value to the
project. Of utmost importance, the design is tiéyt simple to support future iterations.
Therefore, a focused architecture satisfying toslageds is preferred to a general architecture
that is “designed for the future”. This follows titea that future changes are almost absolutely
unforeseeable and it therefore makes little semgéan for a future that might not happen.
Furthermore, redesign is encouraged if it simdifiee system and removes unneeded
functionality.

Application-Specific Development Assumption: Reusability and generality should not be goals
of application-specific software development.

Part of keeping an application simple is to stayus®d on current requirements and needs rather
than trying to build a more general system thak tmbre easily be adapted to future needs”.
Building a more general and “adaptable” systemddndnake the system more complex.

Agile processes encourage the use of reusabladistife.g. design frameworks, patterns) only
when it is clear that their use can help reducésamsincrease quality. Building a generalized
piece of code (one that can be used in a numbstuations) is encouraged in agile processes
when it is clear that such generality can be usdle same project (e.g. factoring common
method parts). Many agile process advocates claatna focus on creating general solutions can
result in efforts on making systems amenable tmgba that may never occur. This is true
especially of those developers who adopt the XPagmh to agile development; it is not
necessarily inherent in the principle itself. Bgdising on building software that implements the
specific requirements at hand, and keeping this-desdigned, agility for completing this
development is enhanced.

Part of this assumption is the idea that the l@rgitcosts of development are smaller if at any
given time the focus is on current requirementseiathan on generalization. Of course, this
assumption is debatable, since it may turn outithhe original design had been more general, it
would have been easier, and thus less costly,d@ad adapt features over time. But this
viewpoint must be held in contrast to the view thét hard to know what future changes will be
required, and thus that developers may be invesgtiggneralizations that will never be needed.

Understanding Agile Software Development Procesgesge 20

Continuous-Redesign Assumption (re-iterated): Systems can be continuously redesigned
(refactored) and still maintain their structuratiasonceptual integrity.

Generally, when a system is first designed it iggrsimplest state. Over time, and after many
changes have been made, the design typically degeatt thus the system becomes more
“complex”. The assumption here is that this camims re-design actually keeps the system
simpler.

Summary of ldentified Assumptions

Figure 3 below summarizes the assumptions idedtifi¢his section that lie behind the
principles of the Agile Alliance.

Understanding Agile Software Development Processesge 21

1. The Visibility Assumption Project visibility can @ehieved solely through
delivery of working code.
2. The lteration Assumption A project can always laditired into short
fixed-time iterations.
3. The Customer Interaction |Customer teams are available for frequent
Assumption interaction when needed by developers.
4. The Team Communication [Developers are located in time and place such
Assumption that they are able to have frequent, intensive
communication with each other.
5. The Face-to-Face Face-to-face interaction is the most productive
Assumption method of communicating with customers and
among developers.
6. The Documentation Developing extensive (relatively complete) and
Assumption consistent documentation and software models is
counter-productive.
7. The Changing RequirementfRequirements always evolve, because of changes
Assumption of technology, customer needs, business domains
or even acquisition of new customers.
8. The Cost of Change Cost of change does not dramatically increase
Assumption over time.
9. The Team Experience Developers have the experience needed to define
Assumption and adapt their processes appropriately.
10.The Self-Evaluation Teams are able and willing to evaluate
Assumption themselves.
11.The Self-Organization The best architectures, requirements, and designs
Assumption emerge from self-organizing teams.
12.The Quality Assurance Evaluation of software artifacts (products and
Assumption processes) can be restricted to frequent info
interviews, reviews and code testing.
13.The Application-Specific [Reusability and generality should not be goals|of
Development Assumption [application-specific software development.
14.The Continuous-Redesign [Systems can be continuously redesigned
Assumption (refactored) and still maintain their structuratian
conceptual integrity.

not be surprising: Agile approaches are not prosiasr bullets. Because these assumptions are

Figure 4: Summary of Assumptions Behind Principle®f the Agile Alliance

TACKLING LIMITATIONS OF AGILE PROCESSES

From the discussion in the previous section it &hbe clear that the assumptions underlying
agile processes do not hold in all software dewakant projects and environments. This should

Understanding Agile Software Development Processesge 22

not met in all organizations and/or developmenir@mments, agile approaches, in their current
forms, do have limitations. It is possible to edeagile processes to address their limitations.
Such extensions can involve incorporating prind@ad practices often associated with more
predictive, plan-based, or “traditional” developrhprocesses into agile processes. In general,
users of agile processes need to ensure thatqggadtased on assumptions that are not valid in
their development environments are modified accwlgt

In this section we identify some limitations assbed with the assumptions made by agile
processes and discuss how some of these limitateombe addressed. For each limitation we
characterize the situations in which the assumpttbat lead to the limitation do not hold and
discuss how agile processes can be modified to@xtes applicability of agile processes. Not
all the assumptions identified in the previous isaeckead directly to limitations discussed in this
section.

Figure 4 below summarizes the relationships betleefimitations discussed in this section
and the relevant assumptions identified in the iptesssection. We have identified two
categories of limitations: Personnel-related litnitas and Product-related limitations. The
assumptions that are people-oriented tend to leédhitations in the Personnel category, while
assumptions about the types of artifacts producedgroject lead to limitations in the product
category.

Understanding Agile Software Development Processesge 23

Assumptions

Agile Process Limitations

Personnel Limitations

Product Limitations

Limited support
for distributed
development
environments

Limited support
for
subcontracting

Limited support
for
development
involving large
teams

Limited support
for building
reusable
artifacts

Limited support
for developing
safety-critical
software

Limited support
for developing
large, complex
software

Customer
Interaction
Assumption

X

X

Team
Communicatior
Assumption

Face-to-Face
Assumptiot

Changing
Requirements
Assumption

Documentation
Assumption

Quality
Assurance
Assumptiot

Iteration
Assumption

Application-
Specific
Development
Assumption

Continuous
Redesign
Assumption

Figure 5: Limitations of Agile Processes and RelateAssumptions

Limited Support for Distributed Development Environments

Distributed development environments are envirortmignwhich the developers are not all

located at the same geographical location, or aréocated in close geographical proximity to
each other. Likewise, if the development teanpislocated in close geographical proximity to
the customer similar issues can result.

Geographical dispersion leads to various issudgithaot exist when everyone is located at the
same site, or, at least, are located relativelgecto each other (e.g., in the same city or in two
cities that are not far apart). Distributed devatept typically makes communication more
difficult, because people are not able to inteai¢he same time and/or same place. Even if
communication is not harder, distributed developiequires special supporting tools,

Understanding Agile Software Development Procesgesge 24

technologies, and communication mechanisms in dodaddress the unique requirements and
characteristics of such an environment.

In distributed development environments, the Custoimteraction, Team Communication,
Face-to-Face, and Documentation assumptions mayahat The first three assumptions
presume that it is very easy for developers taaatewith each other and with customers. In
fact, the Face-to-Face assumption assumes thabgeve and customers are all together where
they can meet face-to-face — that they are co-akcatsince agile developers believe this is the
most productive way to interact.

Geographical distribution makes interactions habdsause of varying work schedules,
differences in time zones, and because developérslents cannot always see each other’s
reactions, and share ideas as flexibly and aslgle@he emphasis on co-location in agile
processes does not fit well with the drive by samnaeistries to realize globally distributed
software development environments. Differentiablatosts in other regions or other countries
may motivate customers to employ offshore devekpsarmay motivate developers to use
offshore labor. Development environments in whiedinh members and customers are physically
distributed may not be able to accommodate thetimface communication advocated by agile
processes. In such cases, one can at least apptexiace-to-face communication using
technologies such as video-conferencing, chat ardthe whiteboards, conference calls, etc., but
these technologies can be expensive and are nayskas effective as one would hope.

Face-to-face communication can be as importanisinilouted environments as non-distributed
ones. Such meetings must be planned in advancestoesthat all involved can participate and
that the discussions are effective and not too tiaresuming. One can use such face-to-face
meetings as major synchronization events in whatggaphically dispersed developers (1) are
made aware of the progress made by others ands(2)ss plans for further evolving the
product. In between such meetings, documentatieyofiid code) may become the primary form
of communication, with e-mail, chat, and video-@ehcing technologies supplementing.

Good documentation of requirements and designslugetl and maintained in a timely manner,
is essential to ensure that the distributed teamlimees all maintain the same vision of the
product to be built. This should not be interpredsd requirement to document or model all
aspects of software. Documentation and models dhimitreated and maintained only if they
provide value to the project and project stakelhrslde

Agility is not always possible if communicationrestricted to exchange of formal
documentation due to legal reasons or due to waeidié- distributed development. In these cases,
only elements of agile process can be introducedlly with formal processes being used to
coordinate the larger, distributed project.

Understanding Agile Software Development Procesgesge 25

Unfortunately, in distributed environments espdgjalocumentation is even more important
because of differing time and place work activitesd different people and teams
simultaneously and sequentially working on the spnogect. Documentation becomes more
important because of the limited ways in which depers and customers can interact The focus
on minimizing documentation thus creates limitasiamhow well distributed development can

be done following agile processes.

Limited Support for Subcontracting

Outsourcing of software development tasks to sufpaotors is often based on contracts that
precisely stipulate what is required of the subi@mtor. Subcontracted tasks have to be well-
defined in the cases where subcontractors haviel tobthe contract. In coming up with a bid, a
subcontractor will usually develop a plan that udgs a process — with milestones and
deliverables — in sufficient detail to determineost estimate. The process could follow an
iterative, incremental approach, but the subcotdragill likely have to make the process
predictive by specifying the number of iteratioasd the deliverables associated with each
iteration, in order to compete. Because of tihig,Eustomer Interaction, Team Communication,
Face-to-Face, Documentation and Changing Requirsnassumptions may not hold when work
is subcontracted in a project.

As discussed above, the first three assumptiorsipre that developers and customers are all
co-located so they can have face-to-face intenaetizenever needed. It may not be possible to
co-locate subcontractors with developers and custemin these cases, the same issues that
were identified for distributed development exwmt $ubcontracting as well.

By requiring subcontractors to co-locate with thienary developers and the customer, these
issues can be addressed.

As was discussed above, the documentation assungtéites that documentation (other than
actual program code) should only be created whealately necessary. In subcontracting, as
was described for distributed development enviramsjelocumentation is important because
people and teams who do not work together on aalalgy basis must communicate and
provide information so that others (other subcantnes, the main developers, the customer, etc.)
can interact with what has been done and evaltsateceptability within the project.

Given the greater “distance” between the main dge¥ks and subcontractors, and between the
subcontractors and the customer, the assumptiodlcamentation is not so important is easily
seen to be invalid.

There is not much an agile development organizatgondo to address this issue other than to
increase its documentation, or to require subcotdra to co-locate with them.

Understanding Agile Software Development Procesgesge 26

The changing requirements assumption states thaireenents always evolve. However,
subcontractors typically have won an award to dgvebftware for a fixed set of requirements.
If requirements change frequently, the contracttbahange frequently, and this can lead to
significant cost increases, since contracts typicdhte that there will be extra charges for each
change to the contract. The basis of the contrsed by agile developers and that of
subcontractors is fundamentally different, since assumes changing requirements and the
other assumes a fixed set of given requirements.

In order to address this issue, it is possible ¢batracts can be written that allow a
subcontractor some degree of flexibility in howythikevelop the product within time and cost
constraints. This is certainly possible if the suitcactor has a good track record and can be
trusted by the contracting company to develop ayebthat meets the contracting company's
needs. A contract supporting agile developmentiénsubcontractor environment might ought to
consist of two parts:

» Fixed Part: This part defines (1) the framework ttenstrains how the subcontractor will
incorporate changes into the product (e.g., cost-teme-based criteria for accepting or
rejecting changes to the Variable Part (see betdwhe contract, (2) the activities that must
be carried out by the subcontractor (e.g., qualiigurance activities), and (3) requirements
that are to be considered fixed and deliverablasrtiust be delivered.

» Variable Part: This part defines the requirementsdeliverables that can vary within the
boundaries defined in the Fixed Part. This parteasive within the constraints defined in
the Fixed Part. At the time the contract is sigreedescription of prioritized deliverables and
requirements should be included.

Limited Support for Development Involving Large Teams

Large teams often have many sub-teams of spesiadistl these may exist at different
geographically-distributed locations. Large teaypscally focus on very large projects, where a
large amount of human resources are needed fangdlve project’s problems. Because of
these issues, large teams require more interacdimosg their members and a higher degree of
focus in order to manage them. In these envirotsnéime Customer Interaction, Team
Communication, Face-to-Face, and Documentatiomasisons may not hold.

The size of teams can limit the effectiveness aaguency of face-to-face interactions. Agile
processes support process "management-in-the-smétiat its coordination, control, and
communication mechanisms are applicable to smallédium sized teams. With larger teams,
the number of communication lines that have to hetained can reduce the effectiveness of
practices such as informal face-to-face commurdoatand review meetings. Large teams
require less agile approaches to tackle issuesplant to "management-in-the-large”.

Understanding Agile Software Development Processesge 27

There is not much that can be done to addresaskismption other than to attempt to minimize
the size of the team and to maximize the interadt@t occurs, while at the same time not
allowing the amount interaction to overwhelm thealepers and the customer(s).

With large teams, more documentation is inheremtigded, simply for coordinating among the
large number of team members. Given their befiaf any documentation other than code is to
be minimized, agile development processes prowdield support for development involving
large teams.

Traditional software engineering practices that leasize documentation, change control and
architecture-centric development are more applecéin large teams. This is not to say that agile
practices are not applicable in such environmdritere may be opportunities for large teams to
use agile practices, but the degree of agility ipdssnay be less than that found in smaller
projects. For instance, the large overall team heae strict requirements for documentation,
but, within this, it may be possible for small tesata apply agile development methods while
they work on their project. After the project mnapleted, or at certain time intervals, the team
may document certain aspects of the project so bs tn line with the large team'’s
requirements. This would allow most of the worlb&done in an agile manner, and only at the
end (or other specified points) to produce requdedumentation.

Limited Support for Building Reusable Artifacts

Reusable artifacts are code and other componam$y&s and design documents, patterns, etc.)
that can be reused from one project to anothehgim entirety or at least in a major part. In
order to create components that are reusable-pidiigre view must be taken while they are
being developed, rather than simply focusing orctiveent application. What other types of
systems / applications might be able to benefinfthis component? How many different ways
might one want to use it? What are the requiremehthe domain, in contrast to simply this
application in the domain? These are a few ofjtestions that must be asked when thinking
about making components reusable and more genemnabge. When developing reusable
artifacts, agile development’s Documentation, Qualissurance, Application-Specific
Development, and Continuous Redesign assumptiogsiotebe valid.

If documentation other than actual code is minimjazemay be harder to determine when and
where a given artifact can be reused. Additiom&ludnentation may be needed to help indicate
the reuse possibilities for an artifact. In orfieragile processes to support development of
reusable artifacts, they may need to increaserttoaiat of documentation created.

Agile processes such as Extreme Programming faclmiibding software products that solve
specific problems. Development in "Internet Timé&éeo precludes developing generalized
solutions even when it is clear that this coulddyieng-term benefits. In such an environment,
the development of generalized solutions and dtrens of reusable software (e.g., design

Understanding Agile Software Development Procesgesge 28

frameworks) is best tackled in projects that armarily concerned with the development of
reusable artifacts. This separation of the prodpetific development environment from the
reusable artifact development environment is a @nynfieature of the reuse-oriented framework
called theExperience Factorgeveloped by researchers at the University of Mai/at College
Park (Basili, Caldiera, & Rombach, 1994). The wagplicability of a reusable artifact requires
that the process used to build the artifact empkagiality control because the impact of low
quality (in particular, severe errors) is as widdlee number of applications that reuse the
artifact. On the other hand, timely developmentenfsable artifacts is desirable.

Continuous redesign is difficult when not develapapplication-specific artifacts. The
opportunity for customer feedback is lessened,thus the improvements in quality and design
are reduced. In order to address this issue, dgilelopers must put in place specific processes
that are intended to obtain this type of feedbacthat the design and quality of the reusable
artifacts can be enhanced.

It seems apparent that agile development doesatotaily fit well for building reusable
artifacts. However, with some careful attentiam] aome key adjustments made to agile
processes, as mentioned above, it may be possiblectessfully adapt and apply agile
processes to development of reusable artifacts.

Limited Support for Developing Safety-Critical Software

Safety-critical software is software where people/ss, health, or safety may be compromised

if the quality of the software is not extremelylhigSome examples include software / firmware
for aviation control and to control x-ray machinés.these types of environments it is important
to know that software / firmware has been testddrestvely, and has been designed to guarantee
that there will not be failures that affect theligypto correctly and safely use and control the
machinery. Itis not acceptable for a machineg@liowed to give doses of x-rays that would be
fatal to the patient receiving them, or for a ptimbe unable to fly the airplane because of
software / firmware failure, for instance. In sitions like these, the Documentation, Quality
Assurance, and Continuous Redesign assumptiorgilefdevelopment may not be valid.

Formal specification, rigorous test coverage, aherformal analysis and evaluation techniques
included in software engineering approaches prowidee robust, but also more expensive,
mechanisms to tackle the development of safetipusmess-critical software. These approaches
can more reliably “guarantee” that appropriatestésive been run, and code has been analyzed,
so that developers and users are confident inafetysand reliability of the system.

Applying some agile evaluation practices to sudhware can also be beneficial. For example,
(1) test-first approaches requires one to definetasts before writing code, (2) the early
production of working code supported by the iteatincremental process structure of agile

Understanding Agile Software Development Processesge 29

processes supports exploratory development o€atisioftware in which requirements are not
well-defined, and (3) pair-programming can be daative supplement to formal reviews.

Therefore, it can be assumed that agile and fosofalvare development are not incompatible,
but can be combined when needed: Formal technimagde used in combination with agile
processes to handle critical pieces of the softw@necrease quality and confidence.

Limited Support for Developing Large, Complex Software

Large, complex software is software that includegé amounts of code (many hundreds of
thousands, millions, etc., of lines) and/or mayoirre very intricate interrelationships between
the various parts of the system to ensure datgrityeand to make certain that all parts of the
system interact reliably and run as intended. @raent of large, complex software generally
requires a higher degree of management controhagrdater amount of more “formalized”
processes to make sure everything fits and wodather, and runs reliably. The
Documentation, Quality Assurance, Iteration, andt®mous Redesign assumptions of agile
development may not be valid in these situations.

As was discussed above regarding large developiaamts, when developing large, complex
software, it is likely that there is an increaseech for documentation. This is necessary for
simply documenting the larger set of requiremeieistures, and design decisions, as well as for
providing a knowledge base for the larger teamsdhalikely to be working on such systems.
Focusing almost exclusively on the code for theudoentation can lead to a serious lack of
understanding about the system, and the more wliffiask of training new team members
during and after the project is completed. If agievelopers take the conscious effort to
document key decisions, designs, etc., then tmigdtion may be able to be avoided.

Likewise, the assumption that informal testing eedews can ensure the required level of
quality in large complex systems is probably ndidvalf the agile approach of creating tests
before writing code (test-first) is carried outdahe process used in coming up with these tests
is thorough and well-documented, then there mayaat problem. However, this needs to be
ensured in order for quality in large, complex syst to be maintained.

The Iteration assumption may not be valid, eitihvdren developing large, complex software
because there may be systems in which functionalgg tightly coupled and integrated that it
may not be possible to develop the software increafly. In these cases an iterative approach in
which code is produced in each iteration canlsélused, but the code produced in each iteration
will include all the pieces in various states afampleteness.

Finally, the assumption that code refactoring reesahe need to design for change may not
hold for large complex systems in particular. lolsgoftware there may be critical architectural
aspects that are difficult to change because ofritieal role they play in the core services

Understanding Agile Software Development Procesgesge 30

offered by the system. In such cases, the codtariging these aspects can be very high and
therefore it pays to make extra efforts to anti@pach changes early. The reliance on code
refactoring (an application of the Continuous Regleassumption) could also be problematic
for such systems. The complexity and size of soffivare may make strict code refactoring
costly and error-prone. Models can play an impdntale here, especially if tools exist for
generating significant portions of the code from thodels. This view of models as the central
artifacts for evolving systems is at the hearthef ©bject Management Group's (OMG) Model-
Driven Architecture (MDA) approach (MDA, 2004).

OPEN QUESTIONS, CONCLUSIONS, AND FUTURE WORK

This paper has discussed claims made by agile aj@se, and some of the underlying principles
and assumptions upon which agile development pdsceS8ome of these assumptions have been
guestioned, and implications discussed. Some gagums may always be true, but in other
cases, these assumptions could lead to situatibasevagile development may not be applicable,
or even where agile development may fail. In aagec there are a variety of questions that
remain open and future work that needs to be dega&rding agile development.

Open Questions

While advances in software technologies and devedop tools have helped launch new
generations of software products, it is also tleedhat new generations of software products
drive the development of more sophisticated devebyg infrastructures. It seems natural to
assume that development might become more effieiethteffective as the development
infrastructure becomes more sophisticated. It waekin that development processes should
improve over time as they adapt to the increasopipistication of the development
infrastructure. This raises the following open sfigns related to software development
infrastructures and agile and “non-agile” processes

Do non-agile processes have a lot of ‘overhead abse of the ‘less-sophisticated’
development infrastructure that existed at the tineeprocesses were developed?

» Do agile processes work well because of the magpéisticated infrastructure that currently
exists (e.g., component/class libraries, desigmésaiorks, fast incremental compilers)?

* Would agile processes work so well if this infrasture were not in place?

* What aspects of this infrastructure are key to mglagile processes successful, and what
aspects of agile processes themselves are resfgorfigibtheir success? (The “nature-
nurture” question.)

Answers to the above questions are not easy tanolmiat obtaining them can lead to a deeper
understanding of development processes and theluten.

Understanding Agile Software Development Processesge 31

Need for Empirical Studies

While it appears that there have been many softdewvelopment project successes based on
agile processes, so far most of these succesestave only anecdotal evidence. For a more
conclusive assessment of these new techniquesna saientific evaluation based on a
statistically significant number of comparable cagalies would be necessary. Some recent
attempts at doing this have been reported (Tudnée, & Rumpe, 2002; Turk, Vijayasarathy, &
Clark, 2003a; Turk, Vijayasarathy, & Clark, 2003bhis could not only help one better
understand unsolved and pressing problems in sadteragineering, but would also allow
project managers to guide their decisions on psekection in a better way. It is very useful to
have hard numbers and data upon which to baseeaisions about whether to adopt agile
approaches to software development or not. Thegitols necessary to collect and analyze data
about projects that have used agile processessitstich step was done in (Rumpe & Schréder,
2002). Such studies will lead to a better undediteg of how agile processes work, how they
differ from “non-agile” processes, and under whatditions agile processes are applicable and
are most successful.

Empirical data comparing the effectiveness andtéitiuns of agile and non-agile approaches
would greatly enhance our understanding of the brreefits and limitations of agile processes.
In this paper we presented a list of limitations\ded from our analysis of principles and
assumptions underlying agile processes. It apgbatsertain domains are more amenable than
others to agile development processes. Among tlerinternet application domains, in which
there are significant time-to-market pressuresthadctosts of upgrading to the next release are
minimal. However, it also appears that companiaesdievelop long-lasting, large, complex
systems may not be able to use agile processhsimcurrent form.

Spectrum of Development Approaches

In general, some aspects of a software developpreject can benefit from an agile approach
while others can benefit from a less-agile or npreglictive approach. From this perspective,
practical software development processes can lageckdy drawing techniques from agile as
well as traditional approaches, rather than comgigeéagile” and “traditional” as discrete
process classification points. Some projects @efit from techniques that are more purely
predictive, plan-based, “traditional” processegvhich the process steps are defined in detail
early in the project, and project goals remaintietdy stable throughout the execution of the
process. At the same time, these projects maybalsefit from techniques that are more “agile”
in which process steps and project goals are dyaiyidetermined based on analyses of (1)
experiences gained with previously executed prostegss, (2) similar experiences gained
outside of the project, and on (3) changes in ¢lggirements and development environment.
From this perspective, the agility of a processatermined by the degree to which a project
team can dynamically adapt the process based argeban the environment and the collective
experiences of the developers.

Understanding Agile Software Development Processesge 32

Barry Boehm (2002), in his analysis of agile preesi, has proposed a process spectrum that is
based on the degree of flexibility one has in depielg process plans. Another way of looking
at development processes might be in matrix forith Vagile” characteristics listed across one
dimension and “traditional” ones listed acrossdtieer. The actual process used would be a
combination of the characteristics selected froohed the two dimensions. This approach
would fit in the vein of method engineering (Fire8n& Henderson-Sellers, 2000) where the
specific processes and techniques that are ddsiredproject are selected from a catalog
(method base) of available options.

Most agile process practices are adaptations ctipes that have been touted by methodologists
over the last two decades and that can be fountbne rigorous “traditional” processes. This

has been recognized by agile process advocatepeihbout that the differences lie not in the
individual practices, but in how they are put tbget The cobbling together of best practices to
create processes that fit a development envirorismealues and development goals has been
advocated by a number of methodologists and hattedsn at least one tailorable process
framework, known as OPEN (Firesmith & Hendersorie8g| 2000). In this light, agile

processes can be viewed as reference points alspgcirum of processes by those seeking
processes that have the values embodied in the @roitesses.

Practical processes lie somewhere in between ttedypagile and purely predictive extremes of
the process spectrum. Current agile processedam® to the purely agile end of the spectrum,
but they are not purely agile because they proaigeocess framework that constrains the form
of processes that developers must follow. For exanmpost published works on agile processes
stipulate an iterative, incremental process anaeahe practices such as test-first code
development, pair-programming, and daily review tings with particular formats.

Conclusions

It is important to be aware that agile developnaggroaches are built on many, possibly
implicit, assumptions, and that these assumptiomg@bably not appropriate for all
organizations or development projects. When tisaraptions made by agile development
methods are not in alignment, or even directly bemnfwith those of the organization, managers
in charge of development need to take steps totdda@gile development process if such an
approach is adopted, or be confident in choositigaditional” approach, knowing that it will
better fit their environment. If this is not dora® agile development approach may very likely
provide less than desirable results because dintiitations that result from these assumptions.

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M., & Rordid. (2003). “New Directions on Agile
Methods: A Comparative AnalysisProceedings of the 38nternational Conference on
Software Engineering (ICSE’'03ylay 3-10, 2003, Portland, Oregon, USA, 244-254.

Agile Alliance. (2004 Oct 12). [Online] Availadal http://www.agilealliance.org.

Understanding Agile Software Development Processesge 33

Ambler, S. (2004 Oct 12)Agile Modeling: The Official Agile Modeling (AM)t&i [Online]
Available: http://www.agilemodeling.com.

Auer, K., Miller, R. (2002).Extreme Programming AppliedBoston: Addison-Wesley.

Barghouti, N.S., & Kaiser, G. (1992). “Scaling Bple-Based Software Development
Environments.” International Journal of Software Engineering anddfvledge Engineering
2(1), 59-78.

Basili, V. (1992, September). "Software Modelargd Measurement: The Goal Question
Metric Paradigm,'Computer Science Technical Report Sei@S-TR-2956 (UMIACS-TR-
92-96), University of Maryland, College Park, Mamd, USA.

Basili, V., & Turner, A. (1975). “lterative Enhanoent: A Practical Technique for Software
Development.1EEE Transactions on Software Engineerit@4), pp. 390-396.

Basili, V., Caldiera, G., & Rombach, H. D. (1994he Experience Factory. ” In: Marciniak, J.
(ed.)Volume 1 of the Encyclodepdia of Software Engimgedohn Wiley Sons. Chapter X,
469-476.

Beck, K., & Fowler, M. (2001Planning Extreme Programming Applidgloston: Addison-
Wesley.

Beck, K. (2000).Extreme Programming ExplainedBoston: Addison-Wesley.

Boehm, B. (1986). “A Spiral Model of Software [¥epment and Enhancemen&ACM
SIGSOFT Software Engineering Nqté&(4), 22-42.

Boehm, B. (2002). “Get Ready For Agile Methods, Witare.”IEEE Computer35(1), 64-69.

Boehm, B., & Turner, R. (2004). “Balancing Agiliand Discipline: Evaluating and Integrating
Agile and Plan-Driven Methods.Proceedings of the 38nternational Conference on
Softwre Engineering (ICSE’04May 23-28, 2004, Edinburgh, Scotland, UK, 718-719

Boger, M., Baier, T., Wienberg, F., & Lamersdorf, {001). “Extreme Modeling.” In: Succi,
G.; & Marchesi, M. (eds Extreme Programming Examine@oston: Addison-Wesley.

Briefs, U., Siborra, C., & Schneider, L. (eds.)&39 Systems Design For, With, and By the
Users Amsterdam: North-Holland.

Cockburn, A. (2001)Agile Software DevelopmenBoston: Addison-Wesley.

Crocker, R. (2001). “The 5 Reasons XP Can’t Scate\What to do About Them.” In:
Proceedings of XP 2001

Cusumano, M., & Yoffie, D. (1999). “Software Déwpment on Internet Time.TEEE
Computer 32(10), 60-69.

Dictionary.Com. (2004 Oct 7)Dictionary.Com [Online] Available: http://dictionary.com.

Firesmith, D. G.; & Henderson-Sellers, B. (200)e OPEN Process Framework. An
Introduction Addison-Wesley.

Fowler, M. (1999).Refactoring Boston: Addison-Wesley.

Fraser, S.; Beck, K.;Cunningham, W.; Crocker, Rwler, M.; Rising, L.; & Williams, L.
(2000). “Hacker or Hero? — Extreme Programmingalotd Addendum to the Proceedings
of the 2000 ACM Conference on Object-Oriented Paogning, Systems, Languages, and
Applications (OOPSLA 2000Mineapolis, MN, USA, October 15-19, 2000, pp..5-7
SIGPLAN Notices, 35:1(Dctober), 2000.

Understanding Agile Software Development Procesgesge 34

Glass, R. (2001). “Extreme Programming: The Gdduk Bad, and the Bottom LinelEEE
Software 18(6), 2001, 111-112.

Highsmith, J. (2001) Adaptive Software Development: A Collaborative Aggh to Managing
Complex System®orset House Publishing.

Jacobi, C., & Rumpe, B. (2001). “Hierarchical xPmproving XP for Large Scale Projects”.
In: Succi, G.; & Marchesi, M. (edsExtreme Programming Examine@oston: Addison-
Wesley.

Jacobson, I., Booch, G., & Rumbaugh, J. (199%e Unified Software Development Process
Addison-Wesley.

Jeffries, R., Anderson, A, & Hendrickson, C. (2ROExtreme Programming Installe@oston:
Addison-Wesley.

Kontio, J., Hoglund, M., Ryden, J., & AbrahamssBn,(2004). “Managing Commitments and
Risks: Challenges in Distributed Agile Developmerroceedings of the #anternational
Conference on Software Engineering (ICSE 04y 23-28, 2004, Edinburgh, Scotland,
UK, 732-733.

Larman, C. (2001, ed.). Applying UML and Patterns: An IntroductitmObject-Oriented
Analysis and Design and the Unified Process. Riedtiall.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Oge, K., Shull, F., Tesoriero, R., Williams, L.,
& Zelkowitz, M. (2002) “Empirical Findings in Agilélethods” In: Proceedings of Extreme
Programming and Agile Methods — XP/Agile Univer€®2, August 2002, Springer, 197-
207.

Lyytinen, K. (1987). “A Taxonomic Perspectivelnformation Systems Development:
Theoretical Constructs and Recommendations.” Iid.Boland & R. A. Hirschheim (Eds.),
Critical Issues in Information Systems Resedp 3-41). New York, NY: John Wiley &
Sons.

Martin, R. (2003)Agile Software Development. Principles, Patterms] BracticesPrentice
Hall.

McBreen, P. (2003)Questioning Extreme Programmingddison-Wesley.

MDA (Model-Driven Architecture). (2004 Oct 12)Ofline] Available:
http://www.omg.org/mda.

Newkirk, J., & Martin, R. (2001)Extreme Programming in PracticeBoston: Addison-
Wesley.

Nonaka, I, & Hirotak, T. (1995)he Knowledge Creating Compar@xford: Oxford University
Press.

Osterweil, L. (1987). “Software Processes arev@oe Too.” Proceedings of the'
International Conference on Software Engineerir@SE’'97) March 30 — April 2, 1987,
Monterey, California, USA.

Sfetsos, P., Angelis, L., Stamelos, 1., et al.0O@0 “Evaluating the Extreme Programming
System — An Empirical Study.” Lecture Notes in @aiter Science (Volume 3092),
Springer-Verlag, 227-230.

Understanding Agile Software Development Procesgesge 35

Rational Corporation. (1998). “Rational UnifietbPess: Best Practices for Software
Development Teams”. A Rational Software Corporatighite Paper. [Online]
http://www-
128.ibm.com/developerworks/rational/library/cont689uly/1000/1251/1251 bestpractices_
TP026B.pdf. Visited 2004 Oct 13.

Rising, L., & Janoff, N. (2000). “The Scrum Soéwe Development Process for Small Teams.”
IEEE Softwarg17(4), 2000, 26-32.

Rumpe, B., & Schroder, A. (2002). “Quantitativer®&y on Extreme Programming Projects.”
In: Proceedings of the Third International Conferencekxtreme Programming and
Flexible Processes in Software Engineering (XP208R)y 26-30 2002, Alghero, Italy, 95-
100.

Schwaber, K., & Beedle, M. (20017gile Software Development with ScruPrentice Hall.

Strigel, Wolfgang. (2001, ed.). “Using Extrem@giamming and Other ExperiencesEEE
Software 18(6), 2001, special issue on Extreme Programming

Sutton, Jr., S., Heimbigner, D., & Osterweil, 11995). “APPL/A: A Language for Software
Process Programming ACM Transactions on Software Engineerid(3), 221-286.

Sutton, Jr., S., Osterweil, L. (1997). “The Desaf a Next-Generation Process Language.”
Proceedings of the"BEuropean Software Engineering Conference (ESEC®7ACM
SIGSOFT Symposium on the Foundations of Softwagirigering (FSE'97), Sep 1997,
Zurich, Switzerland, 142-158.

Takeuchi, H.; & Nonaka, I. (1986). “The New Pratbevelopment Game.Harvard
Business Reviewt37-146.

Turk, D., France, R., & Rumpe, B. (2002). “Lintitms of Agile Software Processes.”
Proceedings of the Third International ConferenceeXtreme Programming and Agile
Processes in Software Engineerid@-46, May 26-29, 2002, Alghero, Sardinia, ITALY.

Turk, D., Vijayasarathy, L., & Clark, J. (2003&Assessing the Value of Modeling in Systems
Development: A Research Agenda@toceedings of the"2Annual Symposium on Research
in Systems Analysis and Desidpril 4-6, 2003, Florida International Universityliami,
Florida, USA.

Turk, D., Vijayasarathy, L., & Clark, J. (200303)The Value of Conceptual Modeling in
Database Development: An Experimental Investigati@{' CAISE/IFIP 8.1 International
Workshop on Evaluation of Modeling Methods in SystAnalysis and Design (EMMSAD)
June 16 & 17, 2003, Velden, AUSTRIA.

UML (2004 Oct 12). “OMG Unified Modeling Language&ification”, Version 1.5, formal/03-
03-01. Object Management Group (OMG). [Online]afable:
http://www.omg.org/docs/formal/03-03-01.pdf.

Wake, W. (2002Extreme Programming ExploreBoston: Addison-Wesley.

Wells, D. (2004 Oct 12) [Online] Available: hitfpvww.extremeprogramming.org/.

Williams, L., & Upchurch, R. (2001). “In Suppast Student Pair-ProgrammingProceedings
of the 2001 ACM Special Interest Group on Comp8teence Education (SIGCSE 2001)
ConferenceCharlotte, North Carolina, USA, February, 20047-331.

Understanding Agile Software Development Procesgesge 36

Williams, L., Kessler, R., Cunningham, W., & Jedsi R. (2000). “Strengthening the Case for
Pair Programming.” IntEEE Software17(4), 2000, 19-25.

BIOGRAPHIES

Daniel Turk Computer Information Systems Department, 154 Rdckiaé, Colorado State
University, Fort Collins, Colorado 80523-1277, US¥an.turk@colostate.eduDr. Turk

received a B.S. Degree in Psychology from SoutAelventist University in 1985, a M.S.

degree in Computer Science from Andrews Univeisiti988, and a Ph.D. degree in Business
Administration (Computer Information Systems) fr@rorgia State University in 1999. He is
currently an assistant professor in the Computertmation Systems department at Colorado
State University in Fort Collins, Colorado. Hisearch interests are in the areas of computer
networking, object-oriented systems, software esgiimg, business- and system-level modeling,
software development process modeling, the valueaafeling, and process improvement. He is
a member of the IEEE and the ACM, and has publigiapers iIHEEE Transactions on

Software Engineerind.’Objet, The Journal of Systems and Softwénéormation Technology &
Managementand thdnternational Journal of Human Computer Studies

Robert France Computer Science Department, 228 University Sesv@znter, Colorado State
University, Fort Collins, Colorado 80523-1873, US8bert.france@colostate.ediDr. France
received the Bachelor of Science degree in 1984# fre University of the West Indies,
Trinidad, and the Ph.D. degree in 1990 from Magss$eiyersity in Palmerston North, New
Zealand. He spent two years as a post-doctoraamaser at UMIACS, University of Maryland
at College Park, and six years at Florida Atlabttversity, Boca Raton, first as Assistant
Professor and then as Associate Professor. Hensntly an Associate Professor at Colorado
State University. His research interests are iratiea of software engineering, object-oriented
analysis and design methods, aspect-oriented nmgdahid development of complex systems.
He was a member of the OMG's task force for UMLdnd8 1.4 and is involved with evaluating
UML 2.0 submissions. He is co-editor-in-chief oét8pringer Internationdburnal of Software
and System Modelingvww.sosym.org).

Bernhard Rumpe Software Systems Engineering, Technische UniveBigiinschweig, PO-
Box 3329, D-38023 Braunschweig, GERMANY, b.rumpd®@ue. Dr. Rumpe runs the
Institute for Software Systems Engineering at th@uBschweig University of Technology,
Germany. He started his scientific career at Mukdaiversity of Technology with studies of
computer science and mathematics, and receivatigiema (1992), doctoral (1996), and
habilitation (2003) degrees there. His main interase software development methods and
techniques that benefit form both rigorous and giwakapproaches. This includes the impact of
new technologies such as model-engineering basé&tvinrlike notations and evolutionary,
test-based methods as well as the methodical ahdital implications of their use in industry.

Understanding Agile Software Development Processesge 37

Dr Rumpe is author and editor of eleven books andditor-in-chief of the Springer
Internationallournal of Software and Systems Modelwgvw.sosym.org).

