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Abstract— When disseminating data involving human subjects,
researchers have to weigh in the requirements of privacy of
the individuals involved in the data. A model widely used for
enhancing individual privacy is k–anonymity, where an individual
data record is rendered similar to k − 1 other records in the
data set by using generalization and/or suppression operations
on the data attributes. The drawback of this model is that such
transformations result in considerable loss of information that
is proportional to the choice of k. Studies in this context have
so far focused on minimizing the information loss for some
given value of k. However, owing to the presence of outliers,
a specified k value may or may not be obtainable. Further, an
exhaustive analysis is required to determine a k value that fits
the loss constraint specified by a data publisher. In this paper,
we formulate a multi-objective optimization problem to illustrate
that the decision on k can be much more informed than being a
choice solely based on the privacy requirement. The optimization
problem is intended to resolve the issue of data privacy when
data suppression is not allowed in order to obtain a particular
value of k. An evolutionary algorithm is employed here to provide
this insight.

I. INTRODUCTION

Public dissemination of personal data is often a requirement
to facilitate various scientific studies, business processes, or
legal procedures. Such data often involve sensitive information
unsuitable for dissemination in a public manner. Data in
such cases is usually made void of the presence of sensitive
attributes and made anonymous before sharing. However, re-
identifying these hidden attributes is not impossible when
other publicly available information can be linked with the
shared data. Thus, individuals who were anonymized previ-
ously can be de-anonymized leading to privacy violations.

To address such privacy concerns, Sweeney proposed the
concept of k–anonymity that reduce the chances of a “linking
attack” being successful [1]. Anonymization of data sets
involve transforming the actual data set into a form unrec-
ognizable in terms of the exact data values, by using data
generalization and suppression. An unavoidable consequence
of performing anonymization is a loss in the quality of the
data set. Most studies till now have focused on algorithms to
minimize the information loss for a predetermined value of
k. However, from a data publisher’s perspective, the question
should be asked in the opposite direction – given an acceptable
level of information loss, what value of k should be used to
guarantee higher privacy. Further, certain k values may be
unobtainable when data suppression is not allowed.

In this paper, we ask the following questions: When data
suppression is not allowed, can one guarantee higher privacy
levels for a larger number of the individuals represented in
the data set? If an acceptable level of information loss is
specified, can such a solution be generated? Our approach is
primarily based on the formulation of a multi-objective opti-
mization problem, the solutions to which provide a preliminary
understanding of the trade-off present between the level of
privacy and the quality of the anonymized data set. We employ
a popular evolutionary algorithm to solve the multi-objective
optimization problem relevant to this study.

II. RELATED WORK

Several algorithms have been proposed to find effective k–
anonymization. Sweeney’s Datafly approach uses a heuristic
method to generalize the attribute containing the most distinct
sequence of values for a provided subset of quasi-identifiers
[2]. Samarati’s algorithm [3] can identify all k–minimal
generalizations, out of which an optimal generalization can
be chosen based on certain preference information provided
by the data recipient. Iyengar proposes a flexible general-
ization scheme and uses a genetic algorithm to perform k–
anonymization on the larger search space that resulted from it
[4]. Although the method can maintain a good solution quality,
it has been criticized for being a slow iterative process. In this
context, Lunacek et al. introduces a new crossover operator
that can be used with a genetic algorithm for constrained
attribute generalization, and effectively show that Iyengar’s ap-
proach can be made faster [5]. In order to obtain a guaranteed
optimal solution, Bayardo and Agrawal propose a complete
search method that iteratively constructs less generalized so-
lutions starting from a completely generalized data set [6].

III. PRELIMINARIES

A data set D can be visualized as a tabular representation
of a multi-set of tuples r1, r2, . . . , rnrow where nrow is the
number of rows in the table. Each tuple (row) ri comprises
of ncol values 〈c1, c2, . . . , cncol

〉 where ncol is the number of
columns in the table. The values in column j correspond to
an attribute aj , the domain of which is represented by the
ordered set Σj = {σ1, σ2, . . . , σnj}.

A generalization Gj for an attribute aj is a partitioning
of the set Σj into ordered subsets 〈Σj1 ,Σj2 , . . . ,ΣjK

〉 which
preserves the ordering in Σj , i.e. if σa appears before σb



in Σj then, for σa ∈ Σjl
and σb ∈ Σjm , l ≤ m. Further,

every element in Σj must appear in exactly one subset. The
elements in the subsets maintain the same ordering as in Σj .
Generalizations for categorical attributes are constrained to
only those which respect a specified hierarchy.

Equivalent tuples after anonymization can be grouped to-
gether into equivalence classes. The k–anonymity problem is
then defined as the problem of finding a set of generalizations
for the attributes in D such that the equivalence classes induced
by anonymizing D using the generalizations are all of size at
least k.

IV. PROBLEM FORMULATION

Consider the data value vi,j at row i and column j in the
data set D. The general loss metric assigns a penalty to this
data value based on the extent to which it gets generalized
during anonymization. Let gi,j = Gj(vi,j) be the index of the
subset to which vi,j belongs to in the generalization Gj , i.e.
vi,j ∈ Σjgi,j

. The penalty for information loss associated with
vi,j is then given as follows:

loss(vi,j) =
|Σjgi,j

| − 1

|Σj | − 1
(1)

For categorical data, the loss for a cell is proportional to the
number of leaf nodes rooted at an internal node (the general-
ized node) of the hierarchy tree. The loss attains a maximum
value of one when the cell is suppressed (Gj = 〈Σj〉), or in
other words, when the root of the tree is the generalized node.
Subtracting one ensures that a non-generalized value incurs
zero loss since the cardinality of the subset to which it belongs
would be one. The generalization loss is then obtained as the
total loss over all the data values in the data set.

GL =
nrow∑
i=1

ncol∑
j=1

loss(vi,j) (2)

The presence of outliers in a data set makes it difficult
to find a suitable value of k when suppression of data is
not allowed. In this formulation, we strictly adhere to the
requirement that no tuple in the data set can be deleted.
Intuitively, such a strict requirement makes the k–anonymity
problem insensible to solve for a given k, as the optimization
algorithm will be forced to overly generalize the data set in its
effort to ensure k–anonymity. The outliers usually belong to
very small equivalence classes and the only way to merge
them into a bigger one is by having more generalization.
This effectuate more loss in information which is often not
acceptable to an user.

Although solving the k–anonymity problem is not possible
in terms of its strict definition, it is worth noting that a gen-
eralization can still affect the distribution of the equivalence
classes even when suppression is not allowed. An equivalence
class Ek in this description group all tuples that are similar
to exactly k − 1 other tuples in the anonymized data set.
An ideal generalization would then maintain an acceptable
level of loss by keeping the number of rows in smaller
equivalence classes (small k) relatively lower than in the

bigger equivalence classes. Although this does not guarantee
complete k–anonymity, the issue of privacy breach can be
solved to a limited extent by reducing the probability that a
randomly chosen row would belong to a small equivalence
class.

With this motivation, we define the weighted-k–anonymity
multi-objective problem to find generalizations that produce
a high weighted-k value and low generalization loss. Each
equivalence class Ek defines a k value, k ≤ nrow, for its
member tuples – every tuple in the equivalence class is same
as exactly k − 1 other tuples in the same class.

Note that this notion of an equivalence class is different
from the one stated in the k–anonymity problem. Two rows
in the original data set belong to the same equivalence class
in the k–anonymity definition if the generalization transforms
them into the same tuple. However, in this formulation, a row
belongs to the equivalence class Ei if a generalization makes
it i–anonymous.

The weighted-k for a particular generalization inducing
the equivalence classes E1, E2, . . . , Enrow on the anonymized
data set is then obtained as follows:

kweighted =
∑nrow

i=1 (i · |Ei|)∑nrow

i=1 |Ei|
(3)

Note that, in most cases, not all equivalence classes with
all possible k values will be generated. The weighted-k value
provides a sufficiently good estimate of the distribution of the
equivalence classes. A high weighted-k value implies that the
size of the equivalence classes with higher k is relatively more
than the size of the lower k ones. The multi-objective problem
is then formulated as finding the generalization that maximizes
the weighted-k and minimizes the generalization loss for a
given data set.

V. SOLUTION METHODOLOGY

We employ the NSGA-II algorithm [7] to solve the multi-
objective problem defined in the previous section. Here we
adopt the encoding suggested by Iyengar in [4]. Further, to be
able to use Lunacek et al.’s crossover operator, the validity of
the parent solutions must be guaranteed. Starting from the root
node, a node randomly decides if it would allow its subtrees
to be distinguishable. If it decides not to then all nodes in its
subtrees are assigned the same identifier. Otherwise the root
of each subtree receives an unique identifier. The decision is
then translated to the root nodes of its subtrees and the process
is repeated recursively. Once all leaf nodes are assigned an
identifier, two adjacent leaf nodes in the imposed ordering are
combined only if they have the same identifier. Since a parent
node always make the decision if child nodes will be combined
or not, all generalizations so produced will always be valid.

We applied our methodology to the “adult.data” benchmark
dataset available from the UCI machine learning repository1.
We prepare the dataset as described in [4], [6]. For NSGA-
II, we set the population size as 200 and the maximum

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/



number of iterations as 250. A single point crossover is used
for unconstrained attributes while Lunacek et al.’s crossover
operator is used for constrained attributes. Also, mutation is
only performed on the unconstrained attributes. The remaining
parameters of the algorithm are set as follows: crossover rate
= 0.9, mutation rate = 0.1 with binary tournament selection.

VI. RESULTS AND DISCUSSION

Fig. 1. Solutions found by NSGA-II. Inset figures show cumulative
distribution of |Ek| as k increases.

Fig. 1 shows the different trade-off solutions obtained by
NSGA-II. A point in the plot corresponds to a solution that
induces a particular distribution of k values on the anonymized
data set. As expected, the generalization loss increases as the
distribution of equivalence classes get more inclined towards
higher k values. In the absence of suppression, a single k value
is often hard to enforce for all tuples in the data set. Thus, a
solution here results in different k values for different tuples. A
higher k-weighted value signifies that most tuples have a high
k value associated with them, in which case, the generalization
loss is higher. A solution with low k-weighted value results
in a generalization with low k values for its tuples.

The inset figures in the plot depict the cumulative distribu-
tion of the number of tuples belonging to equivalence classes
(y-axis) with different k values (x-axis). The distributions of
two extreme solutions corroborate the speculation that a higher
generalization loss must be incurred to assure a greater level
of privacy (higher k values) for a larger section of the dataset.
Low generalization losses are only possible when most tuples
belong to equivalence classes of lower k value.

However, it should be noted that the distributions for the
two example solutions are not complementary in nature. For
the solution with lower generalization loss, the distribution
has a continuously increasing trend, implying that equivalence
classes of different k values exist for the solution. The other
solution shows an abrupt increase signifying that the tuples
either belong to equivalence classes with very small k or ones

with very large k. The sought balance in the distribution can
therefore exist with an acceptable level of generalization loss.

At this point, a data publisher’s question regarding a solution
with a specified level of information loss can be answered from
the plot. Further, the trade-off analysis enables one to suggest
a better privacy level (higher k-weighted) which can perhaps
be obtained by increasing the level of information loss by a
small amount.

VII. CONCLUSIONS

In this paper, we present an analytical approach to demon-
strate that the choice of the k value in the k–anonymity
problem can be made in a much informed manner rather than
arbitrarily as is currently done. For generalizations without
suppression, an unique k may not be available. However,
the analysis indicates that generalizations are possible that
provide a higher level of privacy for a higher fraction of
the dataset without compromising much on its information
content. We believe that such an analysis not only reinstates
the decision maker’s confidence in its choice of a particular
generalization, but also identifies ways of examining if the
level of privacy requested by a human subject is achievable
within the acceptable limits of perturbing data quality.

Future work in this front can involve the formulation of
a series of multi-objective problems when suppression is
allowed up to a given limit. Analysis of this nature need not
be limited to k–anonymity alone and other data anonymization
techniques can be explored as well. Further, there is the more
difficult problem of obtaining generalizations that are optimal
with respect to more than one privacy preserving technique.
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