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Abstract- Testing of VLSI circuits can cause
generation of excessive heat which can damage
the chips under test. In the random testing
environment, high-performance CMOS circuits
consume significant dynamic power during test-
ing because of enhanced switching activity in
the internal nodes. Our work focuses on the fact
that power minimization is a Traveling Sales-
man Problem (TSP). We explore application of
local search and genetic algorithms to test set
reordering and perform a quantitative compari-
son to previously used deterministic techniques.
We also consider reduction of the original test
set as a dual-objective optimization problem,
where switching activity and fault coverage are
the two objective functions.
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1 Introduction

The growing size of very large scale integration (VLSI) cir-
cuits, high transistor density, and popularity of low-power
circuit and system design are making minimization of power
dissipation an important issue in VLSI design. The amount
of heat generated limits the density of a chip. Reduction
of power dissipation also permits the use of smaller pack-
age size. This can reduce weight of portable products and
prolong battery life.

Power dissipation during test application also plays a key
role. Often during testing, test patterns leading to much
larger power dissipation are applied which never occur dur-
ing the normal mode of operation of the given circuit. Ex-
cessive power dissipation during testing could damage the
chip, or prevent periodic testing of such equipment. In the
case of multi-chip modules, it has been observed that the
potential advantages in circuit density and performance of
the technology cannot be realized without access to fully
tested, unpackaged integrated circuits or what are called
“bare die”. Absence of packaging precludes the use of tra-
ditional heat removal techniques during the bare die testing.
In such cases, power dissipated during testing can adversely
affect the overall yield, thus adding to the production cost
[1].

Prior experimental results [1], [2], [3], [4] show that test
vector ordering in the context of combinational and sequen-
tial circuit testing can reduce power dissipation by an order
of magnitude compared to the original unordered test set
generated by a traditional automatic test pattern generator

(ATPG). The test set re-ordering problem can be reduced
to the well-known traveling salesman problem (TSP), where
the individual test vectors are the cities and the Hamming
distance between any two test vectors is the distance be-
tween those two cities [1], [15].

Chattopadhyay and Choudhary have shown [2] that by
sacrificing a small amount of fault coverage it is possible to
select a representative subset of test vectors generated by an
ATPG and achieve a further decrease in power dissipation.
Fault coverage is defined as the number of faults detected
divided by the total number of faults under a given fault
model [20], [21].

One part of this work is focused on quantitative com-
parison between two search methods to TSP: a well-known
2-opt heuristic and a genetic algorithm-based approach. Se-
lecting an appropriate crossover operator for genetic algo-
rithms (GAs) is important when dealing with permutation
optimization problems. Many scheduling problems [19] can
be categorized as order-based, because relative position of
elements in a permutation matters a great deal. The travel-
ing salesman problem, on the other hand, is an adjacency-
based problem where the focus shifts from relative ordering
to adjacency. That is, for two elements A and B of a per-
mutation, the fact that A comes before B is no longer as
important as whether A is adjacent to B, usually due to
some cost associated with going from A to B. We make use
of weight-biased edge crossover [12] for test set reordering.

We also investigate a potential for combining 2-opt with
the GA approach. This yields a marginal improvement in
power dissipation on several benchmark circuits. All re-
sults are compared to deterministic techniques that have
been previously applied to the problem of dynamic power
minimization.

In the other part of this paper we revisit the idea of
test set reduction by highlighting the trade-off between high
fault coverage and low power dissipation. Deb’s NSGA-II
[13] is used to construct a Pareto-front of multiple subsets
from the original generated test vectors. We argue that gen-
erating a Pareto-front provides more flexibility in selecting
a proper solution for some particular application than gen-
erating a single solution using a fixed weighted objective
function that combines fault coverage and power dissipa-
tion, as observed in [2].

2 Background and Related Work

The two components of power dissipated in a CMOS circuit
[11] are i) static dissipation due to leakage current through
the channel and the tunneling current through the gate ox-
ide drawn continuously from the power supply (Pst), and
ii) dynamic dissipation due to switching transient current
(Psc) and charging and discharging of load capacitances



π1 π2

Test vector Output vector Test vector Output vector
i3 i2 i1 i0 k f0 f1 i3 i2 i1 i0 k f0 f1

0 0 0 1 0 0 0 1 0 0 0 0 0 1
1 1 1 1 1 1 1 0 0 0 1 0 0 0
0 0 1 1 1 1 0 0 0 1 1 1 1 0
1 0 0 0 0 0 1 1 1 1 1 1 1 1
Switching activity 2 2 3 Switching activity 1 1 2

Table 1: Switching activity for two test vector orderings

Figure 1: An example combinational circuit

(Pd). The total power dissipation (Ptotal) is given by

Ptotal = Pst + Psc + Pd (1)

As in [1], Pst and Psc are not considered here.
Pd is the power required to charge and discharge the

output capacitance load of every gate. Pd is approximated
as follows [1]:

Pd = 1/2 × C × V 2
DD × NG × f (2)

where C is the output capacitance, VDD is the supply volt-
age, NG is the total number of gate output transitions
(1 → 0 and 0 → 1), and f is the clock frequency.

Equation (2) implies that power is dissipated at a node
when the input vector is changed from Ti to Ti+1. Let
PC(Ti, Ti+1) be the total power dissipated in a combina-
tional circuit C when inputs change from Ti to Ti+1. Then

PC(Ti, Ti+1) =
X

j∈SetofNodes

1/2×Cj ×V 2
DD ×NGj

×f (3)

Thus, power dissipated at a node is proportional to the
number of transitions (NG) at that node. This depends on
the gate delays. Under the zero-delay model, all gates are
assumed to have zero delay. The four possible transitions
and the corresponding logic levels in this model are:

• static zero: logic level remains zero

• static one: logic level remains one

• rising : logic level changes from zero to one

• falling : logic level changes from one to zero

The alternative is the general-delay model where gates can
have arbitrary delays, and, therefore, takes the glitches into
account. In this paper, we have assumed the zero-delay
model.

Given a test set T = {t1, t2, ..., tn}, the total switching
activity of a combinational circuit C is a function of the
relative ordering of the test vectors (ti) applied to it.

To illustrate this point, let us take a look at an example
combinational circuit shown in Figure 1. The circuit has
four primary inputs (i0, i1, i2 and i3) and two primary
outputs (f0 and f1). The only internal output of the circuit
is denoted by k. A test set with four test vectors {0001,
0011, 1000 and 1111} is applied in two different orders: π1

= {0001, 1111, 0011, 1000} and π2 = {1000, 0001, 0011,
1111}. As observed in Table 1, the total switching activity
of all the gate outputs (i.e. k, f0, and f1) for π1 is 2+2+3
= 7 and that for π2 is 1+1+2 = 4.

We can also evaluate the stuck-at fault coverage (defined
in [21]) for this example circuit. For the first test sequence
π1, the fault coverage is 13/18 = 72.22%. The second test
sequence will yield the exact same value because the ex-
act same test vectors have been applied. Relative order of
test vectors only affects switching activity in combinational
circuits, not the fault coverage. Therefore, π2 would cause
less power dissipation compared to π1 with the same fault
coverage and stands as a better choice in this instance.

Power dissipation issues are addressed at various stages
of circuit design. For example, circuit synthesis to reduce
the average switching activity is described in [5]-[7], tech-
nology mapping that targets low power dissipation is con-
sidered in [8] and [9], and physical design for low power is
considered in [10].

In the domain of circuit testing, low-power dissipation
test methods have been investigated thoroughly for combi-
national and sequential circuits. Dabholkar et al. [1] have
proposed several heuristics both for combinational circuits
and scan-based sequential circuits. They show that com-
puting an optimal order of the test vectors such that the
switching activity of a combinational circuit is minimized is
an NP-hard problem. They categorize their heuristics for
combinational circuits as with or without repetition of test
vectors. Christofides’s heuristic and a greedy heuristic are
used for the case of test vector reordering without repeti-
tion. Christofides’s heuristic uses a minimum spanning tree
based method to find a Hamiltonian path of the transition
graph composed from the test set; the algorithm has O(n3)
complexity. A greedy heuristic is also proposed which ex-
hibits better running time for all the benchmark circuits.
Kruskal’s minimum spanning tree algorithm is used for the
second case where repetition of test vectors is allowed. How-
ever, in the context of dynamic power minimization during
testing, a test set without repetition of test vectors is al-
ways better than a test set with repetition in the sense that
repeated vectors do not contribute to the increment of fault
coverage but increase the total switching activity.

A genetic algorithm-based approach for combinational
circuit testing was proposed by Chattopadhyay and Choud-
hary [2]. While the actual vector reordering was done using



Figure 2: Vertices of a hypercube from the previous
example

O(n2) Prim’s Algorithm, the chromosomes of Chattopad-
hyay’s genetic algorithm were used to represent subsets of
the original test set. Using a number of operators, they were
able to find a remarkably low value for switching activity
at the cost of reduced fault coverage. More specifically, a
3-4% decrease in fault coverage has been demonstrated to
yield a 70% reduction in switching activity [2].

3 Problem Definition

As pointed out by Latypov [15], reordering of a test set is
the well-known traveling salesman problem. Dabholkar et
al. give the formal definition [1] as follows: given a combi-
national circuit C and a set of input vectors T = {t1, ..., tn},
compute an optimal input order 〈s1, ..., sn〉 of T where
si = tπ(i), where π is a permutation of {1, ..., n} such that

n−1
X

i=1

PC(si, si+1) is minimized

for the power dissipation function PC (refer to equation
(3)). The proof of NP-hardness for this problem is pre-
sented in [16].

Because power dissipation is directly proportional to
switching activity, we can simplify the problem definition
to the following model. Consider combining the output of
all nodes into a single bitstring. This yields a hypercube
vertex in n dimensions, where n is the bitstring length.
The goal can then be expressed as finding the shortest path
through the subset of vertices representing the outputs of
all nodes of a circuit. Note that switching activity asso-
ciated with going from test vector Ti to test vector Ti+1

is the Hamming distance between two corresponding bit-
strings. This distance is equivalent to the number of edges
traversed when traveling from one vertex to the other.

Figure 2 ties these concepts with our example from the
previous section. The output of all gates during application
of four test vectors in Table 1 yields four vertices of a 3-
dimensional cube: {000, 111, 110, 001}.

In the context of test set reduction, the problem defini-
tion becomes multi-objective with Pd =

Pm−1
i=1 PC(si, si+1)

being minimized for some subset of T with cardinality
m ≤ n, where the subset itself is chosen such that it pro-
vides maximum fault coverage while yielding the lowest
value of Pd. Due to the trade-off involved, there is rarely a
single answer to this multi-objective problem and a set of
optimal solutions needs to be located.

4 Techniques Applied

A number of deterministic heuristics have already been ap-
plied to test vector reordering [1], [2]. While the three
heuristics proposed by Dabholkar et al. [1] for combina-
tional circuits show significant reduction in the amount of

switching activity, the use of Prim’s algorithm for test vec-
tor reordering by Chattopadhyay and Choudhary [2] turns
out to be not the most efficient choice for this problem.

For Euclidean TSP problems where the triangle inequal-
ity holds, Prim’s algorithm is used to construct a mini-
mal spanning tree over the set of cities; the resulting span-
ning tree must be less than the optimal Hamiltonian circuit
which visits all of the cities. A non-Hamiltonian circuit can
be constructed that traverses each edge of the spanning tree
twice: in effect, the first traversal goes “out” over the span-
ning tree, and the second traversal returns to the origin.
Using the triangle inequality, the non-Hamiltonian circuit
can be converted into a Hamiltonian circuit by dropping
cities from the route if they have already been visited. De-
note the cost of this solution by Cs. Let Cm denote the
cost associated with the minimal spanning tree, and let C∗

denote the optimal solution to the TSP. The advantage of
this method is that it guarantees a solution that is within
a factor (i.e., a ratio bound) of 2 of the optimal solution for
Euclidean TSP problems [22]:

Cm < C∗ ≤ Cs ≤ 2Cm

However, for the general TSP (where the triangle inequality
does not hold), one can show that this method cannot guar-
antee a ratio bound on the quality of the optimal solution
unless P = NP . As pointed out by Dabholkar et al., the
triangle inequality does hold for test vector reordering prob-
lem if the zero-delay model is assumed, though the property
is not guaranteed to hold for the general-delay model.

The major contribution of this paper is application of
two search techniques to the problem of dynamic power
minimization. All previous work on test vector reordering
in combinational circuits has utilized algorithms that con-
structed a path through the corresponding TSP graph one
task at a time in a deterministic fashion [1], [2]. We present
a comparative study between these deterministic techniques
and two search algorithms that start with some initial ran-
dom path and iteratively refine it. The first approach we
consider is a well-known 2-opt heuristic. This heuristic is
the most basic form of local search for TSP problems and,
therefore, serves as a good baseline for comparison. The
second approach is a specialized crossover operator for a
genetic algorithm framework. The method has been demon-
strated to perform very well on TSP benchmarks by its au-
thors [12]. Following is a more detailed description of each
technique.

4.1 2-opt Heuristic

The 2-Opt local search method is a very general and robust
local search operator for the TSP. The idea behind 2-opt is
quite simple. Starting with some initial path, a pair-wise
edge comparison is performed to decide whether two edges
should swap vertices. For instance, in Figure 3, the decision
is based on sums BC + FG and BF + CG for two edges
BC and FG. If BF + CG < BC + FG, then vertices C
and F are swapped to yield two new edges: BF and CG.
To preserve all other edges, the order of traversal for all
vertices between C and F is reversed. Such pair-wise edge
comparison is performed iteratively for all possible pairs of
edges until the path converges to a locally optimal solution.

When the TSP problem is Euclidean, the application of
2-Opt until a local optimum is found guarantees that the
resulting Hamiltonian circuit has no crossed edges. Con-



Figure 3: Example of 2-opt heuristic

verting a minimal spanning tree into a Hamiltonian circuit
will typically leave crossed edges, so that the resulting solu-
tions are not locally optimal under 2-Opt. When the TSP
problem is non-Euclidean, it is no longer meaningful in the
general case to refer to crossed edges; nevertheless the solu-
tions produced by local search using 2-Opt are still locally
optimal under the same neighborhood structure.

It is easy to see that the complexity of a single 2-opt iter-
ation is O(n2) partial (or edge) evaluations, where n is the
path length. Every edge has to be compared to every other
edge and the number of edges is linearly proportional to the
path length. However, there is no upper bound on the num-
ber of iterations and the search can potentially take O(n!)
time. For our experiments, we have implemented the next-
descent version of 2-opt, where an iteration is completed at
the first encounter of an improving move and the search is
terminated when all edge pairs have been compared with no
improvement. In our experience, 2-opt converged to a lo-
cal optimum in approximately 2n moves for smaller circuits
and 3n moves for larger ones. The number of iterations
was equal to the number of moves due to the next-descent
nature of the algorithm.

4.2 Weight-Biased Edge Crossover

Julstrom and Raidl proposed the Weight-Biased Edge
Crossover operator for solving TSP problems [12]. For the
purposes of our work we have concentrated on its greedy
version (GX1 in [12]). Our choice was guided by the fact
that GX1 was not only able to locate better solutions on
TSP benchmarks [17] but also showed the fastest conver-
gence rate over its random and heuristically-guided coun-
terparts (see comparison to IX, RX, and TX operators in
[12]). The latter feature is particularly important when
dealing with expensive objective functions.

Weight-Biased Edge Crossover (WBEX) takes two par-
ent permutations and generates a child in the following fash-
ion. Pick a random vertex as a starting point. Generation
of a path is then an iterative process where at every itera-
tion the shortest edge from the two parents connecting the
current vertex to an unvisited one is chosen. If there is no
such edge, an unvisited vertex is chosen at random.

Generating a new child is approximately 3n edge eval-
uations, where n is the chromosome length. To be exact,
adding the first vertex to the child involves evaluating at
most 4 edges — two from each parent — to find the short-
est edge. Adding all consecutive vertices requires evaluation
of at most 3 edges, because the tour cannot go back. A total
of n−1 vertices need to be added to the child, which yields
an upper bound of 3 ∗ (n − 2) + 4 = 3n − 2 evaluations.

4.3 Multi-objective GA

Another goal of this paper is to explicitly demonstrate the
trade-off between low switching activity and high fault cov-
erage. Test set reduction is a problem where the goal is
to find and order a subset of the original generated test
vectors that minimizes switching activity while maintain-
ing high fault coverage. The two extremes are, of course,
the entire original test set (high fault coverage and high
switching activity) and the null set (zero switching activ-
ity and zero fault coverage). The previous work on test set
reduction [2] has assumed fixed weight values for the two
objectives. We argue that optimality of a solution depends,
in some sense, on application. If a subset A results in lower
switching activity as well as lower fault coverage than sub-
set B, deciding whether A is better than B is not obvious.
Therefore, it might be desirable to present a set of optimal
solutions that the end-user will be able to choose from.

We have used Deb’s NSGA-II [13] to generate sets of
solutions. NSGA-II is a fast and elitist genetic algorithm
framework designed for dealing with multi-objective opti-
mization problems. It involves no additional parameters
and any traditional single-objective GA framework can be
easily scaled up to it. While highly competitive, NSGA-
II is not the only technique capable of approaching multi-
objective problems. A number of other techniques have
been proposed in the literature, both in the context of ge-
netic algorithms and evolutionary strategies [26], [24], [25].
Following is a brief description of how NSGA-II works.

Given two solutions A and B to a multi-objective prob-
lem, we can say that A dominates B only if it is better
or equal to B with respect to every objective and strictly
better than B in at least one objective. In our case, A dom-
inates B if A yields lower switching activity and higher or
the same fault coverage than B, or A yields lower or the
same switching activity and higher fault coverage. Using
this definition, one can now extract a set of non-dominated
individuals from a population. This set of solutions is the
first non-dominated Pareto-front. All remaining solutions
are dominated by one or more members of the first Pareto-
front and can, therefore, be considered worse.

We can further extract the second non-dominated
Pareto-front from the remaining portion of the population.
All solutions in the second front are worse than members
of the first Pareto-front but better than everything that
doesn’t belong to the first or the second fronts. Continuing
to extract one non-dominated Pareto-front after another,
we can group the entire population into fronts with a nat-
ural ordering: individuals belonging to a front with lower
index are considered more fit.

It is common to find multiple fronts over the first few
generations. However, as the search progresses and the
entire population converges to the first Pareto-front, fur-
ther ordering of individuals requires an additional met-
ric. NSGA-II employs crowding distance to sort individuals
within the same front. To compute crowding distance for
an individual, we average the distances to its immediate
neighbors along the same front in every dimension (dimen-
sions correspond to objective functions). Larger crowding
distance represents more fit individuals.

The intuition behind this metric is to favor sparsely pop-
ulated regions of a front when selecting individuals for re-
combination. By participating in recombination, these in-
dividuals are more likely to create offsprings that will “fill



in the gaps” in the front yielding a more diverse set of
solutions. Diversity is an important issue in any multi-
objective optimization problem. Uniformly distributed so-
lutions along the optimal Pareto-front provide more flexi-
bility to the end-user than, for example, one dense cluster
of solutions.

5 Experimental Results

5.1 Test Set Reordering

The first set of experiments dealt exclusively with test set
reordering. No reduction was performed at this stage. We
used ATALANTA [14] — an automatic test pattern genera-
tor — in its default mode to generate a compacted test set
with very high fault coverage for ISCAS85 combinational
benchmark suite. A short summary of this suite is given
in Table 2. The last column presents the average number
of test vectors generated by ATALANTA (these averages
were computed by running ATALANTA 30 times for every
circuit).

A fault simulator HOPE [18] (designed to evaluate test
coverage) was run on a modified circuit definition — where
all outputs of internal gates have been declared as primary
to retrieve outputs of internal gates as well corresponding
to every test vector. After computing the transition matrix
for TSP, we applied the next-descent implementation of 2-
opt and a generational GA using switching activity as the
objective function. The experiments using the GA utilized
a population size of 100, two hundred generations, tour-
nament selection, WBEX, and no mutation. The results
over 30 trials can be found in Table 3, where the best tech-
nique for every benchmark problem has been highlighted
in bold. The average percent improvement over the total
switching activity of an unordered set by using the high-
lighted technique is given in the last column. Although
WBEX generally outperforms 2-opt, it does so with statis-
tical significance under p < 0.05 only for c432, c499, and
c1355.

In our experience, 2-opt runs significantly faster than
the GA-based approach because the former does not have
the overhead associated with maintaining a population. All
n2 edges of the TSP can be computed once at the begin-
ning and stored internally as a matrix. Performing an edge
evaluation, associated with going from one test vector to
another, implies nothing more than accessing an entry of
that matrix.

Table 4 shows how our results compare to determinis-
tic heuristic-based methods used in the literature [1], [2].
The genetic algorithm-based approach and 2-opt prove to
be competitive, particularly on the smaller benchmark cir-
cuits. Not surprisingly, Prim’s algorithm demonstrated the
worst performance and stands as a poor choice for test set
reordering.

Besides running 2-opt and WBEX separately, we have
also combined the two approaches (column WBEX + 2-opt
in Table 3) by applying 2-opt to every individual in the
population at every generation. Such combination yields
marginal improvement for several benchmarks, though in-
significant under p < 0.05 conditions.

To investigate the implications of this combination, we
have selected one of the benchmark problems where WBEX
and WBEX+2-opt have demonstrated strikingly similar
performance, namely c2670. For this circuit we plotted the
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Figure 4: Additional improvement by 2-opt to individ-
uals in a population. The value at every generation is
the average improvement over the entire population.

amount of improvement 2-opt has provided to the popula-
tion. The improvement values have been averaged over all
100 individuals at every generation and appear in Figure 4.

There are two things to be noted from Figure 4. First, a
progressive decay in the amount of improvement is clearly
visible. This is intuitive since convergence closer to a
global optimum would naturally leave less room for im-
provement. The second thing to note is the vertical axis
scale. The biggest amount of improvement has been ob-
served during population initialization (not plotted in Fig-
ure 4), which is to be expected as the individuals are gen-
erated randomly. However, throughout generations the im-
provement in switching activity remained consistently less
than 1200 transitions or approximately .3% for this bench-
mark problem. This suggests that either solutions gener-
ated by WBEX fall very close to local optima or that basins
of attraction are rather shallow. Either case is characterized
by almost non-existent difference in performance between
WBEX and WBEX+2-opt.

5.2 Test Set Reduction

To address the problem of test set reduction we have mod-
ified our GA framework to NSGA-II with individuals rep-
resented as subsets of the original compacted test set gen-
erated by ATALANTA. The two objective functions used
were (1 - Fault Coverage) and switching activity. To com-
pute fitness of an individual, HOPE simulator [18] was run
to determine the fault coverage and 2-opt was used to find a
locally optimal ordering from which switching activity could
be computed. We borrowed Chattopadhyay’s crossover and
mutation operators [2]. The former is an equivalent of
single-point crossover [23] where each of the parents is split
in two, and the parts are recombined to produce two chil-
dren. Special care is taken to ensure no duplicate test vec-
tors occur. The mutation operator either removes or ap-
pends new vectors from the original test set. When using
a population size of 100, we noticed that mutation did not
yield any significant improvement in performance.



Circuit # inputs # outputs # inverters # other gates # test vectors
c432 36 7 40 120 49
c499 41 32 40 162 53
c880 60 26 63 320 53
c1355 41 32 40 506 85
c1908 33 25 277 603 117
c2670 233 140 321 872 107
c3540 50 22 490 1179 149
c5315 178 123 581 1726 118
c6288 32 32 32 2384 31
c7552 207 108 876 2636 207

Table 2: Specification of the ISCAS85 benchmark circuits

Circuit % Fault Switching Activity
Cov. Unordered 2-opt WBEX WBEX + 2-opt Ave. % Red.

c432 99.2 2831 ± 160.7 1803 ± 89.87 1751 ± 97.21 1795 ± 96.71 38.15
c499 98.9 4233 ± 96.32 3178 ± 51.00 3109 ± 54.46 3153 ± 52.11 26.55
c880 100 7445 ± 466.6 5504 ± 293.1 5416 ± 293.7 5481 ± 277.6 27.25
c1355 99.5 16457 ± 211.2 12793 ± 179.7 12622 ± 172.6 12684 ± 174.0 23.30
c1908 99.5 41506 ± 1303 28731 ± 886.2 28420 ± 919.0 28394 ± 886.3 31.59
c2670 95.7 46223 ± 1631 31624 ± 962.3 31492 ± 883.9 31488 ± 864.2 31.88
c3540 96.0 85635 ± 2289 55937 ± 1373 55903 ± 1433 55388 ± 1364 35.32
c5315 98.9 109769 ± 3508 89309 ± 2918 88840 ± 2915 88852 ± 2838 19.07
c6288 99.6 30376 ± 2110 26734 ± 1731 26499 ± 1704 26695 ± 1716 12.76
c7552 98.3 289289 ± 8286 198799 ± 5700 201741 ± 5962 198140 ± 5516 31.51

Average 27.74

Table 3: Results on test set reordering over 30 trials in the mean ± st.d format. The smallest mean value for
each circuit is highlighted in bold.

Circuit Total Switching Activity
2-opt WBEX Christofides’s [1] Greedy [1] Kruskal’s [1] Prim’s [2]

c432 1803 1751 3004 2464 2102 2911
c499 3178 3109 5450 4920 4340 4264
c880 5504 5416 8918 8183 6762 7657
c1355 12793 12622 13949 13315 11008 15169
c1908 28731 28420 25608 24251 20265 32918
c2670 31624 31492 25296 21917 17174 43374
c3540 55937 55903 72458 66443 58089 63600
c5315 89309 88840 107004 93573 79180 103058
c6288 26734 26499 23970 20792 16036 28288
c7552 198799 201741 163742 142641 120763 234536

Table 4: Comparison of evolutionary methods to deterministic heuristics
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Figure 5: An example Pareto front

Figure 5 shows the results obtained from a population
size of 100 after running NSGA-II framework for 200 gen-
erations on c432. Every point on a graph corresponds to
a particular test vector subset. Note that a Pareto-front
represents a gradient of solutions and is better suited for
the end-user — who can choose a particular solution de-
pending on his/her application — than a single solution
obtained through fixed weighting of the objective functions.
The granularity of this gradient can be controlled by mod-
ifying the population size. Larger values of the population
size will yield more points along a Pareto-front and, thus,
a finer gradient.

6 Conclusion and Future Work

This work has touched on a number of important points
relating to dynamic power dissipation minimization during
combinational circuit testing. We have performed a quanti-
tative comparison between two TSP techniques well suited
for this problem, demonstrating that a GA-based approach
with proper crossover operator is able to find better solu-
tions than 2-opt heuristic and requires fewer edge evalua-
tions for larger circuits. The second contribution of this
paper was introduction of Pareto-fronts to the problem of
test set reduction. Our results were close to but not bet-
ter than what reported in [2] for this problem. We believe
that this is due to a much smaller and compact set of test
vectors we used in our experiment. It would be interesting
to see Chattopadhyay’s experiments [2] rerun in a NSGA-II
framework to generate a Pareto-front of optimal solutions
rather than a single point.

We are currently extending this work to scan-based se-
quential circuits [21]. Testing a scan-based sequential cir-
cuit involves useless power dissipation during the scan-in
and the scan-out of the states before and after the applica-
tion of the test. This power dissipation can be decreased
through scan-latch reordering.

We are also experimenting with more accurate estimates
of power consumption. Load capacitance of a gate (as de-
fined in Equation 2) depends on the number of gates con-

nected to its output and, therefore, can be approximated by
its fan-out count. The load capacitance provides weighting
on switching activity of a gate and can potentially serve as
a more accurate objective function. We found no literature
that takes this into consideration.
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