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ABSTRACT

Public data sharing is utilized in a number of businesses to
facilitate the exchange of information. Privacy constraints
are usually enforced to prevent unwanted inference of in-
formation, specially when the shared data contain sensitive
personal attributes. This, however, has an adverse effect on
the utility of the data for statistical studies. Thus, a require-
ment while modifying the data is to minimize the informa-
tion loss. Existing methods employ the notion of “minimal
distortion” where the data is modified only to the extent
necessary to satisfy the privacy constraint, thereby assert-
ing that the information loss has been minimized. However,
given the subjective nature of information loss, it is often
difficult to justify this assertion. In this paper, we propose
an evolutionary algorithm to explicitly minimize an achieve-
ment function given constraints on the privacy level of the
transformed data. Privacy constraints specified in terms of
anonymity models are modeled as additional objectives and
an evolutionary multi-objective approach is proposed. We
highlight the requirement to minimize any bias induced by
the anonymity model and present a scalarization incorporat-
ing preferences in information loss and privacy bias as the
achievement function.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion—security, integrity, and protection; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Sea-
rch—Heuristic methods

General Terms

Experimentation
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1. INTRODUCTION
Privacy violations emanating from the sharing of personal

information collected at various public institutions have rais-
ed an important concern in recent few years. Much research
in information assurance has therefore delved into the pro-
tection of respondent identity. The question to answer is
how such information be modified so that the data is use-
ful for statistical studies while protecting the respondents’
identities.

Removing personally identifiable information such as name
and social security number is not sufficient to ensure privacy.
A recent study on the year 2000 census data of the U.S. pop-
ulation reveals that 53% of the individuals can be uniquely
identified by their gender, city and date of birth; 63% if
the ZIP code is known in addition [5]. Such attributes,
called quasi-identifiers, can be linked with other publicly
available information to establish the re-identification. A
classic experiment demonstrating the possibility is presented
by Sweeney [18] where she managed to obtain the medical
records of the Governor of Massachusetts from a medical
insurance data set, containing no explicit identifying infor-
mation, and a voter’s registration list.

To attend to such privacy concerns, Samarati and Sweeney
proposed the concept of data generalization to be used to
satisfy a property called k–anonymity [16, 17]. Generaliza-
tion of data is performed by grouping together data attribute
values into a more general one, for example replacing the age
by an age range. A transformed data set of this nature is
then said to be k–anonymous if each record in it is same as
at least k − 1 other records. This property implies that any
record can be related to at least k underlying individuals.

A consequential drawback of performing generalization is
a loss in integrity of the data set. A number of algorithms
have therefore been proposed to generalize a data set to
meet the k–anonymity property while resulting in minimum
information loss [1, 4, 6, 7, 9, 10, 11, 15, 19]. The standard
approach is to progressively generalize the data until it is k–
anonymous. Such an approach cannot guarantee optimality
if different attributes carry different levels of significance.
For example, in a medical data set, attributes such as age
and disease are more important than the ZIP code of the
underlying patient. This opens up the possibility that a
minimum information loss can be sustained even for higher
values of k, thereby providing better privacy than specified.
Searching for higher privacy generalizations is also fruitful
if the data publisher can tolerate an information loss higher
than the minimum possible. Existing optimization attempts
do not embed such preference criteria.



Further, k–anonymity is only a minimalistic measure of
the privacy level. The actual privacy levels of two individu-
als in a k–anonymous data set can be very different. For ex-
ample, consider a 3–anonymous data set. If record A is same
as 2 other records while record B is same as 9 other records,
the privacy level of individual B is much higher (9/10) than
that of individual A (2/3). This factor, which we call the an-
onymization bias, is induced by nature of the k–anonymity
model since it only helps identify the worst case privacy level
while minimizing the information loss. Given the subjective
nature of information loss, we cannot ignore the possibility
of a reciprocal relationship between privacy bias and infor-
mation loss.

In this paper, we present an approach to obtain data
generalizations satisfying the k–anonymity property given
preference values on the information loss and privacy bias.
An achievement scalarizing function is formulated using the
preference values and subjected to a constrained minimiza-
tion. We provide the necessary arguments to prove that a
constrained minima of this function is Pareto-optimal with
respect to loss and bias. The approach draws its power from
the multi-objective treatment of the constrained single ob-
jective optimization problem. We show how the proposed
evolutionary multi-objective approach helps resolve the is-
sue of finding better privacy levels than specified (by the
parameter k) in the presence of varying data attribute sig-
nificance and data publisher preferences. We extend and
compliment this work by investigating how factors such as
population size, weight assignments and bias preference can
affect solution quality.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews some of the existing optimization algorithms
for k–anonymization. Section 3 provides a preliminary back-
ground on the problem along with metrics to quantify in-
formation loss and anonymization bias. Section 4 defines
the achievement function and formulates a constrained op-
timization problem over it. Section 5 presents our solution
methodology. Empirical results on a benchmark data set
are presented in Section 6 along with arguments discussing
the effectiveness of the proposed approach. Finally, Section
7 concludes the paper.

2. RELATED WORK
Several algorithms have been proposed to find effective

k–anonymization. The µ-argus algorithm is based on the
greedy generalization of infrequently occurring combinations
of quasi-identifiers and suppresses outliers to meet the k–
anonymity requirement [6]. The Datafly approach uses a
heuristic method to first generalize the quasi-identifier con-
taining the most number of distinct values [17]. Sequences
of quasi-identifier values occurring less than k times are sup-
pressed.

On the more theoretical side, Sweeney propose the Min-
Gen algorithm [17] that exhaustively examines all poten-
tial generalizations to identify the optimal generalization
that minimally satisfies the anonymity requirement. How-
ever, the approach is impractical even on modest sized data
sets. Meyerson and Williams have recently proposed an ap-
proximation algorithm that achieves an anonymization with
O(k log k) of the optimal solution [12]..

A genetic algorithm based formulation is proposed by Iyen-
gar to perform k–anonymization [7]. Iyengar’s method re-
quires that values in an attribute’s domain be linearly or-

dered in some manner in order to enable a flexible represen-
tation of a generalization scheme. Bayardo and Agrawal pro-
pose a complete search method that iteratively constructs
less generalized solutions starting from a completely gener-
alized data set [1]. The algorithm starts with a fully gen-
eralized data set and systematically specializes it into one
that is minimally k–anonymous. The idea of a solution cut
is presented by Fung et al. in their approach to top down
specialization [4]. A generalization is visualized as a “cut”
through the taxonomy tree of each attribute. A cut of a
tree is a subset of values in the tree that contains exactly
one value on each root-to-leaf path. A solution cut is a cut
that satisfies the anonymity requirement.

As mentioned earlier, these algorithms lack any explo-
ration of solutions with higher privacy levels than specified.
Moreover, they do not embed any preference criteria in their
design. Anonymization bias is also not taken into account
by any of these algorithms.

3. DISCLOSURE CONTROL
A data set D can be visualized as a tabular representation

of a multi-set of tuples r1, r2, . . . , rnrow where nrow is the
number of rows in the table. Each tuple (row) ri comprises
of ncol values 〈c1, c2, . . . , cncol

〉 where ncol is the number of
columns in the table. The values in column j correspond to
an attribute aj , the domain of which is represented by the
ordered set Σj = {σ1, σ2, . . . , σnj}. The ordering of elements
in the set can be implicit by nature of the data. For example,
if the attribute is age, the ordering can be done in increasing
order of the values. Categorical data are usually associated
with a taxonomy tree. The leaf nodes in this tree constitute
the actual values that the attribute can take. The ordering
for these values can be assigned based on the order in which
the leaf nodes are reached in a preorder traversal of the tree
[7].

A generalization Gj for an attribute aj is a partitioning
of the set Σj into ordered subsets 〈Σj1 , Σj2 , . . . , ΣjP

〉 which
preserves the ordering in Σj , i.e. if σa appears before σb in
Σj then, for σa ∈ Σjl

and σb ∈ Σjm , l ≤ m. Further, every
element in Σj must appear in exactly one subset. The ele-
ments in the subsets maintain the same ordering as in Σj .
For the age attribute with the domain {10, . . . , 90}, a possi-
ble generalization can be 〈{[10, 30]}, {(30, 50]}, {(50, 70]}, {(
70, 90]}〉. For categorical attributes, a generalization is typ-
ically required to respect the taxonomy tree. However, an
ill-defined taxonomy tree can heavily constrain the number
of generalizations possible for such attributes and affect the
overall information content in the anonymized data. An-
other strategy, and the one adopted in this study, is to take
into account all possible generalizations for categorical at-
tributes as well and perform the appropriate nomenclature
of the groups in a post-optimization stage.

Given the generalizations G1, G2, . . . , Gncol
, the data set

D can be transformed to the anonymized data set D
′ by re-

placing each value vij at row i and column j in D by Gj(vij)
where Gj(vij) gives the subset index to which vij belongs in
the generalization Gj . Note that the number of partitions
(or groups) of an attribute domain signifies the extent of
generalization that will be performed for the attribute. If
P = 1 then all values of the attribute will be transformed
to the same subset index 1, in which case all information in
that attribute is lost. On the other extreme, if P = |Σj | for
attribute aj then every value will map to its own unique in-



dex (no generalization) and all information in the attribute
will be maintained in the original form.

A consequence of performing generalization is the appear-
ance of equivalent tuples. Two tuples in D are equivalent if
their subset indices are equal in every column of D

′. Such
equivalent tuples can then be grouped together into equiv-
alence classes. We associate a value eci to each tuple in D

′

signifying the size of the equivalence class to which it belongs
to. k–anonymity is then defined as follows.

Definition 1. (k–anonymity) An anonymized data set
D

′ is said to be k–anonymous if min(ECD′) ≥ k, where ECD′

is the vector (ec1, . . . , ecnrow ) for D
′.

In other words, every tuple in a k–anonymous data set
is same as at least k − 1 other tuples. Higher the value
of the parameter k, better is the privacy guarantee. We
can say that the probability of privacy breach is at most
1/k in a k–anonymous data set. k–anonymity satisfies the
monotonicity property, i.e. a k–anonymous data set is also
(k − 1)–anonymous. We shall thus refer to the parameter k
in k–anonymity as kpref and min(ECD′) as the effective k
resulting from the generalizations.

3.1 Normalized Weighted Penalty
Loss metrics assign some notion of penalty to each tuple

whose data values get generalized, thereby reflecting the to-
tal information lost in the anonymization process. Consider
the data value vij at row i and column j in the data set
D. Let gij = Gj(vij) be the index of the subset to which
vij belongs in the generalization Gj , i.e. vij ∈ Σjgij

. Fur-

ther, let (w1, . . . , wncol
) be a vector of weights where weight

0 ≤ wi ≤ 1 reflects the importance of the attribute ai. The
sum of weights is fixed at 1.0. The penalty for information
loss associated with the value vij is then given as follows.

penalty(vij) =
wj(|Σjgij

| − 1)

(|Σj | − 1)

The loss is thus proportional to the size of the partition to
which a data value belongs to. It attains a maximum value
(equal to the weight of the attribute) when P = 1. Subtract-
ing one ensures that a non-generalized value incurs zero loss
since the cardinality of the subset to which it belongs would
be one. An entire tuple can thus have a penalty of at most
1.0. The normalized weighted penalty in D

′ is then obtained
as the fractional penalty over all tuples in the data set.

NWP (D′) =

Pnrow

i=1

Pncol
j=1

penalty(vij)

nrow

3.2 Normalized Equivalence Class Dispersion
The k–anonymity model is only representative of the worst

case privacy measurement. As a result, it is possible that
two anonymized versions of a data set, both satisfying k–
anonymity, result in very different equivalence class sizes for
the tuples. The privacy level of a tuple is directly related
to its eci value – the higher the value, lower is the probabil-
ity of privacy breach. Since the k–anonymity definition does
not enforce any requirement on how eci values should be dis-
tributed, it is often possible that an anonymization is biased
towards a set of tuples (eci ≫ kpref ) while providing mini-
malistic privacy (eci = kpref ) for others. Our attempt here
is to control the occurrence of such biased privacy within
acceptable limits.

The value of eci for a tuple can range from 1 to the number
of tuples in the data set, i.e. nrow. This range reflects the
maximum bias that can be present in the anonymized data
set. The normalized equivalence class dispersion measures
the bias as the maximum dispersion present in the eci values
relative to the maximum possible dispersion.

NECD(D′) =
max(ECD′) − min(ECD′)

nrow − 1

4. PREFERENCE BASED OPTIMIZATION
A typical constrained optimization problem explored in

disclosure control is to find an anonymized version of a data
set, or effectively a set of generalizations resulting in the
anonymized version, that induce minimum information loss
subject to the constraint that the anonymized data set is k–
anonymous. Given the NP-hard nature of the problem [12],
heuristic based approaches in this context progressively in-
crease the amount of generalization for the attributes until
the k–anonymity constraint is satisfied [1, 4, 19]. The anon-
ymized data set at this point is assumed to incur minimum
information loss. These approaches have two major draw-
backs.

First, the information loss metric is assumed to have a
monotonic relationship with the amount of generalization.
In other words, as more generalization is performed (no
matter for which attribute), the information loss increases.
Only under this assumption can one claim that by perform-
ing generalization only to the extent necessary to satisfy the
k–anonymity constraint, we shall also be minimizing the in-
formation loss. However, the assumption is not valid when
all attributes do not carry the same significance. Hence, less
important attributes may be generalized more while more
important attributes may be generalized less without affect-
ing the information content of the data set. This implies
that the optimal solution need not necessarily have an effec-
tive k equal to kpref , but perhaps much higher.

Second, these approaches do not provide the framework
to explore the possibility of attaining higher effective k val-
ues without increasing the information loss. Owing to the
monotonicity property, an effective k value higher than kpref

will also satisfy the anonymity constraint, but comes with
the added advantage of better privacy. Hence, exploring so-
lutions beyond the ones that strictly satisfy the constraint is
desirable. Further, existing approaches do not take into ac-
count any preference specified on information loss. There are
some successful attempts to obtain all possible k–anonymized
versions of a data set [9, 15], out of which the optimal one
can be chosen based on preference criteria. Nonetheless,
the set of solutions obtained with such an approach still re-
mains exponentially large, making the search for an optimal
choice equally difficult to perform. The issue of privacy bias
remains unexplored in all these attempts. The possibility
of non-dominance characteristics between privacy bias and
information loss makes the problem further difficult and in-
teresting at the same time.

We start by introducing the notion of an efficient solution.

Definition 2. (Efficient Solution) Given an integer 1 ≤
kpref ≤ nrow, an anonymized data set D

′ is efficient if
min(ECD′) ≥ kpref and there does not exist another anony-
mized data set D

′′ satisfying min(ECD′′) ≥ kpref such that
NWP (D′′) < NWP (D′) and NECD(D′′) < NECD(D′).



In other words, an efficient solution is a feasible non-
dominated point in the objective space of NWP versus NECD.
Preference information on NWP and NECD are embodied
into the problem by using an achievement function [14]. The
achievement function is a scalarization of NWP and NECD,
dependent on a specified preference point (NWPpref , NEC
Dpref ). An appropriate achievement function is one which
can be used to determine efficient solutions by performing a
minimization of the scalar function. In this regard, we define
the following function adapted from the commonly known
Chebyshev min-max problem [13].

ach(D′) = max

»

w(NWP (D′) + ǫ),
(1 − w)(NECD(D′) + ǫ)

–

where w =

1

NWPpref +ǫ

1

NWPpref +ǫ
+ 1

NECDpref +ǫ

·

Here ǫ is a very small positive number. The ideal point in
the NWP versus NECD objective space lies at (0, 0) and thus
(−ǫ,−ǫ) is an utopian point. Minimization of ach results
in a solution that provides the maximal overachievement
beyond the preference point if it is feasibly attainable or
otherwise minimal underachievement if the preference point
is not attainable. The parameter w allows a directed search
along the direction from the utopian point to the preference
point, the desired solution being the point where the search
hits the feasible region. Refer to [13] for details on how the
parameter is typically used in a non-evolutionary framework.

Observation. A minima D
′ of ach subject to the con-

straint min(ECD′) ≥ kpref is an efficient solution.
Proof. Since D

′ is a minima of ach satisfying the con-
straint min(ECD′) ≥ kpref , we have ach(D′) ≤ ach(D′′) for
all D

′′ that satisfies min(ECD′′) ≥ kpref .
Let us assume that D

′ is not an efficient solution. Hence,
there exists a D

′′ satisfying min(ECD′′) ≥ kpref such that
NWP (D′′) < NWP (D′) and NECD(D′′) < NECD(D′).
Assuming that NWPpref ≥ 0 and NECDpref ≥ 0 (which is
a valid assumption since the preference point should at best
be the ideal point), we have 0 < w < 1 and 0 < 1 − w < 1.
Given ǫ > 0, we thus have the following two relations.

w(NWP (D′′) + ǫ) < w(NWP (D′) + ǫ)

(1 − w)(NECD(D′′) + ǫ) < (1 − w)(NECD(D′) + ǫ)

Using the result a < b, c < d ⇒ max(a, c) < max(b, d) on
the above relations, we obtain ach(D′′) < ach(D′) which is
a contradiction. Therefore, D

′ must be an efficient solution.
�

For the case when the minima of ach is not unique, we use
a preference deviation metric to choose a solution amongst
the multiple minima solutions.

prefdev(D
′

) = NWP (D
′

) + NECD(D
′

) − NWPpref − NECDpref

The solution chosen from multiple minima points is the
one with minimum prefdev. This returns the solution pro-
viding the maximal overachievement or minimal underachieve-
ment in the total sum of NWP and NECD. With these com-
ponents, we can now define our optimization problem in
disclosure control as follows.

Optimization Problem (OP): Given a data set D, kpref ,
NWPpref and NECDpref , find the anonymized data set D

′

(or effectively the generalizations that induce it) that mini-
mizes the achievement function ach subject to the constraint
kpref − min(ECD′) ≤ 0.

5. A MULTI-OBJECTIVE APPROACH
The optimization problem at hand is a constrained sin-

gle objective problem. In this section we propose an ap-
proach based on evolutionary multi-objective optimization
to find a solution to the problem. The method involves
transforming the constraint into a separate objective giv-
ing us a bi-objective vector optimization problem [2]. The
multi-objective variant of OP is formulated as follows.

Multi-Objective Optimization Problem (MOOP):
Given a data set D, kpref , NWPpref and NECDpref , find
the anonymized data set D

′ (or effectively the generaliza-
tions that induce it) that minimizes the achievement func-
tion f1(D

′) : ach(D′) and the function f2(D
′) : kpref −

min(ECD′).
Solutions to the MOOP are characterized by the Pareto-

dominance concept. Under such a characterization, an an-
onymized data set D

′ found by the solution methodology
is a non-dominated solution to the MOOP if it cannot find
another solution D

′′ such that

• f1(D
′′) ≤ f1(D

′) and f2(D
′′) < f2(D

′), or

• f1(D
′′) < f1(D

′) and f2(D
′′) ≤ f2(D

′).

A direct and positive consequence of using this formula-
tion is the exposure of higher effective k solutions, if any.
Note that a solution to OP only needs to satisfy the con-
straint kpref−min(ECD′) ≤ 0. In the multi-objective formu-
lation, the solutions undergo further filtering based on non-
dominance – for two solutions with equal value of ach, the
one with higher effective k (lower f2) gets preference. Thus,
if multiple solutions to OP exists at different effective k val-
ues, the multi-objective approach directs the search towards
the one providing the highest level of privacy. In addition,
the method exposes the trade-off characteristics between the
level of privacy attainable and the ach function (effectively
NWP and NECD). We shall use the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [3] to obtain solutions to
the MOOP. Using a population based approach allows us
to explore the non-dominated front using Pareto-dominance
without involving external parameters such as weights on
the objectives.

5.1 Solution representation
Before NSGA-II can be applied, a viable representation

of a generalization has to be designed for the algorithm to
work with. Here we adopt the encoding suggested by Iyen-
gar [7]. Consider the numeric attribute age with values in
the domain [10, 90]. Since this domain can have infinite val-
ues, the first task is to granularize the domain into a finite
number of intervals. For example, a granularity level of 5
shall discretize the domain to {[10, 15], (15, 20], . . . , (85, 90]}.
Note that this is not the generalization applied on the age
attribute. The discretized domain can then be numbered as
1 : [10, 15], 2 : (15, 20], . . . , 16 : (85, 90]. The discretized do-
main still maintains the same ordering as in the continuous
domain. A binary string of 15 bits is now used to represent
all possible generalizations for the attribute. The ith bit in
this string is 0 if the ith and (i +1)th intervals are supposed
to be combined, otherwise 1. The granularization step can
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Figure 1: NWP and NECD values of non-dominated solutions returned by NSGA-II for different kpref . The
effective k value obtained is highlighted for the reported solution. An unique feasible minima of ach is
obtained in all cases and the reported solution is an efficient point, w.r.t. the set of solutions returned by
NSGA-II, in the NWP vs. NECD objective space.

be skipped for attributes with a small domain and a defined
ordering of the values. The individual encodings for each
attribute are concatenated to create the overall encoding of
the generalizations for all attributes.

5.2 Selection operator
While most components of NSGA-II are retained in the

original form, a modification is proposed for the selection
procedure in order to direct solutions towards the feasible
region of OP. NSGA-II employs a crowded comparison oper-
ator as part of its binary tournament selection scheme. This
operator gives preference to solutions with lower ranks (in
accordance with the non-dominated ranking scheme of the
algorithm). For the case when the compared solutions are of
the same rank, a crowding distance metric is used to choose
the solution with least diversity. Our modification involves
distinguishing between feasible (f2(D

′) ≤ 0) and infeasible
(f2(D

′) > 0) solutions of OP during the selection procedure.
The procedure is outlined as follows for two solutions x and
y.

1. If both x and y are feasible, select based on crowded
comparison operator.

2. If x is feasible and y is not, or vice versa, select the
feasible one.

3. If both x and y are infeasible:

(a) select one with minimum f2.

(b) if f2 is equal, select one with minimum f1.

(c) if f1 is also equal, use crowding distance metric.

4. Any case unresolved by the above three cases is re-
solved by arbitrary selection.

Using this selection procedure, we can initially direct the
search towards the feasible region of OP and thereafter con-
centrate on exploring the trade-off characteristics. Step 3
of the procedure uses a lexicographic approach to selection.
Note that the space of possible solutions to the problem is
increasingly dense as the effective k approaches 1, i.e. a rela-
tively higher number of solutions are feasible for lower kpref .
Step 3b and 3c are particularly useful in such settings.

5.3 Solution to OP
Once the final non-dominated solution set ND to MOOP

is obtained, the solution to OP is chosen as the point D
′

such that

D
′ = argmin

D′′∈NDf

f1(D
′′) where NDf = {Di ∈ ND|f2(Di) ≤ 0}.

The case of multiple such solutions is resolved using the
preference deviation metric. Since the minima of ach ob-
tained in this manner is only justifiable w.r.t. NDf , we
shall say that D

′ is an efficient solution only w.r.t. the non-
dominated solutions generated by NSGA-II. The statement
is just a cautious side note to indicate that the effectiveness
of the approach is as good as the convergence and diversity
preservation abilities of the multi-objective optimizer.



6. EMPIRICAL RESULTS
We applied our methodology to the “adult.data” bench-

mark data set [8]. The data was extracted from a census
bureau database and has been extensively used in studies
related to disclosure control. We prepared the data set as
described in [1, 7]. All rows with missing values are removed
to finally have a total of 30162 rows. The attributes used in
this study along with their domain size are listed in Table
1. This gives us a chromosome of length 105 representing a
solution.

Attribute Domain Size
Age (age) 20 (granularity=5)

Work Class (wkc) 7
Education (edc) 16

Marital Status (mst) 7
Occupation (occ) 14

Race (rac) 5
Gender (gen) 2

Native Country (ncy) 41
Salary Class (slc) 2

Table 1: Attributes and domain size from the adult

census data set.

For NSGA-II, the population size Npop is set at 100 with a
maximum of 50, 000 function evaluations. Binary crossover
is performed on the entire chromosome with rate 0.8. Mu-
tation is performed on the individual encodings of every at-
tribute with a rate of 0.001. The modified selection operator
is used for binary tournament selection. Weights on the at-
tributes are assigned equally (1/9), unless otherwise stated.
Typical run time of an experiment is observed to be roughly
15 minutes on an Intel Core 2 Duo 2x2.83GHz machine with
2GB RAM and running 64-bit Fedora Core 8. No difference
in obtained solutions is observed when running the experi-
ments with different random number seeds.

6.1 Solution efficiency
Fig. 1 illustrates the NWP and NECD values of the non-

dominated solutions returned by NSGA-II for different val-
ues of kpref . A preference point of (0.2, 1.0) is used in these
experiments. Choosing a NECD preference of 1.0 effectively
allows NSGA-II to look for low NWP solutions irrespective
of the privacy bias they induce. As higher values of kpref are
used, the number of feasible solutions obtained decreases.
This is likely to happen since the search space is known
to be very dense for low values of kpref , while solutions
become rare as higher privacy requirements are enforced.
Consequently, while reported solutions for kpref = 2, 5 and
10 have an effective k close to kpref , higher values are ob-
tained for kpref = 25, 50 and 100. However, higher infor-
mation loss has to be sustained for stronger privacy require-
ments. An unique feasible minima of ach is obtained in all
the cases. In confirmation to our theoretical observation,
the minima point is a non-dominated point in the NWP vs.
NECD objective space w.r.t other feasible solutions returned
by NSGA-II. Further, the existence of solutions at effective
k values higher than kpref (for example k = 3 for kpref = 2)
strengthens our claim that the optimal solution need not al-
ways have effective k value equal to kpref . Once again, the
concept of Pareto-dominance helps here in discovering these
solutions.

6.2 Impact of population size
Fig. 2 shows the reported solutions for three different set-

tings of population size, Npop = 100, 250 and 500. Notice
that increasing the population size, while keeping the num-
ber of function evaluations fixed, seem to have only marginal
impact on the overall solution quality. Solutions are slightly
less effective in terms of the preference deviation metric for
larger population size, albeit there is no logical pattern in
the behavior. Larger populations typically have the poten-
tial to explore more parts of the search space. However,
the absence of an uniform distribution of solutions in the
search space makes this exploration difficult. Even with the
capacity to carry better genetic diversity, solutions result-
ing from most crossover operations tend to map to similar
objective values. This is further corroborated by the ob-
servation that the number of unique solutions obtained is
similar irrespective of the population size used. Large pop-
ulations have more duplicates which affect the convergence
rate of the population. This is primarily due to the higher
selective pressure of duplicate solutions which limits the ex-
ploratory capabilities of the population. Small populations
and higher number of iterations is a key element in solving
this problem.

NWP
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k = 5

unique sols. = 55

pref    = -0.6609831 
dev

N    = 100pop

k = 5

unique sols. = 54

pref    = -0.648858 
dev

N    = 500pop

k = 7

unique sols. = 52

pref    = -0.610092 
dev

N    = 250pop
k     = 5pref

Figure 2: Impact of population size (Npop) on so-
lution quality for kpref = 5 and preference point
(0.2, 1.0). The number of unique solutions in the final
population is similar irrespective of population size.

6.3 Effect of weight vector
Fig. 3 illustrates the solutions obtained for different as-

signment of weights to the attributes. A preference point of
(0.2, 0.1) is used here. As is evident from the solutions, the
assignment of equal weights (wv1) in this problem results
in a much higher NWP and NECD. Weight assignments im-
pact the amount of generalization that may be performed for
an attribute, which in turn influence the information con-
tent of the anonymized data set. Even when all attributes
are equally important, higher weights can be assigned to
attributes with larger domain sizes to retain as much infor-
mation as possible. For example, while most solutions in
the figure completely suppress (number of partitions=1) the
“Native Country” attribute, assigning a higher weight to the
attribute (as in wv2 and wv5) return solutions with more
number of partitions. In general, NSGA-II is seemingly ef-
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Figure 3: Effect of the weight vector on attainable NWP and NECD. Assigning equal weights, when not
required, can result in less effective solutions. Weights also affect the effective k value attainable; for example,
the solution for the problem with weight vector wv4 lies at k = 8. Also shown are the number of groupings
resulting in the attribute domains for each reported solution. Solutions maintain comparatively higher
number of groups (meaning less generalization) for attributes with higher weights.

fective in generating solutions with higher number of parti-
tions in accordance with the weight assignments. The “Age”
attribute seems to have some correlation with the other at-
tributes as the generalization performed on it is low even if
most of the weight is distributed on other attributes. This
experiment with weight vectors provides us with another ex-
ample (wv4) demonstrating that the optimal solution need
not always be present at k = kpref .

6.4 Impact of bias preference

Solid  - preference point

Hollow - reported solution

k=7

k=7

k=6

k=5

k     = 5pref

NWP

N
E
C
D

Figure 4: Impact of bias preference on solutions ob-
tained with weight vector wv2. Heavy bias prefer-
ence allows exploration of solutions with k = kpref .
Satisfying lower bias preference requires more gen-
eralization resulting in higher effective k. Solu-
tions satisfying the preference values exhibit a trade-
off characteristic between the level of privacy and
NWP.

Fig. 4 illustrates the impact of setting the NECD prefer-
ence value. A typical preference of 1.0 effectively means that
any level of bias is acceptable. As a result, a solution only
needs to perform as much generalization as is necessary to
meet the feasibility constraint, assuming that the minimum
value of NWP is attained at k = kpref . Such a case happens
with the weight vector wv2. However, when the bias pref-
erence is dropped below 0.1, solutions are generated with
higher NWP (although within the preference value of 0.2)
and higher effective k. This happens because the method
is now forced to explore solutions with more generalization
in order to better meet the low bias preference. More gen-
eralization typically yield higher effective k. Notice that as
the bias preference is lowered, the effective k increases. It
is imperative to ask at this point why a bias preference of
1.0 should not be set for this problem since the best solu-
tion (with k = 5) is obtained with this setting. The answer
lies in the trade-off characteristic of the solutions between
the level of privacy and NWP. Note that the k = 6 solution
has higher NWP at the expense of slightly higher privacy
level than the k = 5 solution. Since both solutions meet
the NWP preference, the k = 6 solution is more preferable.
In fact, given the four solutions in the figure and the NWP
preference of 0.2, the k = 7 solution (one marked with a
circle) is the solution of choice. This solution overachieves
the preference criteria and provides better privacy than the
k = 5 and k = 6 solutions. In general, specifying a very high
bias preference may prohibit the method from exploring the
trade-off characteristics between privacy level and NWP.

7. CONCLUSIONS
Privacy preserving data dissemination has to minimize the

information loss in the anonymized data set while protecting
the identity of underlying individuals to the maximum ex-
tent possible. Another objective while doing so is to control



the amount of privacy bias induced by the anonymity model
being used. In this paper, we have argued that existing
approaches address these aspects only partially in the con-
text of the k–anonymity model. Specifically, standard ap-
proaches cannot guarantee that higher privacy levels are not
possible when attributes have varying levels of significance
and data publisher’s preferences are taken into account.

In our approach, we propose using a preference based
achievement function to scalarize the induced information
loss and privacy bias into a single function, and then per-
form a constrained optimization on this function. We have
proved that minima solutions of the proposed function are
Pareto-optimal. The constraint in the optimization problem
is then treated as a second objective to minimize, providing
a method to improve upon the specified privacy levels, if
possible. This is facilitated by solving the problem using an
evolutionary multi-objective algorithm. Results on a bench-
mark data set demonstrate the effectiveness of the method
in finding solutions that best achieve the preferences of the
data publisher. The method is also able to find higher effec-
tive k values depending on the weights assigned to different
attributes. Parametric studies suggest that using smaller
populations have advantages in this problem structure. Fur-
thermore, the bias preference has a direct impact on the
exploration of the privacy versus loss trade-off front.

Further work will explore other potential benchmark prob-
lems. We are also looking forward to the emergence of other
algorithms that address issues such as privacy bias so that
a comparative study can be performed on the performance
of the proposed approach.
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