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ABSTRACT

Data generalization is widely used to protect identities and
prevent inference of sensitive information during the pub-
lic release of microdata. The k-anonymity model has been
extensively applied in this context. The model seeks a gen-
eralization scheme such that every individual becomes indis-
tinguishable from at least k−1 other individuals and the loss
in information while doing so is kept at a minimum. The
search is performed on a domain hierarchy lattice where ev-
ery node is a vector signifying the level of generalization for
each attribute. An effort to understand privacy and data
utility trade-offs will require knowing the minimum possible
information losses of every possible value of k. However, this
can easily lead to an exhaustive evaluation of all nodes in
the hierarchy lattice. In this paper, we propose using the
concept of Pareto-optimality to obtain the desired trade-
off information. A Pareto-optimal generalization is one in
which no other generalization can provide a higher value of
k without increasing the information loss. We introduce the
Pareto-Optimal k-Anonymization (POkA) algorithm to tra-
verse the hierarchy lattice and show that the number of node
evaluations required to find the Pareto-optimal generaliza-
tions can be significantly reduced. Results on a benchmark
data set show that the algorithm is capable of identifying
all Pareto-optimal nodes by evaluating only 20% of nodes in
the lattice.
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H.2.7 [Database Management]: Database Administra-
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1. INTRODUCTION
Privacy violations emanating from the sharing of per-

sonal information have raised an important concern in recent
years. A study on the year 2000 census data of the U.S. pop-
ulation reveals that 53% of the individuals can be uniquely
identified by their gender, city and date of birth; 63% if the
ZIP code is known in addition [4]. Such attributes, called
quasi-identifiers, can be linked with other publicly available
information to enable the re-identification. A classic experi-
ment demonstrating the possibility is presented by Sweeney
[15] where she managed to obtain the medical records of the
Governor of Massachusetts from a medical insurance data
set, containing no explicit identifying information, and a
voter’s registration list. Much research in information assur-
ance has therefore delved into the protection of respondent’s
identity. The question to answer is how such information be
modified so that the data remains useful for statistical stud-
ies while protecting the respondents’ identities.

To attend to such privacy concerns, Samarati and Sweeney
proposed the concept of data generalization to be used to
satisfy a property called k-anonymity [13, 14]. Generaliza-
tion of data is performed by grouping together data attribute
values into a more general one, for example, replacing the
age by an age range. A transformed data set of this nature
is then said to be k-anonymous if each record in it is same as
at least k − 1 other records. This property implies that any
record can be related to at least k underlying individuals.

Data generalization directly affects the utility of the data
set. Enforcing higher k values during an anonymization
makes more records indistinguishable from each other, thus
reducing the statistical utility of the data set. Therefore,
the amount of generalization to perform is chosen such that
the k-anonymity property is satisfied for a given k while
the information loss resulting from it is minimized [1, 3, 6,
7, 8, 9, 10, 12, 16]. Most algorithms identify such a so-
lution from the set of all possible generalizations arranged
in the form of a graph, called the domain hierarchy lattice,
where every node is a vector signifying the amount of gener-
alization for each quasi-identifier. Efficient traversal of the
lattice has been particularly explored so that the number
of nodes that undergo evaluation (determining equivalence
classes and computing loss) can be reduced.

Although optimal k-anonymization is an important re-
search problem, the applicability of available techniques is
severely restricted. This is because the choice of a specific k

remains dependent on the data publisher. More often than
not, the choice is made in an arbitrary manner. Thus, it
is often difficult to justify the choice of a particular value



for k. Moreover, finding an optimal generalization with a
fixed value of k provides no information on how the loss
in information changes if a comparatively higher value of k

is chosen instead. Fixating on a specific k value prevents
one from determining if a higher k is possible with the same
amount of information loss, or even with an information loss
that is a tad more. Using existing algorithms for optimal k-
anonymization to explore this trade-off would imply trying
out all possible values of k. This can become expensive ow-
ing to the number of nodes in the domain hierarchy lattice
that need to be evaluated in the process. Algorithms meant
for optimal k-anonymization with a fixed k, cannot correlate
nodes in terms of trade-offs.

In this paper, we propose using the concept of Pareto-
optimality to identify generalizations that cannot be simul-
taneously improved both along the privacy and data util-
ity dimensions. Our principle contribution is the Pareto-
Optimal k-Anonymization (POkA) algorithm for identifying
Pareto-optimal nodes in a domain hierarchy lattice. POkA
utilizes a combination of depth first traversals of the lat-
tice to efficiently move from one Pareto-optimal node to an-
other. Two key properties, namely height boundary prop-
erty and ground node property, have been proposed to guide
the search in a manner that requires minimal node evalua-
tions while assuring that all Pareto-optimal nodes are iden-
tified. Performance analysis on a benchmark data set shows
that POkA can prune a large number of sub-optimal nodes
from being evaluated and can still obtain all Pareto-optimal
nodes.

The rest of the paper is organized as follows. Section 2
presents some related work in k-anonymization. Background
concepts are introduced in Section 3. Theoretical ground-
work for the algorithm is presented in Section 4. Section
5 describes our algorithm. Performance analysis on a stan-
dard benchmark data set is presented in Section 6. Finally,
Section 7 concludes the paper.

2. RELATED WORK
Several algorithms have been proposed to find effective

k-anonymization. The µ-argus algorithm is based on the
greedy generalization of infrequently occurring combinations
of quasi-identifiers and suppresses outliers to meet the k-
anonymity requirement [6]. The Datafly approach uses a
heuristic method to first generalize the quasi-identifier con-
taining the most number of distinct values [14]. Sequences
of quasi-identifier values occurring less than k times are sup-
pressed.

On the more theoretical side, Sweeney propose the Min-
Gen algorithm [14] that exhaustively examines all poten-
tial generalizations to identify the optimal generalization
that minimally satisfies the anonymity requirement. How-
ever, the approach is impractical even on modest sized data
sets. Meyerson and Williams have recently proposed an ap-
proximation algorithm that achieves an anonymization with
O(k log k) of the optimal solution [11].

Samarati proposed an algorithm [12] that identifies all
generalizations satisfying k-anonymity. Choice of an optimal
generalization can then be made based on certain preference
information provided by the data recipient. The approach
in Incognito [8] is also aimed towards finding all generaliza-
tions that satisfy k-anonymity for a given value of k. The
basic Incognito algorithm starts with the generalization lat-
tice of a single attribute and performs a modified bottom-

up breadth-first search to determine the possible generalized
domains of the attribute that satisfy k-anonymity. There-
after, the generalization lattice is updated to include more
and more number of attributes.

A genetic algorithm based formulation is proposed by Iyen-
gar to perform k-anonymization [7]. Bayardo and Agrawal
propose a complete search method that iteratively constructs
less generalized solutions starting from a completely gener-
alized data set [1]. The algorithm starts with a fully gen-
eralized data set and systematically specializes it into one
that is minimally k-anonymous. The idea of a solution cut
is presented by Fung et al. in their approach to top down
specialization [3]. A generalization is visualized as a “cut”
through the taxonomy tree of each attribute. A cut of a
tree is a subset of values in the tree that contains exactly
one value on each root-to-leaf path. A solution cut is a cut
that satisfies the anonymity requirement.

LeFevre et al. extend the notion of generalizations on at-
tributes to generalization on tuples in the data set [9]. The
authors argue that such multidimensional partitioning of the
generalization domain show better performance in capturing
the underlying multivariate distribution of the attributes,
often advantageous in answering queries with predicates on
more than just one attribute.

The first known attempt of exploring the privacy and util-
ity trade-offs is undertaken by Dewri et al. [2]. The work
focus on multi-objective optimization formulations involving
a privacy parameter and an utility metric. A similar concept
is presented by Huang and Du in the problem of optimizing
randomized response schemes for privacy protection [5].

Our work significantly differs from earlier approaches ei-
ther in terms of the cardinality of the solutions reported or
in terms of the solution methodology where attempts have
been made to find trade-off information.

3. PRELIMINARIES
A data set is conceptually arranged as a table of rows

(or tuples) and columns (or attributes). Each attribute de-
notes a semantic category of information that is a set of
possible values. Attributes are unique within a table. Each
row is a tuple of s values 〈v1, . . . , vs〉, s being the num-
ber of attributes in the data set, such that the value vj

is in the domain of the jth attribute Aj , for j = 1, . . . , s.
The domain of attribute Aj is denoted by the singleton sets
Aj = {aj1}, . . . , {ajSj

} where Sj is the size of the domain of
the attribute.

A generalization of attribute Aj is a union of its domain
into supersets. Hence the generalized domain of Aj can
be written as H1

j = Aj1, . . . , Ajm where ∪
i
Aji = ∪Aj and

Ajp ∩ Ajq = φ for p 6= q. We then say H1
j is a generalized

domain of Aj , denoted as H1
j <G Aj . The domain H1

j can

be further generalized in a similar manner to the domain H2
j .

Generalization of an attribute’s domain in this manner gives

rise to a domain generalization hierarchy (DGH) H
Nj

j <G

. . . <G H1
J < H0

j , where H0
j = Aj . Nj is called the length of

the attribute’s DGH. Refer to Fig. 1a for an example DGH.
The DGH is a specification of how an attribute’s values can
be combined progressively to bigger sets. H0

j is called a full
specialization of attribute Aj , meaning that no two values
belong to a single set. The other extreme of this is a full

generalization H
Nj

j where all values of the attribute belong
to a single set. The generalization level of the attribute is
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Figure 1: (a) Example domain generalization hierarchies of attributes ZIP, SEX and SALARY. (b) Domain
hierarchy lattice using example DGHs. (c) Generalization and specialization graphs of node (1, 0, 1) in the
lattice.

signified by an integer between 0 and Nj . A generalization
level of 0 signifies that all values are distinguishable from
each other, while a level of Nj signifies that no two values
can be distinguished from each other.

Given a DGH for each quasi-identifier in the data set, a
tuple is said to be in an anonymized form when a generaliza-
tion is applied on the attribute values. The anonymized form
is represented as follows. Let us assume a tuple 〈v1, . . . , vs〉
in the data set. Let (n1, . . . , ns); 0 ≤ ni ≤ Ni be the vector
representing the generalization level for each attribute; ni

is the level to use in the DGH for attribute Ai. To map
the value v1 to its generalized form we replace it by the
index of the set to which it belongs in the generalized do-
main at level n1. For example, if H

n1

1 = A11, . . . , A1m and
v1 ∈ A1p1

, then v1 is replaced by p1. After performing sim-
ilar operations for the other attribute values, the tuple is
anonymized to the form 〈p1, . . . , ps〉, pi being the set index
for value vi in H

ni

i . Transforming all tuples in the data set
in this manner results in an anonymized data set.

3.1 k-Anonymity
The anonymized tuples of a data set can be grouped to-

gether into equivalence classes. Two anonymized tuples
〈p1, . . . , ps〉 and 〈q1, . . . , qs〉 belong to the same equivalence
class if pi = qi; 1 ≤ i ≤ s. The k-anonymity property re-
quires that every such equivalence class should be of size at
least k. Table 1 shows an example of this property. With
reference to Fig. 1a, ZIP is generalized at level 1, SEX at
level 1, and SALARY at level 0. Note that as higher k

values are desired, higher generalization levels need to be
used for the attributes. In principle, the anonymized tuples
have categorical labels instead of the set index. Thus, two
anonymized tuples in the same equivalence class have the
same labels making them indistinguishable from each other.
Higher k values therefore signify higher preservation of pri-
vacy for the individuals whose information is represented in
the tuples.

3.2 Domain hierarchy lattice
A domain hierarchy lattice DHL is a graph with

Q

i
(Ni+1)

nodes. Every node (n1, . . . , ns); 0 ≤ ni ≤ Ni is a vector of
s dimensions where the ith element ni specifies the gener-
alization level for attribute Ai. The 3-anonymous table in
Table 1 corresponds to the node (1, 1, 0). An edge exists be-
tween two nodes (n1, . . . , ns) and (m1, . . . , ms) if and only

ZIP SEX SALARY
12345 M <50K
12346 M <50K
12345 F <50K
12355 F ≥50K
12355 M ≥50K
12356 M ≥50K

ZIP SEX SALARY
1234* * <50K
1234* * <50K
1234* * <50K
1235* * ≥50K
1235* * ≥50K
1235* * ≥50K

Table 1: 3-anonymous version (right) of a table.

if the vectors differ in exactly one element and the differ-
ence is one. To put it formally,

P

i
|ni − mi| = 1. The node

(0, . . . , 0) (s times) is the fully specialized node of the lat-
tice and corresponds to the un-anonymized data set. The
node (N1, . . . , Ns) is the fully generalized node and corre-
sponds to no disclosure of the data. Fig. 1b illustrates these
terms. In a typical k-anonymization algorithm, a node is
sought in this lattice such that it satisfies k-anonymity and
results in minimum information loss for the specified value
of k. An exhaustive search is often not desired since evalua-
tion of equivalence class sizes on a moderately sized data set
can be computationally intensive. Most algorithms there-
fore perform some form of pruning of the lattice. Note that
the algorithms we refer to here are meant to find optimal
generalization levels for a given value of k. Pruning of the
lattice when no k value is specified is an unresolved problem
until now.

Given a domain hierarchy lattice and a node (n1, . . . , ns),
we can also define a specialization graph which contains the
nodes (p1, . . . , ps) such that pi ≤ ni; 1 ≤ i ≤ s. Edges be-
tween nodes in this graph are drawn similar to as in a DHL.
The node (n1, . . . , ns) is called the root node of the special-
ization graph. Along similar lines, we can also define a gen-
eralization graph if nodes instead satisfy pi ≥ ni; 1 ≤ i ≤ s.
Fig. 1c highlights the specialization and generalization graph
of the node (1, 0, 1). Intuitively, the specialization graph of a
node contains all other nodes which are more specialized in
one or more attributes, and in effect induce comparatively
smaller k and lower loss. Contrary to that, a generalization
graph of a node contains all other nodes which are more
generalized in one or more attributes, and in effect induce
comparatively larger k and higher loss. Hence, we shall often
use the term “move down” and “move up” while traversing a



specialization and generalization graph respectively. These
two graphs will be used later while performing the search
for optimal nodes.

2          3          4          5          6          7

Pareto−optimal

Sub−optimal

k

i
n
f
o
r
m
a
t
i
o
n
 
l
o
s
s

Figure 2: Depiction of Pareto-optimal nodes.

3.3 Pareto-optimal generalization
Let kN and LN signify the k and information loss asso-

ciated with a node N in the domain hierarchy lattice. The
node N is a Pareto-optimal generalization if there is no other
node M in the lattice such that one of the following two con-
ditions hold.

• kM ≥ kN and LM < LN , or

• kM > kN and LM ≤ LN .

If one of the conditions is true, then M is said to domi-
nate N . Therefore, a Pareto-optimal node is one whose k

value cannot be improved upon by another node without in-
creasing the information loss, and the information loss at the
induced k value is minimal. Note that Pareto-optimal nodes
need not always exist at every possible value of k. For ex-
ample, in Fig. 2, no Pareto-optimal node appears with k = 4
since the node with k = 5 offers a higher value of k but with
lower information loss. As is evident from the figure, trade-
off behavior becomes clear when all Pareto-optimal solutions
are known. The advantage of finding Pareto-optimal nodes
is two fold. First, the minimal information loss at relevant
k values is computed. Second, the choice of a particular so-
lution can be based on the change of information loss rather
than on arbitrary selection of k. In the figure, the choice of
k = 5 can perhaps be made under the light that there is not
much difference in information loss from the k = 3 node.
Therefore, our objective is to search the DHL in an efficient
manner and identify the Pareto-optimal nodes. Note that
this process does not require the specification of a k value by
the data publisher. Instead, optimal k values are reported
as part of the set of Pareto-optimal generalizations.

4. PARETO SEARCH
The basic search strategy we adopt is to start from an

already known Pareto-optimal node and prune nodes that
cannot be Pareto-optimal. We shall start with the Pareto-
optimal node with the highest possible k value and then
use it as a starting step to find the next Pareto-optimal

node. The next Pareto-optimal node is the one with a k

value closest to that of the previous one but with lower loss.
Hence, given a Pareto-optimal node N = (n1, . . . , ns), the
next Pareto-optimal node M is the one with minimum (kN−
kM ); kM < kN and LM < LN . We shall call the node N a
base node. In Fig. 2, the next Pareto-optimal node for the
node with k = 5 is the node with k = 3. The node M is
found by combining a DFS traversal of the specialization
graph of N with a DFS traversal of the generalization graph
of another node.

The first step in this process is to have a known Pareto-
optimal node to begin with – the first base node. This is not
difficult since the node (N1, . . . , Ns) is bound to be Pareto-
optimal. This node induces a k value equal to the size of
the data set since all tuples get transformed to the same
anonymized form. No other node can produce a k value
higher than this. Once the next Pareto-optimal node is
found, the process is repeated using this newly found node
as the base node.

The next step is to assure that the node M can be reached
from the base node N . Note that kM < kN . Hence, M will
not be present in the generalization graph of N . Recall that
all nodes in the generalization graph of N will have more
generalization in one or more attributes and will result in
a higher k value. This observation results in the first level
of pruning of the DHL. Given the Pareto-optimal node N ,
the number of nodes pruned by not searching the general-
ization graph of N is

Q

i
(Ni −ni +1). At first glance it may

seem that the node M should be somewhere in the special-
ization graph of N and is hence directly reachable from N .
In fact, if the node M is in the specialization graph of N ,
then it would be the one with the highest k value in the set
{(n1, . . . , nj−1, nj −1, nj+1, . . . , ns)|1 ≤ j ≤ s; nj 6= 0} – im-
mediate neighbors of N in the graph. Since other nodes in
the specialization graph are indeed specializations of a node
in this set, they would have k values lower than the highest
possible k in these immediate neighbors.

However, there is still a set of nodes that are not present in
the specialization graph of N but can potentially include M .
These nodes are the ones that can be generated from N by
performing generalization in some attributes, specialization
in some and no change in others. A positive observation in
this context is that the node M can still be reached from
N through a node common in the specialization graph of M

and N , called a ground node.

4.1 Ground nodes
A ground node is a node common in the specialization

graphs of two nodes in the domain hierarchy lattice. A
trivial ground node for any two nodes is the fully special-
ized node (0, . . . . , 0). Other non-trivial nodes also do ex-
ist. Given the nodes N and M , any node in the set G =
{(g1, . . . , gs)|0 ≤ gi ≤ min(ni, mi)} is a ground node for N

and M . M can then be reached from N by first moving
down the specialization graph of N to a ground node and
then moving up in the generalization graph of the ground
node. The first phase of this process, i.e. moving down to
the ground node, is called a depth search rooted at N . The
phase of moving up from the ground node is called a height
search rooted at the ground node. Fig. 3 illustrates this
process.

Note that although a depth search is essential to find a
ground node, nodes traversed in the process need not be
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Figure 3: Use of depth search and height search to
reach node M from node N through a ground node.

evaluated if they are not immediate neighbors of the base
node. This follows from the earlier observation that if M

resides in the specialization graph of N , then it will be one
of the immediate neighbors. This observation leads to the
second level of pruning in node evaluation. However, nodes
in the height search are to be evaluated since k values will
increase progressively. The only exception are nodes that
are also part of the depth search but not immediate neigh-
bors of the base node. A brute force method to perform
the searches would mean traversing the specialization graph
of N all the way down to the fully specialized node and
then traversing the generalization graph of the trivial ground
node. Clearly, this is an exhaustive search. The following
two sections discuss the theoretical properties that bound
the extent of search to be performed in both phases. Effi-
ciently determining the minimum extent to search will fur-
ther reduce the number of nodes to be evaluated.

4.2 Height search
Height search from a ground node is a DFS traversal of the

generalization graph with the ground node as the root. To
clarify any ambiguity in language, we say that height search
is a height first traversal of the graph. The search is said
to be at height h when the current node H is h steps away
from the ground node G, i.e

P

i
|hi − gi| = h. The height

h is a dynamically chosen parameter in our approach. The
assumption we make is that both k and information loss are
non-decreasing quantities when performing more generaliza-
tion in an attribute. Based on this assumption, the following
property states how “high” should the height search proceed
before coming back to its parent node.

Height Boundary Property: Let A = {A1, . . . , As}
be a set of attributes. Given a Pareto-optimal node N =
(n1, . . . , ns), the next Pareto-optimal node M can be found
by a height search of a node in the specialization graph of
N , further search up a node H being terminated whenever
kH ≥ kN or LH ≥ LN .

Proof: The node to start the height search is a ground
node G present in the specialization graph of N . Since M

is the next Pareto-optimal node, we have kM < kN and
LM < LN . Based on the aforementioned assumption, if M

is in the generalization graph of G, then it must be reached in
a height search before a node H with kH ≥ kN or LH ≥ LN

is reached. Hence, whenever such a node is encountered, we
have reached the maximum height along that path. �

The height to search is therefore bounded by the k and
loss values of the base node. We shall start with the ground
node and choose a child for subsequent search only if it has k

and loss lower than that of N . Child nodes that are common
to the specialization graph of N (and not immediate neigh-
bors of N) are not evaluated and are always selected. All
selected child nodes are subjected to the same evaluation for
further search. Exact specification of how the next Pareto-
optimal node is identified from height searches is presented
in Section 5. The further down the ground node is from
the base node, the more will be the number of nodes that
will require evaluation in the height search. We therefore
need a good estimate of the ground node closest to the next
Pareto-optimal node. This is achieved by the depth search.

4.3 Depth search
Depth search from a base node N is a DFS traversal of

the specialization graph with N as the root. The depth d of
the search is the maximum total difference in generalization
levels from the base node to an internal node. Therefore,
a depth search of depth d implies the traversal of nodes D

such that
P

i
|ni − di| ≤ d. Under this specification, an

internal node is searched further only if its maximum total
difference in generalization levels from the base node is less
than d. Each node at depth d in the specialization graph of
N is considered a candidate ground node and is subjected to
a height search. Note that the DHL is a graph (not a tree)
and hence the general intuition that the number of nodes
subjected to height search will increase exponentially with
larger d, is not true. In the following, we deduce the depth
at which a ground node (not necessarily the closest one) for
the next Pareto-optimal node is bound to exist and derive
an estimate of the depth to actually search.

Lemma 1: The minimum equivalence class size of a data
set with s attributes A = {A1, . . . , As} is the same as the
minimum equivalence class size of a data set with two at-
tributes A1 and A2, where A1 = Aj and A2 = A1 × . . . ×
Aj−1 × Aj+1 × . . . × As.

Proof: The proof follows from the fact that A2 is sim-
ply a concatenated version of the values of the attributes
A1, . . . , Aj−1, Aj+1, . . . , As. Determining the equivalence cl-
ass sizes in a data set with s attributes require finding the
frequency of occurrence of every possible combination of val-
ues for s−1 attributes. In the case with two attributes, this
step is performed while finding the equivalence class sizes
for the attribute A2. Hence in both cases, a tuple with a
particular sequence of values for A1, . . . , As will belong to
an equivalence class of the same size. This means that the
minimum equivalence class size will also be same. �

Lemma 2: Let A1 and A2 be two attributes with DGH
lengths of N1 and N2 respectively. If N = (n1, n2), such
that 0 ≤ n1 ≤ N1 and 0 ≤ n2 ≤ N2, is a Pareto-optimal
node, then one of G1 = (n1, 0) and G2 = (0, n2) is a ground
node for the next Pareto-optimal node.

Proof: The next Pareto-optimal node M is the one with
kM closest to kN satisfying the constraints kM < kN and
LM < LN , i.e. there is no other node M ′ such that kM <

kM′ < kN and LM′ < LN . The first set of possibilities are
the immediate descendants of N , i.e. D1 = (n1 − 1, n2) or
D2 = (n1, n2 − 1). Other descendant nodes of N , i.e. nodes
of the form L = (l1, l2); 0 ≤ li < ni, have k values lower than
max(kD1

, kD2
) and hence do not satisfy the requirements for

the next Pareto-optimal node. If one of D1 or D2 is Pareto-
optimal then G2 or G1 respectively is a ground node for
it.

If none of D1 and D2 is the next Pareto-optimal node



then nodes of the form (l1, h2) or (h1, l2), where ni < hi ≤
Ni, must dominate them (after satisfying the required con-
straints) and are likely candidates. Since G1 is a ground
node for any node of the form (h1, l2) and G2 for nodes of
the form (l1, h2), the result still holds. �

Ground Node Property: Let A = {A1, . . . , As} be a
set of attributes with Ni as the DGH length of Ai. If N =
(n1, . . . , ns); 0 ≤ ni ≤ Ni is a Pareto-optimal node, then
one or more nodes of the set Gbest ∪ Gworst, where Gbest =
{(n1, . . . , nj−1, 0, nj+1, . . . , ns)|1 ≤ j ≤ s} and Gworst = {(0,

. . . , nj , . . . , 0)|1 ≤ j ≤ s}, are ground nodes of the next
Pareto-optimal node.

Proof: The proof follows from the observation that the
problem of finding Pareto-optimal nodes for s properties
can be transformed to the case of finding Pareto-optimal
nodes for two properties. To do so, we map the attribute
set A to two attributes A1 and A2 such that A1 = Aj

and A2 = A1 × . . . × Aj−1 × Aj+1 × . . . × As. A tuple
〈v1, . . . , vs〉 in the original data set is transformed to the
form 〈vj , v1; . . . ; vj−1; vj+1; . . . ; vs〉. Any anonymized ver-
sion of a tuple is mapped in a similar manner. By Lemma
1, both data sets (generalized or not) will induce the same
value of k. The loss metric can be modified so that the loss
associated with a tuple in the data set with s attributes is
proportional to that of the tuple in the data set with two
attributes.

The step that remains is a specification for the DGH of
A2. Nodes in the DGH of A2 are formed by taking ev-
ery possible combination of nodes from the DGHs of the
s − 1 attributes. A node is therefore of the form Nj =
(n1; . . . ; nj−1; nj+1; . . . ; ns); 0 ≤ ni ≤ Ni. The total or-
dering of these nodes is obtained by first sorting them in
ascending order of the k value they induce and then in as-
cending order of the loss (if k is same for two nodes). This
follows the general notion of a DGH where k (and then loss)
increases as we step from one node to the next. The do-
main hierarchy lattice for two attributes contains nodes of
the form (nj ,Nj).

Therefore, there is a bijective mapping between the set of
nodes in the domain hierarchy lattice with s attributes and
the set of nodes in the domain hierarchy lattice with two
attributes. Since, k and loss of two corresponding nodes
are also same, any Pareto-optimal node in the lattice with
s attributes will also be Pareto-optimal in the lattice with
two attributes, and vice versa.

Hence by Lemma 2, given N and a particular value for j,
the ground nodes for the next Pareto-optimal node are one
or both of (0,Nj) or (nj , 0). This translates to nodes of the
form (n1, . . . , nj−1, 0, nj+1, . . . , ns) and (0, . . . , nj , . . . , 0) in
the lattice for s attributes. Since the transformation into
the case with two attributes can be performed in s different
ways (1 ≤ j ≤ s), the set of such possible ground nodes is
given as Gbest = {(n1, . . . , nj−1, 0, nj+1, . . . , ns)|1 ≤ j ≤ s}
and Gworst = {(0, . . . , nj , . . . , 0)|1 ≤ j ≤ s}. �

Assuring that nodes in Gworst are covered while perform-
ing a depth search, i.e. d = max

j
(
P

i
ni−nj), ensures all pos-

sible Pareto-optimal nodes before N (ones with k and loss
lower than that of N) will be discovered. This is achieved by
allowing the discovery of nodes that require specialization in
all (but one) attributes. However, this is often not required
if only the immediately next Pareto-optimal node has to be
found. Covering nodes in Gbest, i.e. d = max

i
(ni), is suf-

ficient for this purpose. Depth search that covers nodes in
Gbest allows the discovery of nodes that may require full spe-
cialization in at most one attribute. To be precise, it allows
finding nodes that have full specialization in the attribute
with the longest DGH length. A longer DGH is typically
specified for an attribute with a bigger domain size. Hence,
full specialization in such an attribute has the tendency to
induce small equivalence classes, thereby a small value of k.
The immediately next Pareto-optimal node is more likely to
have a k value closer to kN .

A good strategy to adopt here is to ensure that attributes
which are close to full specialization in N , get a chance to
become so while attributes that are far away from being fully
specialized are explored in less depth. Consider the nature of

nodes that get covered in a depth search of davg = ⌈
P

i Ni

s
⌉

depth, davg being the average number of steps required for
an attribute to become fully specialized from a fully gener-
alized state. First, depth search to davg depth ensures that
half of the number of attributes will have a chance to be-
come fully specialized. Second, in davg number of steps, the
attributes which are closer to being fully specialized stand
a higher chance of becoming so. Third, taking davg steps
allows combination of different levels of specialization for
different attributes without making any of them fully spe-
cialized (if not already). Performance analysis in Section 6
corroborates that this strategy indeed provides the best bal-
ance between exploration of nodes and discovery of Pareto-
optimal ones.

5. POkA ALGORITHM
The Pareto-Optimal k-Anonymization (POkA) algorithm

is an iterative search method to identify the Pareto-optimal
generalizations for a given data set. The attributes in the
data set that are subjected to generalization (convention-
ally called quasi-identifiers) are specified and a DGH is de-
fined for every such attribute. The algorithm is iterative
because one combination of depth search and height search,
and a base node, is required to identify one Pareto-optimal
node. The process is applied repeatedly to identify subse-
quent nodes.

5.1 Handling outliers
Before looking into the implementation details of the al-

gorithm, we must define a strategy to handle outliers in the
data set. Outliers in a data set are uncommon combina-
tions of attribute values in a tuple. The existence of such
tuples often make the process of k-anonymization difficult.
Enforcing a k-anonymity property in the presence of out-
liers may lead to excessive generalization in the attributes,
thereby reducing the utility of the data set. A typical ap-
proach to handle outliers is tuple suppression. Given a value
of k, the tuples which belong to equivalence classes of size
less than k are removed from the data set. Impact of the re-
moval is then captured in the information loss measurement.
The method is not directly applicable while finding Pareto-
optimal generalizations since a k value is not pre-specified.
The approach applied here is to use an upper bound on the
number of suppressed tuples.

Let η be the maximum number of tuples that is allowed
for suppression and R be the total number of tuples in the
data set. Consider the sets E1, . . . , ER where Ei contains
tuples that are indistinguishable from i− 1 other tuples. In
other words, all tuples in the set Ei are i-anonymous. Note



Function 1 HeightSearch(Node P , boolean useNode)

Input: A node P and a boolean value (true or false) useN-
ode. N is the base node.
Output: (M, kM ,LM ): M is a node in GG(P ) with the
highest k value such that kM < kN and LM < LN , or
NULL if no such node exists.

if [useNode = true] No = (P, kP ,LP )
else No = (NULL, 0, 0)

for every child node C of P in GG(P ) {
if [C ∈ SG(N) and

P

i
|ni − ci| > 1]

Q = HeightSearch(C,false)
else {

Evaluate(C)
if [kC < kN and LC < LN ]

Q = HeightSearch(C,true)
else Q = (NULL, 0, 0)

}
if [kQ > kNo or (kQ = kNo and LQ < LNo)]

No = (Q, kQ,LQ)
}

return No

that some Eis may be empty sets. If the anonymized data
set is to be made k-anonymous, then all tuples in the sets
E1, . . . , Ek−1 must be suppressed. Given the hard limit on
suppression, this will be possible only if the number of tuples
in the union of these sets is less than or equal to η. The
same strategy can be applied in a reverse manner. Tuples
in all sets E1, . . . , Ej are suppressed such that j satisfies the
condition

Pj+1

i=1
|Ei| > η. The data set is then k-anonymous

with k = j + 1. The number of tuples suppressed is |E1 ∪
. . .∪Ej | and can be accounted for in the loss measurement.
This provides us a method to make maximum possible usage
of the suppression limit without specifying a k value.

5.2 POkA
Height search and depth search are the two crucial com-

ponents of POkA. We use the notation SG(P ) and GG(P )
to signify the set of nodes in the specialization graph and
generalization graph of a node P respectively. Let N be the
base node. kP and LP signify the k and information loss
value associated with node P . Further, we assume the exis-
tence of a function Evaluate which takes as input a node P

in the DHL and returns kP and LP . These returned values
are computed after using the suppression strategy mentioned
earlier.

Function 1 presents the pseudo-code for a height search
implementation. Height search initiated at a node therefore
returns the node in its generalization graph with the highest
k and one which satisfies the constraints on the k and loss.
Any node that belongs to SG(N) and is not an immediate
neighbor of N is not evaluated and height search proceeds
without considering the k and loss of such a node. Other-
wise, the node is evaluated to determine if further search
is required as determined by the height boundary property.
The method is initiated at a candidate ground node decided
in the depth search. d signifies the depth to search in the
following.

Function 2 shows the pseudo-code for a depth search im-

Function 2 DepthSearch(Node P )

Input: A node P in SG(N), N being the base node.
Output: (M, kM ,LM ): M is a node reachable by height
search of some node in SG(P ) and with the highest k value
such that kM < kN and LM < LN .

No = (NULL, 0, 0)

for every child node C of P in SG(P )
if [

P

i
|ni − ci| = d ] {

if [d = 1] {
Evaluate(C)
Q = HeightSearch(C,true)

}
else Q = HeightSearch(C,false)

}
else Q = DepthSearch(C)
if [kQ > kNo or (kQ = kNo and LQ < LNo)]

No = (Q, kQ,LQ)
}

return No

Function 3 POkA()

Output: The set P of Pareto-optimal nodes in the DHL

N = (N1, . . . , Ns)
P = {N}

while [kN > 2] {
(N, kN ,LN ) = DepthSearch(N)
P = P ∪ {N}

}

return P

plementation. The implementation is a simple DFS traversal
with a height search being initiated when nodes at depth d

are encountered. The best M found in these height searches
is translated upwards towards the root of the specialization
graph. Hence, the node M returned from a call to Depth-
Search(N) is the next identified Pareto-optimal node.

POkA starts by a call to DepthSearch with the fully gener-
alized node. For every new Pareto-optimal node identified,
DepthSearch is iteratively called until the Pareto-optimal
node with k ≤ 2 is found. Function 3 shows the pseudo-
code of this process.

5.3 Improvements
Node traversal in DepthSearch and HeightSearch can be

further reduced by taking into account the structure of the
DHL. Since the structure is that of a graph, nodes in the spe-
cialization graph and generalization graph will share nodes
as children. This structure results in repeated visits to a
node during a depth/height search initiated by multiple par-
ent nodes that share the node as a child. Although repeated
visits to the same node do not increase the number of unique
node evaluations required, there is redundancy involved as
the results from searching the node further have already
been taken into account. We therefore perform some book-
keeping at every visited node to prevent repeated visits.
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Figure 4: Top row shows the search space and true Pareto-optimal nodes while using different loss metrics.
Bottom row shows the Pareto-optimal nodes found by exhaustive search and the nodes obtained by POkA.

The output from every node visited during a height search,
i.e. the return values, is separately stored in a list HBest.
Whenever a height search is to be initiated at a node, the
list HBest is first checked to find if an entry corresponding
to the node exists. If it does, then the node (and subsequent
nodes) has already been searched and the stored values are
returned. If not then the height search is done as usual.
Similar to HBest, a list DBest is created for every node
visited during a depth search. Depth search at a node is
not performed if results for the node already exist in the
list. Both lists are emptied before calling DepthSearch in
Function 3. Functions 1 and 2 can be easily modified to
maintain and use these lists.

6. PERFORMANCE ANALYSIS
We applied our methodology to the “adult.data” bench-

mark data set1. The data was extracted from a census
bureau database and has been extensively used in studies
related to k-anonymization. We prepared the data set as
described in [1, 7]. All rows with missing values are re-
moved to finally have a total of 30162 rows. The attributes
used in this study along with their DGH lengths are listed in
Table 2. Attributes with larger domains have been assigned
a longer DGH. The DGHs used are not shown here due to
space constraints. The total number of nodes in the lattice
is 17920. The suppression limit η is set at 1% of the data
set size, i.e. η = 301. Experiments are performed with three
different loss metrics – namely general loss metric (GLM)
[7], discernibility (DCN) [1] and classification error (CE) [7].
The attribute “Salary Class” is used as the class label while
performing experiments with the CE metric. The lattice size
in this case is 8960. Solutions reported by POkA are com-

1
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/

pared with those obtained by an exhaustive search of the
entire DHL. Note that the number of nodes evaluated in the
exhaustive search is equal to the size of the DHL, while that
used by POkA is much less. Nonetheless, the exhaustive
search provides us a definitive platform to judge the effi-
ciency of POkA in finding true Pareto-optimal nodes. The

depth d used in the experiment is set at davg = ⌈
P

i Ni

s
⌉ = 3,

unless otherwise stated.

Attribute Distinct values DGH length
Age 74 6

Work Class 7 3
Education 16 3

Marital Status 7 3
Race 5 1

Gender 2 1
Native Country 41 4

Salary Class 2 1

Table 2: Attributes and DGH lengths used from the
adult census data set.

6.1 Convergence
Pareto-optimal nodes identified by POkA for the three

different loss metrics are shown in Fig. 4. The top row high-
lights the nature of the search space while using different loss
metrics and the true Pareto-optimal nodes. All plots are in
log scale. An interesting observation is that, for all three loss
metrics, the search space is more dense towards lower val-
ues of k. This means as POkA proceeds towards finding the
Pareto-optimal nodes in these regions, the number of nodes
in the specialization graph of the base node decreases. Fur-
ther, the Pareto-optimal nodes follow varied trends in the
three metrics - concavity, convexity and disconnectedness.
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Figure 5: Comparison of Pareto-optimal nodes identified using depths of 1, 2 and 3 (=davg).

The bottom row in Fig. 4 compares the nodes identified
by POkA with those obtained from an exhaustive search.
POkA demonstrates noteworthy convergence to the true Par-
eto-optimal nodes across the different loss metrics. It man-
ages to overcome the limitations that may be posed due to
the arrangement of the Pareto-optimal nodes in the search
space. While all solutions identified with GLM and CE are
true Pareto-optimal nodes, one or two cases of sub-optimal
or no identification is observed for DCN (notice the center of
the plot). Nonetheless, identification of a sub-optimal node
did not affect any subsequent searches. The requirement
that the base node is a Pareto-optimal one is therefore not
a strict one. POkA can very well be started from a sub-
optimal node in the lattice and Pareto-optimal nodes with a
k value lower than the starting node can still be discovered.

6.2 Impact of the depth parameter d

The depth d used in a depth search plays a crucial role
in the identification of Pareto-optimal nodes. Table 3 shows
the number of nodes evaluated in the lattice when using
the GLM metric and varying depths. The maximum depth
experimented with is 6, which is the equal to max(Ni), and
ensures that nodes in Gbest will be reached for any base node.
However, using such a value results in the evaluation of more
than 60% of the nodes. As discussed in Section 4.3, coverage
of all nodes in Gbest should not be required. The guiding
principle derived is to search a depth of at least davg =

⌈
P

i Ni

s
⌉ (which is equal to 3 with the DGH lengths used).

Fig. 5 shows the Pareto-optimal nodes identified by using a
depth of davg or less. All Pareto-optimal nodes have been
identified by using a depth of davg (= 3). Using a depth of 2
resulted in some misidentification while a depth of 1 missed
a number of the Pareto-optimal nodes. Using a depth higher
than 3 did not prove to be of any advantage, less the number
of nodes evaluated increased without necessity.

6.3 Node pruning efficiency
We found that the node pruning efficiency of POkA is

much better in domain generalization lattices of bigger sizes.
Bigger lattices may be formed either when the DGH lengths
of the attributes considered are sufficiently long or when
the number of attributes to anonymize is large. We ex-
perimented with the latter possibility and found that the
number of nodes evaluated dropped exponentially with in-
creasing lattice size. Fig. 6 shows the percentage of nodes
evaluated when using 2, 3, . . . , 8 attributes for anonymiza-
tion in the census data set. The depth to search is set to
davg in each case. The higher number of evaluations for

Depth d Nodes evaluated True optima
1 502 (2.8%) 22 (48.8%)
2 1945 (10.9%) 41 (91.1%)

3 (= davg) 4033 (22.5%) 45 (100%)
4 6544 (36.5%) 45 (100%)
5 9205 (51.4%) 45 (100%)
6 11751 (65.6%) 45 (100%)

Table 3: Number of nodes evaluated when using dif-
ferent depth limits. Results are generated by using
the GLM metric. The total number of nodes is 17920.
Number of true Pareto-optimal nodes is 45.

smaller lattices can be attributed to the fact that the ob-
served high concentration of solutions in certain regions of
the search space no longer holds. As nodes are spread out in
the search space, potential number of Pareto-optimal nodes
are also high, thereby resulting in the evaluation of a higher
fraction of the nodes. On an average, node evaluations are
observed to be around 20% across the three metrics when
anonymizing for all attributes.

6.4 Summary
To summarize the results, POkA can identify true Pareto-

optimal nodes for a wide range of loss metrics that structure
the search space in different ways. The experimental results
corroborate the theoretical motivation behind using the av-
erage number of steps for full specialization of an attribute
as the depth to search. The performance of POkA does
not deteriorate even if certain nodes identified by it are not
Pareto-optimal and used as base nodes. Finally, the number
of nodes evaluated is a small percentage of the total num-
ber of nodes when the lattice is significantly bigger than the
number of Pareto-optimal nodes it contain.

7. CONCLUSIONS
Privacy preserving data dissemination has to minimize the

information loss in the anonymized data set while protect-
ing the identity of underlying individuals to the maximum
extent possible. In the context of k-anonymity, existing ap-
proaches address these aspects only partially by concentrat-
ing only on the issue of minimum information loss. Specif-
ically, these approaches do not provide any information on
the trade-off behavior between privacy and data utility.

In this paper, we proposed the POkA algorithm to find
generalization schemes that are Pareto-optimal with respect
to k-anonymity and a loss metric. By identifying Pareto-
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Figure 6: Percentage of nodes evaluated for vary-
ing lattice sizes. Results are generated by using
the DCN metric. Varying lattice sizes are gener-
ated by considering varying number of attributes to
anonymize.

optimal nodes in a domain hierarchy lattice we can guaran-
tee that no other generalization can improve on the privacy
aspect without deteriorating data utility. POkA uses a com-
bination of depth first traversals of the lattice to efficiently
find the Pareto-optimal nodes. Theoretical groundwork be-
hind efficiently performing these traversals is presented. Re-
sults on a benchmark data set show that POkA has the
potential to identify all Pareto-optimal nodes with a small
percentage of node evaluations. They also demonstrate that
the algorithm is applicable for a number of commonly used
loss metrics.

Node evaluation can be further reduced if a better heuris-
tic to stop the depth search can be found. An initial step in
this direction is to investigate more stringent properties for
the ground node. Another research direction is to extend the
algorithm to other models of privacy. Pareto-optimality is
used here as a two dimensional concept between privacy and
data utility, while there exists privacy models that require
the specification of more than a single parameter. Investi-
gating Pareto-optimal anonymization with such models is a
challenging area as well.
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