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Abstract This paper presents new results showing that a very simple stochastic hill climbing algorithm is as good or
better than more complex metaheuristic methods for solving an oversubscribed scheduling problem: schedul-
ing communication contacts on the Air Force Satellite Control Network (AFSCN). The empirical results also
suggest that the best neighborhood construction choices produce a search that is largely a greedy random walk
of the graph induced by the complete neighborhood.
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1. INTRODUCTION

Local search and metaheuristic search methods that are used in conjunction with local search, such
as Tabu search and simulated annealing, have proven to be both robust and effective across a wide
range of combinatorial optimization problems. Yet our understanding of local search is largely intu-
itive: modifications to good solutions are likely to lead to the discovery of other good solutions. No
Free Lunch proofs show that in the general case this intuition is wrong; local search is no better than
random search over all possible functions (Wolpert and Macready, 1995). Of course, we generally as-
sume (without proof) that the problems where local search is found to be effective have some inherent
structure that is being leveraged by local search.

Another common assumption is that carefully crafted neighborhoods are generally better than more
random neighborhoods. The choice of neighborhood is always a compromise. The neighborhoods
need enough connectivity to assure that the space between random starting points and optima can be
traversed in a reasonable number of steps. Over all possible functions, the expected number of local
optima is determined by neighborhood size. For a search space of S points and a neighborhood of size
k, the expected number of local optima for a randomly chosen function is S/k+1 (Whitley et al., 1997).
Large neighborhoods result in few local optima in expectation. However, too large a neighborhood may
mean too much time spent deciding on each step. Given n tasks to schedule, an O(n?) neighborhood
can be very costly to evaluate if one is using steepest descent local search.

This paper examines the effect of neighborhood choice on the performance of local search on a
large real world application: scheduling the Air Force Satellite Control Network (AFSCN) (Barbulescu
et al., 2004b). Approximately 500 contacts with earth orbiting satellites from a set of 16 antennas
are scheduled in each 24 hour period. This problem has been shown to be N'P-complete (Barbulescu

et al., 2004b). For the AFSCN scheduling problem with 500 tasks, the shift neighborhood is of size

w = 124,750. Yet, other methods, such as genetic algorithms and squeaky-wheel optimization

(Joslin and Clements, 1999), find good solutions using less than 50,000 evaluations. Steepest descent
local search with this neighborhood configuration is simply not competitive.

This paper examines the bias found in four variations on the shift neighborhood under next descent
local search. We consider combinations of two binary characteristics (see Table 1): size and order. For



Size \ Order Structured Unstructured
Full | N1: Ordered N2: Random Unrestricted
Restricted | N3: Interaction Restricted | N4: Random Restricted

Table 1. The neighborhood types discussed in this paper.

size, neighborhoods are either complete (the full O(n?) neighborhood) or are restricted. For order, the
neighborhoods are either structured in some way or they are random samples of larger neighborhoods.
The restricted and structured neighborhood (N3) is designed to exploit task interactions that are known
to impact schedule quality.

The results on 12 days of actual data show that local search with the right choice of neighborhood
is just as effective as a genetic algorithm or squeaky-wheel optimization. What is more surprising
is that the normal intuitions about what is the right choice of neighborhood do not hold for AFSCN
scheduling. Randomly constructed neighborhoods drawn from the unrestricted full neighborhood yield
the best performance. Furthermore, the best local search method appears to be nothing more than a
greedy random walk of the graph induced by the search neighborhood.

2. AFSCN SCHEDULING

AFSCN scheduling consists of scheduling communication requests for earth orbiting satellites from
a set of 16 antennas at 9 ground-based tracking stations. Customers submit requests that are scheduled
by humans in a complex arbitration process. This problem is an instance of a single machine prob-
lem with release and due dates where the objective is to minimize the number of late jobs, denoted
1|r;| 3> U; in the machine scheduling literature (Pinedo, 2002). A formal specification and proof for
NP-completeness of this problem are found in (Barbulescu et al., 2004b). We provide here a quick
introduction of the relevant problem characteristics.

Although AFSCN starts as an oversubscribed scheduling problem, all jobs are eventually scheduled
through negotiating relaxed task requirements; so our automated scheduler reduces the effort of the
human schedulers by minimizing one of two objective functions: 1) the total number of tasks in conflict
or 2) the sum of overlaps between conflicting tasks.

In the current formulation, satellites are grouped according to their orbits: low-altitude and high-
altitude. Figure 1 depicts an exemplar request for each altitude. Low-altitude requests (top) typically
have short visibility windows (15 minutes) during which a single contact request can be scheduled;
these tasks usually have few scheduling alternatives. In contrast, high-altitude requests (bottom) have
longer durations (20 minutes or more) with much larger visibility windows. The scheduling alternatives
can include different ground tracking stations. Both request types include information about which
ground stations and times are possible alternatives.

Low Altitude request

High Altitude 4{ request ‘ - 4|

Figure 1.  Anidealized example of low-altitude (top) and high-altitude (bottom) requests in AFSCN. Low-altitude requests
have short visibility windows (15 minutes) with few alternative resources. High-altitude requests have much larger visibility
windows and are longer (20 minutes or more); these requests often have many alternative resources.




ID Date Size #Low #High BestConflicts Best Overlaps
Day1 10/12/92 322 153 169 8 104
Day2  10/13/92 302 137 165 13

4
Day3 10/14/92 311 146 165 3 28
Day4 10/15/92 318 142 176 2 9
Day5 10/16/92 305 142 163 4 30
Day6 10/17/92 299 144 155 6 45
Day7 10/18/92 297 142 155 6 46

Mar07  03/07/02 483 225 258 42 773

Mar20  03/20/02 457 194 263 29 486

Mar26  03/26/03 426 183 243 17 250
Apr02  04/02/03 431 185 246 28 725

May02 05/02/03 419 178 241 12 146

Table 2. Problem characteristics for the 12 days of AFSCN data used in our experiments. /D is used to identify the instance
throughout the paper. Size is the number of requests in the problem. # Low and # High are the number of low and high-altitude
requests in each problem. Best conflicts and best overlaps are the best known values for each problem for these two objective
functions. The best value for Mar07 is a new best value (the prior best was 774).

Our AFSCN dataset consists of 12 days of real data identified by their dates. Table 2 shows charac-
teristics for these problem instances. The seven older days of data are smaller problems that are easily
solved by most of the approaches we have tried. The five newer days are substantially larger problems
that are more difficult.

3. NEIGHBORHOOD SEARCH

We encode potential solutions using a permutation 7 of the n task IDs, [1..n]. A schedule builder is
used to generate solutions from the permutation. In effect, the permutation 7 acts as a priority queue,
and the schedule builder places task requests in the schedule based on the order that they appear in 7.
Each task request is assigned to the first available resource from its list of alternatives and at the earliest
possible starting time. This assignment treats the list of alternatives as a rank order, although the actual
ordering is arbitrary.

When minimizing the number of conflicts, if the request cannot be scheduled on any of the alternative
resources, it is dropped from the schedule (i.e., bumped). When minimizing the sum of overlaps, if a
request cannot be scheduled without conflict on any of the alternative resources, it is placed so as to
create the minimal overlap with previously scheduled requests. The last two columns of Table 2 show
the best-known values for both evaluation functions.

We implemented a next-descent hill-climber that employs the shift operator; we accept new solutions
that are better or equally good. From a current solution 7, a neighborhood is defined by considering
all (n — 1) pairs (z,y) of positions in 7, subject to the restriction that y # x — 1. The neighbor
7 corresponding to the position pair (x,y) is produced by shifting the job at position z into position
y, while leaving all other relative job orders unchanged. If x < y, then 7’ = SHIFT(m, z,y) =
(r(1),..,m(z—1),7(x+1),...,7(y), 7(x),7(y +1),...,7(n)). f x > y, then 7’ = SHIFT(7, x,y) =
(r(1),...,m(y — 1), 7(xz),7(y),..., 7(x — 1), 7(z + 1), ..., m(n)). The pseudocode for the hill-climber
and neighborhood variants are shown in Figure 2.

3.1 Complete Neighborhoods for AFSCN

Due to the discrete nature of the evaluation functions and the influence of the schedule builder,
most of the options in the shift neighborhood are equivalent — steps on a plateau. Approximately



N1-HILL-CLIMBER(7) N2-HILL-CLIMBER(T) RESTRICTED-HILL-CLIMBER(T, )

for num-evals from 1 to 50000 for num-evals from 1 to 50000 for num-evals from 1 to 50000
do z +— RANDOM(N) dox —y—0 doxr—y«—0
o —7 whilez =yorz =y —1 whilez =yorz =y —1
for y fromOto N — 1 do z < RANDOM(N) do z +— RANDOM(N)
doifr =yorz=y—1 y < RANDOM(NV) y «— pos(m, R-ADJ(z, G))
then continue 7' «— SHIFT(T, z,y) 7’ «— SHIFT(7, z,y)
T « SHIFT(T, x,y) if EvaL(7’) < EVAL(7) if EVAL(7’) < EvAL(7)
if EVAL(T) < EVAL(7’) then 7 — 7’ then 7 — 7’
then 7/ «— 7 return m return T
return 7’/

Figure 2. Pseudocode for each of the algorithms we use in this paper. N1-HILL-CLIMBER selects a random « position
and shifts it into all other possible positions. N2-HILL-CLIMBER selects random x and y positions. RESTRICTED-HILL-
CLIMBER selects a random « and chooses y from the tasks adjacent to vertex x in the interaction graph G. In this pseudocode,
RANDOM(N) returns an random integer uniformly from (0, N — 1), R-ADJ(z, G) returns the label of a randomly selected
adjacent neighbor of z in G, and POS(7, value) returns the position of value in .

40% of the entire neighborhood results in exactly the same schedule (Barbulescu et al., 2004a); closer
examination reveals that 60-80% are equal-valued though they are translated into different schedules.
Our first intuition was to use a structured, complete neighborhood. The N1 ordered neighborhood
randomly chooses a task (i.e., a permutation position) x, and then evaluates the neighbors produced by
systematically shifting = into each possible n — 1 other positions; if no position is acceptable, another x
is selected without replacement. Unfortunately, although systematic and easy to program, we found this
neighborhood performed poorly (Barbulescu et al., 2004a). Further investigation showed a detrimental
interaction between the domain and the schedule builder. When a shift produces a poorer evaluation,
it usually signals that = is now blocked by the earlier task and no shift of z later in the schedule can
affect that blockage, but many evaluations may be expended trying. If we count the kinds of moves
seen during search under N1, more than 80% of the considered changes result in worse evaluations;
of the remaining 20% (which constitute the actual moves taken), most are plateau moves (equivalent
evaluations) and only a few are actually improving moves. This neighborhood induces a significant
negative bias against improving or equal moves.

To mitigate this bias, the N2 unrestricted neighborhood operator randomly selects both x, the task
to be shifted, and y, the new position where z is to be inserted. Search algorithms that use this type of
random neighborhood move are called “Stochastic Hill Climbers" because they do not systematically
explore a neighborhood (Ackley, 1987). N2 results in a major performance improvement, producing
performance competitive with the best previous solutions.

3.2 Restricted Neighborhoods for AFSCN

Restricted “critical path" neighborhoods are key to achieving good performance in job-shop and
flow-shop scheduling domains. Given that 40% of shifts result in no change to the schedule in AFSCN,
one would expect that restricting the search neighborhood to only the tasks that induce a change would
produce more efficient search.

Given a task u to be moved, the N3 move operator restricts neighbors to only those tasks that are
known to interact with u. More formally, for tasks u and v we define interacts(u,v) = true if, on
the same resource, r, < 7, < d, orr, < d, < d,, where r and d are the release and due dates,
respectively. Given alternative scheduling resources, two tasks interact when they contend on one
or more common resources. The “interaction” heuristic bears some resemblance to other contention
measures, such as the SumHeight heuristic (Beck et al., 1997), where contention is measured across
resources. Interaction uses a similar idea but expresses the pair-wise contention across tasks.
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Figure 3. An example of interaction between five requests scheduled on four resources. For this idealized problem, the
edge set E = {{A, B},{A,C},{A, D}, {B,C},{D, E}}.

Task interaction can overestimate the actual amount of contention in the schedule. It includes the
entire time window (from release to due date) and disregards processing time. In some situations, it
may be possible to schedule both tasks within their respective time windows on the same resource.
One of the tasks could also be scheduled on another alternative resource. We calculate pair-wise task
interaction for all tasks to build an undirected, unweighted graph where vertices are the tasks and
existing edges indicate interaction.

DEFINITION 1 An interaction graph, G, is an undirected graph, G = (V, E), where the set of vertices, V, is the set of

scheduling tasks and E consists of edges between vertices {u, v} | u,v € V,u # v, interacts(u,v) = true.

The interaction graph is designed to provide information about the potential conflict between all
pairs of tasks in the schedule. Figure 3 shows a simple interaction graph for an idealized oversubscribed
problem. Note that interaction is not transitive; it is possible for two tasks that do not interact to both
interact with a third task. This case is shown in the example, where tasks A and E both interact with D,
but not with each other.

We calculate the interaction graphs for all days of data. The computational cost of calculating the
interaction graph is small (less than a second). Figure 4 illustrates the largest connected component

Figure 4. A force-directed layout of the largest connected component in G for MarQ7. The problem contains a single
connected component that spans most (92%) of the problem; the remaining tasks have zero degree. High-altitude tasks (in
red) are the most connected tasks and are usually in the center. Low-altitude tasks (in blue) are less connected and tend to be
along the outside of the graph.



Tasks | Connected  Avg. Degree L Tasks of Zero Degree
Dayl 322 295 6.01 4.61 27 (0.083)
Day2 302 273 6.31 4.61 29 (0.096)
Day3 311 281 6.10 4.60 30 (0.096)
Day4 318 289 6.20 4.57 29 (0.091)
Day5 305 274 6.20 4.61 31 (0.102)
Day6 299 274 6.05 4.65 25 (0.084)
Day7 297 271 6.10 7.01 26 (0.088)
March0702 483 440 8.32 3.80 43 (0.089)
March2002 457 426 8.78 3.67 31 (0.068)
March2603 426 396 7.38 4.02 30 (0.070)
April0203 431 396 7.14 4.96 35 (0.081)
May0203 419 388 7.09 5.03 31 (0.074)

Table 3. Characterization of G for each day of AFSCN data. The first column shows the number of tasks in the problem; the
second shows the number of tasks connected to the largest connected component. The next two columns show the average
degree and the average path length, L. The last shows the number of zero degree tasks in each problem. The number in
parenthesis is the ratio of zero degree tasks in the problem.

of G for Mar(7; this component includes 92% of the vertices. Tasks are roughly in order by ID from
left-to-right. Table 3 shows a summary of the largest connected component for all the days of data. The
connectedness of these graphs is sparse (|E| < (2) < O(n?) ) and shows a low average path length
between any two tasks.

The N3 move operator uses G to restrict the neighborhood explored by local search; the goal of using
N3 is to focus search on those adjacent new solutions that force a change in the schedule. We iteratively
choose a random position = and shift the task in that position to the position of a randomly selected,
interacting neighbor. N3 dramatically reduces the neighborhood size from O(n?) to the average degree
per vertex (see Table 3, column ‘Avg. Degree’). So N3 also reduces the expected number of neighbors
evaluated before selecting a move.

To control for the effects of the structure in the neighborhood, we also implemented a fourth neigh-
borhood: a random, restricted neighborhood. The N4 move operator creates a random graph with the
same degree per vertex as the interaction graph. Each edge in the random restricted graph is randomly
connected to another randomly chosen task (excluding itself). N4 shifts the task in position z to a
randomly selected neighbor in the graph.

n
2

4. EXPERIMENTS

We first compare the performance of the four neighborhoods. Table 4 shows the final evaluation dis-
tributions for 50,000 evaluations over 90 runs. N1 reaches the best-known values much less frequently
than the other three neighborhoods, while the other neighborhoods appear equivalent. We focus our
analysis on the differences found between the unrestricted and restricted neighborhoods.

Although the minimum values of N2, N3 and N4 are identical, the means and standard deviations
vary. Table 4 lists the p-values for the N2 (unrestricted) neighborhood compared to each of the other
three neighborhoods using a one-tailed t-test. In nearly all cases, the N2 distributions have lower means
and are significantly different than the distributions of the results of other neighborhoods. Thus, the
restricted neighborhoods hurt more than they help search for AFSCN.

In addition, informed restriction (N3) does not dominate random restriction (N4). Using a t-test
(o < .05), N4 is significantly better on Dayl, Day2, Day3, and Day5 in both evaluations; it is also
better on Apr02 in minimizing conflicts.



N1 N2 N3 N4

p min I o min I o p  min 1 o p min I o

Dayl || - 9 11.07  1.32 8 8.06 023 | - 8 9.64 093 | - 8 9.19 098

Day2 || - 4 503 102 | 4 4.00 0.00 | - 4 486 0.83 | - 4 451  0.67

Day3 || - 4 6.74 147 3 3.00 000 | - 3 336 0.6l - 3 3.18 041

Day4 || - 4 6.99 155 2 2.00 0.00 | - 2 280 062 | - 2 298  0.65

Days5 || - 4 6.90 123 4 409 029 | - 4 542  0.81 - 4 511 0.76

Day6 || - 6 9.70  1.67 6 6.00 0.00 | - 6 6.29 046 | - 6 6.46  0.64

Day7 || - 6 791 112 | 6 6.00 0.00 | - 6 6.44 066 | - 6 6.31 051

Mar07 || - 53 5802 255 | 42 42,04 021 | - 42 4290 075 | - 42 42.87 0.78

Mar20 || - 32 4027 270 | 29 29.01 0.11 - 29 2913 034 | - 29 2929 046

Mar26 || - 21 2594 214 | 17 1712 033 | .77 17 1709 029 | .02 17 1724 043

Apr02 || - 32 3628 217 | 28 28.00 0.00 | - 28 2887 1.00 | - 28 2859 0.86

May02 || - 14 1679 149 | 12 1200 0.00 | ns 12 1200 0.00 | * 12 1208 0.27

NI N2 N3 N4

p  min m o min m o p  min I o p  min m o
Dayl || - 104 172.18 3329 | 104 10573 1.49 - 104 12030 1576 | - 104 11249 852
Day2 | - 13 36.57 17.20 | 13 13.00  0.00 - 13 29.72  16.63 | - 13 21.80 1091
Day3 || - 35 8222 2486 | 28 28.00  0.00 - 28 3137 6.77 - 28 29.43 4.17
Day4 | - 19 6482 2789 | 9 9.13 0.72 - 9 20.67 1195 | - 9 20.64  10.43
Days5 | - 31 65.41 22.00 | 30 30.01 0.11 - 30 4713 1365 | - 30 4123 1059
Day6 | - 50 96.98 27.60 | 45 45.00  0.00 - 45 49.03 8.83 - 45 47.31 6.58
Day7 | - 49 8759 2538 | 46 4600 0.00 - 46 4790 5.14 * 46  47.16  3.77
Mar07 || - 1173 136428 89.46 | 773 77859  7.64 - 773 78843 1330 | - 773 787.81 1427
Mar20 || - 697 852.50  73.47 | 486 495.08 6.32 - 486 50136 1251 - 486 50133 13.07
Mar26 || - 425 62423 8252 | 250 25896 25.67 | .38 250 260.14 2550 | .07 250 26622 39.11
Apr02 || - 958 99526 68.72 | 725 73142 1376 | - 725 75480 29.63 | - 725 75696 22.54
May02 (| - 170 24376 2871 | 146 146.00 0.00 | ns 146 146.00 0.00 * 146 14633  1.25

Table 4. Summary statistics for the final evaluation distributions of conflicts (upper table) and overlaps (lower table). These
statistics are taken over 90 runs of 50,000 evaluations each. P-values are computed between unrestricted search and restricted
search using a one-tailed t-test that one distribution is lower. High values are written as numbers. Otherwise, a dash indicates
significance at the v < .0001 level; a star indicates significance at the o < .01 level; insignificance is marked by ‘ns’.

We conjecture that unrestricted search (N2) converges to the best known values more frequently than
restricted search (N3 and N4). To judge this hypothesis, we counted the number of converging and non-
converging runs (out of 90) of these three neighborhoods for each day of data. We then performed a
x? test that the proportion of converging runs was the same for N2 as compared to N3 and N4. Mar26
and May02 had similar counts, so the test was not significant. For the other ten days of data, this test
revealed that the success of convergence significantly depends on the neighborhood (p < .01).

One hypothesis for such variance in the performance of these algorithms is that non-converging runs
get stuck on large, suboptimal basins. If this were true, one might expect the final evaluations to be
distributed somewhat uniformly above the best-known values. We examined histograms of the final
evaluations over 90 runs and found that the non-converging runs end close to the best known values.
N2 almost always gets more runs closer, but the difference is still small. For minimizing conflicts,
N2 usually gets within one conflict while N3 usually gets within three conflicts. For overlaps, there is
slightly more complex behavior. On the seven older days of data, N2 finds solutions within one or two
units of overlap while N3 usually gets within 100. On the five new days of data, N2 and N3 closely
mimic each others’ final evaluations. Most runs reach within 100 of the best known values.

To assess local differences in neighborhoods, we also examined the number of improving, non-
improving, and equal moves under each neighborhood. For the improving moves, we also histogram the
change in evaluation. We attempted to correlate these changes in evaluation with specific tasks or task
attributes, but found little correspondence of move quality with problem specific information. These
results, coupled with the lack of competitive advantage for N3 over N4, lead us to the final conclusion



in our examination of our structured restricted neighborhood: the structured interaction graph provides
little advantage over a randomly selected restriction. These graphs do reduce the neighborhood but still
remain connected enough such that they can find reasonable solutions.

S. SUMMARY AND FUTURE WORK

We examined the effects of problem motivated structure and restricted neighborhood size on the
performance of neighborhood operators for a real world scheduling application, AFSCN. Following
conventional wisdom, we hypothesized that we could reduce the neighborhood using problem specific
structure in a restricted neighborhood. The result was somewhat surprising in that this significantly de-
graded performance (according to a one-tailed t-test). Search using a restricted neighborhood converges
to the best-known values less frequently and shows no major improvement in taking steps that change
the evaluation any more than unrestricted search. Moreover, randomly restricted search significantly
outperforms structured restricted search for almost half of the problems.

For AFSCN, a restricted neighborhood markedly under-performs an unordered, full neighborhood
in next-descent local search. Our evidence suggests that the search is a random walk. We conjecture
that search can be modeled as a Markov chain, and we are currently developing a model of the shift
neighborhood for unrestricted search. Preliminary results indicate that this model may be quite accurate
for AFSCN. We are also extending these analyses to another oversubscribed scheduling domain.
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