or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Middleware Transparent Software Development

and the MDA

Sudipto Ghosh, Robert B, France, Devon M. Simmonds !

Computer Science Department
Colorado State University
Fort Collins, CO USA

Abstract

An innovative middleware transparent approach for developing distributed appli-
cations is presented. The approach uses the aspect-oriented software development
paradigm and separates application design from middleware specific concerns. Ap-
plication elements specific to the middleware technologies are modeled separately
from core business functionality using aspects and seamlessly integrated into the
application later in the development process. Middleware transparency supports
the MDA initiative and facilitates evolution of distributed applications with easy
incorporation of new middleware technologies and enables reuse of high level ap-
plication design and architectures that are independent of the middleware. This
paper describes a technique to identify and localize middleware features as aspects.
Middleware technologies such as Java RMI and Jini are used as examples.

Key words: aspect-oriented programming, distributed
applications, middleware technologies.

1 Introduction

Due to the rapid growth of the Internet, distributed systems are becoming
the norm for modern business applications. Middleware is a layer of soft-
ware between these applications and the network, but it is transparent to end
users. Middleware technologies, such as CORBA [24], COM [23], Jini [35],
Net [5] and SOAP [34], provide high-level programming abstractions to en-
able remote method invocations over underlying heterogeneous machines and
networks. They also provide additional services such as naming, trading, and
messaging, and quality of service features such as security and fault tolerance.
However, the abundance of open and proprietary middleware technologies

! Email: ghosh@cs.colostate.edu

(©2004 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

and their rapid growth and evolution present significant challenges to soft-
ware development organizations in the context of requirements engineering,
design, implementation, testing and evolution. Developers must keep pace
with changes in middleware technologies, and applications must also evolve.
Application design and implementation in traditional software development
are usually coupled with a specific middleware technology incorporated into
the application. When the middleware is changed, entire applications must
be redesigned and re-implemented to incorporate the changes.

This paper presents a middleware transparent approach using the aspect-
oriented software development paradigm. This approach separates application
development from the integration of middleware and shields application archi-
tects from the details of specific middleware. The high-level design architec-
ture is independent of the middleware. Elements of the application that are
specific to the middleware are modeled separately as aspects and seamlessly
integrated (or woven) into the application later in the development process.
Middleware transparency eases the evolution of distributed applications, sup-
ports easy incorporation of new middleware technologies, and enables reuse
of high-level application designs and architectures that are independent of the
middleware. The aspect-oriented paradigm supports separation of concerns in
software development and makes it possible to modularize crosscutting con-
cerns of a system. Since middleware features and services impact the design
and architectural constraints as well as system implementation, it is natural
to model them as aspects.

Incorporating the use of aspects early in the software development pro-
cess has the potential to reduce development time for incorporating new mid-
dleware technologies. Aspect-oriented approaches raise the level of abstrac-
tion, insulating organizations from technology evolution and allowing them
to evolve at the same pace as middleware technologies. The approach sup-
ports Model Driven Development (MDD). Current MDD initiatives that can
benefit from this work are the Model-Integrated Computing (MIC)? and the
Model Driven Architecture (MDA) of the Object Management Group?® that
is based on the Unified Modeling Language (UML). The MDA initiative tar-
gets the needs of the software industry faced with the challenges of business
and technology change. The initiative attempts to decouple the design of the
application from the target middleware.

In Section 2, we present background material on the MDA and aspect-
oriented development, and summarize related work in the area of distributed
application development. In Section 3 we give an overview of the proposed
approach and its variations, and detail the activities related to the identifica-
tion, specification and weaving of aspects. We illustrate the variation involving
aspect-oriented programming in Section 4 with a case study in which an appli-
cation was made Jini-compliant using our approach. We conclude and present

2 See http://www.isis.vanderbilt.edu/research /research.html
3 See http://www.omg.org/mda/

directions for future work in Section 5.

2 Background

Advances in internet and middleware technologies have spawned a new gener-
ation of software-intensive systems. As organizations seek to enhance services
and gain competitive advantage, developers are under increasing pressure to
develop quality systems that quickly utilize new technologies. The time-to-
deliver pressure is often used as an excuse to adopt code-centric approaches
to software development, but developers are finding it increasingly difficult to
cope with the complexity of developing secure, fault-tolerant, highly available
distributed software systems using only code level descriptions. Software evo-
lution is problematic when developers must adapt software systems to rapidly
evolving technologies in order to maintain or enhance an organization’s effec-
tiveness or competitive advantage.

The Model Driven Architecture (MDA) initiative recognizes the need for
raising the level of abstraction at which developers describe complex systems
and advocates the use of model-centric approaches to development. The MDA
approach uses a platform-independent model (PIM) as the basis for developing
new applications. The focus is first on the functionality and behavior of the ap-
plication, “undistorted by the idiosyncrasies of the technology or technologies
in which it will be implemented” *. A complete MDA specification consists
of a base UML PIM and mappings to specific middleware platforms. The
mappings, ideally implemented in tools, automatically transform the PIMs to
platform-specific models (PSMs). Thus, it is unnecessary to repeat the pro-
cess of modeling an application’s functionality and behavior each time a new
middleware technology comes along.

Our approach requires developers to specify PIMs and then provide map-
pings to specific middleware platform models described by aspects. These
aspects may be at the code level, the design model level, or both.

In this paper we show an example using code level Jini aspects. Aspect
oriented programming (AOP) supports separation of concerns at the program-
ming level [1,17,18,19,20,25,26,31,32]. An AOP aspect is an implementation
or design concern that cross-cuts the primary functional units of a program.
Researchers have started to address the problem of defining and weaving (or
composing) aspects at an abstraction level higher than the programming lan-
guage level [4,6,14,33]. In the aspect-oriented modeling approach proposed
by Clarke et al. [3,4], a design called a subject is created for each system re-
quirement. A comprehensive design is a composition of subjects. Subjects are
expressed as UML model views, and composition merges the views provided
by the subjects. As part of the Early Aspects initiative, Moreira, Araujo, and
Rashid targeted multi-dimensional separation throughout the software cycle

4 See http://www.omg.org/mda/faq_mda.htm
3

[27,28,29,30].

Fiadeiro and Lopes [6] specify cross-cutting functionalities related to sys-
tem coordination using an algebraic approach. Their approach is applicable
to detailed design and code and utilizes a notation not widely known by sys-
tem developers. Gray et al. [14] use aspects to represent the cross-cutting
functionalities in domain-specific models. Their research is part of the MIC
initiative that targets embedded software systems. MIC extends the scope and
usage of models such that they form the backbone of a development process
for building embedded software systems. Requirements, architecture, and the
environment of a system are captured in the form of formal high-level models
that allow the representation of concerns. The proposed work can complement
the MIC efforts by providing UML-based techniques for representing and com-
posing cross-cutting middleware functionalities. Suzuki et al. [33] extend the
UML so that it can be used to model code level aspects but not necessarily
design level aspects.

France, Ray, and Georg [7,13] used template UML diagrams to describe
aspects representing security concerns (e.g., see [11,12,13]). This paper adapts
and enhances the work to describe middleware specific aspects.

Recent projects examined the use of AOP to achieve middleware trans-
parency. Bussard [2] encapsulated several CORBA services as aspects using
AspectJ to make CORBA programming transparent to programmers. Hun-
leth, Cytron, and Gill [15] suggest the creation of an AspectIDL for CORBA
to complement the IDLs that are now available for languages such as Java and
C++. Their proposed AspectIDL would support several new types of AspectJ
introductions: interface method and field, interface super class, structure field,
oneway specifier, and IDL typedef and enumerations. We have not seen ap-
proaches that incorporate aspect oriented modeling to achieve middleware
transparency.

3 Overview of Proposed Approach

Consider the scenario where an application developer needs to design a client
and a remote service. The developer uses a middleware technology M; to
implement the remote service discovery (finding and locating services) and
connectivity (establishing a connection to the services). A few months later, a
new technology Ms arrives, and business decisions require that A, be replaced
by Ms. A naive solution is to redesign and reimplement the entire application
using M. However, at a high level, the design of the application is the same
in both cases. It is in the specific details of the use of middleware, (e.g., how
the client discovers the remote service and connects to it, and how the remote
service advertizes its presence) that the detailed design and code may differ.
One way to promote code reuse and automatic transformation (as much as
possible) of the application from M; to M is to isolate the middleware M;
features as code aspects from the application and to use different code aspects

4

corresponding to M, to generate the new application code. Similarly, the
high-level designs can be reused if design aspects can be developed for each
type of middleware and composed with the reused high-level design.

3.1 Code Level Middleware Transparent Development

Middleware Middleware Middleware
aspect — 1 aspect — 2 aspect —n

~\ 7

Aspect Compiler

Middleware—
unaware
application
code

Complete
Application

Fig. 1. Application of code level middleware aspects.

Middleware code crosscuts application classes and is scattered across mul-
tiple methods in the clients and services in a distributed application. In addi-
tion, client classes and services classes each have a specific set of middleware
code. In peer-to-peer (P2P) applications, each peer has its own set of mid-
dleware code. It is natural to apply aspect-oriented programming to the de-
velopment of software by encapsulating in aspects the code specific to clients,
services and peers. The approach is illustrated in Figure 1. Each middleware
feature is encapsulated in Middleware Aspect-i. The aspects are compiled with
the middleware unaware application code that represents the basic functional-
ity of the client/service/peer. The resulting application code is the complete
application containing all the middleware features and services.

In the next section we describe how we successfully isolated aspects for
Jini [35]. Jini requires the discovery of a lookup service, listening for the
arrival of new services, lease management, and remotely invoking methods on
a service. We developed aspects written in AspectJ to represent these features
and an application was developed that was unaware of the features. The
client in this application contained code that invoked methods on an object
representing the service. There was no code that took care of discovering and
connecting to the service. In the server code, we provided the implementation
of the remote methods, but no lease management or proxy object creation
code was provided. When the aspects were woven with the client and server
code, the resulting code was a full-fledged Jini application containing all the
features.

We repeated this exercise using Java RMI, XML/SOAP, and .Net. We
wrote sets of aspects for each type of middleware and applied them to the same
application. Concerns, such as connecting to services, discovering services, and

5

advertising services, were successfully implementable as code aspects. Other
middleware features pertaining to transactions, group management, and qual-
ity of service concerns that were not explored earlier will be a focus of this
project. We also made the following observations:

(i) Limitations in the evolving aspect languages prevent us from represent-
ing some of the constructs as aspects. Aspect] is still evolving and, at
the time of the reported work, did not support inner classes required for
lease management. Aspect/C# also had limitations. Some of the limi-
tations will be removed in these languages, but the code-based approach
to aspect-oriented software development will always be limited by the
types of join-points that can be used for weaving in new code. These
limitations are non-existent at the design model level because of the ab-
stractions that can be provided. Although other constraints may apply,
the higher level abstractions in design models can still describe a larger
set of cross-cutting concerns than those at the code level.

(ii) Aspects written to represent specific middleware concerns are highly cou-
pled to the application being developed. For example, a connectivity as-
pect written for a distributed currency converter application would have
to be significantly changed to work with a distributed supermarket man-
agement application even though both are Jini applications. The coupling
arises out of a need for the aspect to know the names and attributes of
several application classes. Thus, although customized aspects can be
written for every new application, reuse of the aspects in different Jini
applications is limited because of our inability to describe generic aspects
that can be instantiated for (or mapped to) different Jini applications.

These observations led us to raise the level of abstraction and apply the
approach at the design model level. The proposed approach requires the
development of a platform independent model (PIM). PIM developers create
an application design or implementation that is independent of middleware
considerations. In the previous code example, a PIM would correspond to
the model derived from application code that is independent of middleware.
However, the PIM does not have to be an implementation model; it may also
be a design model.

The approach also requires a mapping that takes a PIM and aspects cor-
responding to a certain middleware and transforms the PIM to a platform
specific model (PSM). Middleware experts isolate and model the middleware
specific concerns as aspects. Tools are used to weave the aspects with the
application to produce the complete distributed application. Aspects in the
previous code example are written in Aspect]J (or Aspect/C#), and the As-
pect] (or Aspect/C#) compiler was used to weave the aspects. However,
using our approach, the aspects may also be design level aspects.

NA LAV LL

Generic Generic Generic
Middleware| | Middleware Middleware
Aspect Aspect Aspect
Model — 1 Model -2 Model — n
'
PIM Mapping STEP 1
Y
Mapped Mapped Mapped
Middleware| | Middleware Middleware
Aspect Aspect Aspect
Model - 1 Model -2 Model — n
Fig. 2. Generic and mapped middleware aspects.

uses

<<interface>>

CurrencyConvertlnterface

convert(float amt, String currency

CurrencyConvertClient

AN

CurrencyConvertServer

Currency Converter PIM

Generic Aspect

(a) Currency converter PIM and generic aspect.

Fig. 3. Nlustration of currency converter application.

<<interface>>

Remote

<<ClassTemplate>>
|IGenericServerInterface

<<interface>>
Remote

T
<<GenericServerInterface>>
CurrencyConvertInterface

(b) Mapped aspect.

<<interface>>

CurrencyConvertInterface

<<interface>>

Remote

convert(float amt, String currency)

uses RN 41‘l

CurrencyConvertClient

<<GenericServerImplementation>
CurrencyConvertServer

(c) Currency converter PSM.

3.2 Design Level Middleware Transparent Development

The design approach is illustrated in Figures 2 and 4. In Figure 2, the PIM
describes the core design elements in terms of UML models (e.g., class and

7

Mapped Mapped Mapped Mapped Mapped Mapped
Middleware| | Middleware Middleware PIM Middleware| | Middleware Middleware
Aspect Aspect Aspect Aspect Aspect Aspect
Model - 1 || Model -2 Model - n Model -1 | | Model -2 Model —n
PIM Composition STEP 2 STEP 2 | Implement Implement Implement Implement
Implementatior Code Code Code
PSM of PIM Aspect — 1 Aspect — 2 Aspect —n

STEP 3
Implement STEP 3 Aspect Compiler

T~

Complete Complete
Application Application
(a) First compose and then implement. (b) First implement and then weave.

Fig. 4. Application of design level middleware aspects.

sequence diagrams). A Generic Middleware Aspect Model describes the UML
model of a middleware feature specific to a type of middleware technology.
This model is generic in that it can be applied to any application using that
particular middleware. Constructs in the generic aspect model need to be
mapped to the constructs in the application to get the Mapped Middleware
Aspect Model. This process needs human input.

Figure 3 illustrates the mapping and composition for the CurrencyCon-
verter application. The example in this figure uses the notation developed
in [9,10,21,22]. This notation uses parameterized UML artifacts referred to
as templates. Consider a simple application (see Figure 3(a)) that contains a
Java server class called CurrencyConvertServer that implements an interface
called CurrencyConvertInterface. This interface has a method called float
convert(float amt, String currency). The Java client class is called Cur-
rencyConvertClient, and it invokes methods on the server. To convert this
setup to a distributed Java RMI-based application, the CurrencyConvertin-
terface should extend the Remote interface. The generic aspect model for
Java RMI would specify a generic server interface that extends the special
Java interface Remote. As part of the mapping process, we need to specify
that the generic server interface be mapped to our CurrencyConvertInterface
(see Figure 3(b)).

Figure 4 describes how the mapped aspects can be used in two different
ways. The mapped aspects can be composed together with the PIM to pro-
duce the PSM as shown in Figure 4(a). This PSM can be implemented by
software developers with the help of code generators. In the example (see Fig-
ure 3(c)), the resulting class model from the composition would contain the

8

CurrencyConvertServer and CurrencyConvertClient classes, and the Curren-
cyConvertInterface and Remote interfaces with the appropriate associations.
Composition of aspect models is a complex process and will be investigated
in this research.

An alternative approach is presented in Figure 4(b), where the mapped
aspects are first implemented as code aspects. Finally, these aspects are wo-
ven together with the implementation of the PIM. In the example, this would
involve writing an AspectJ aspect that would effectively declare the interface
CurrencyConvertInterface with the extends Remote clause using the follow-
ing AspectJ notation:

declare parents: CurrencyConverterInterface extends Remote;

A design aspect model cannot always be converted to a code aspect because
current code aspect languages may not have the constructs to capture and
refine the rich abstractions at the design level.

Using the design approach involves the following tasks:

(i) Identify types of middleware functionalities and services to be represented
as design or code aspects.
(ii) Specify design level middleware aspects in the UML.
(iii) Compose aspects with design model and then implement.

3.2.1 Identify Aspects Representing Middleware Functionalities and Services
In the early stages of design, software designers specify the qualitative prop-
erties required from the service, e.g., fault tolerance, availability, and security.
These services are ultimately realized in some specific object or component-
middleware technology. Developers specify PIMs that are independent of the
middleware technology. However, these PIMs may need to be refined and
details specific to a middleware technology may need to be added. The re-
finement may be done at the design level or, in some cases, at the code level
because of idiosyncrasies in the middleware technology.

3.2.2 Specify Design Level Aspects

Generic aspect models are described using the UML-based notation. Stan-
dard UML notation will be used to depict the context-specific (mapped) as-
pects. The generic aspect models are reusable models that specify patterns
of structural and behavioral UML models of mapped aspects. In our earlier
work [8,9,10,21,22|, we described a new UML-based pattern specification nota-
tion called Role Models. These pattern specifications define constrained forms
of the UML metamodel. The UML metamodel specifies valid forms of UML
models and consists of a UML class diagram, well-formedness rules expressed
in the Object Constraint Language (OCL) [36], natural language, and infor-
mal descriptions of semantics. Adding constraints to the UML metamodel
results in a specification of a subset of valid UML models. In this case, the
generic aspect models describe valid realizations of mapped aspects.

9

Descriptions contain a static structural diagram to show the structural fea-
tures of the generic aspect and an interaction diagram to show the behavioral
features. The two diagrams can be used to stamp out valid mapped aspect
models. Constructs in the mapped aspect model play various roles that are
specified in the generic aspect model.

3.2.3 Dewvelop a Composition Technique

Assuming that the software developer has a core decomposition of the design
model in the form of a primary model (PIM), the generic aspect first needs
to be mapped to the primary model, thereby producing the mapped aspect
model (see Figure 2). The next step is to merge the mapped aspect model
with the primary model (see Figure 4(a)). If there are corresponding elements
in the primary model and aspect model with the same syntactic type, they can
be merged. Merging may necessitate addition or removal of elements from the
primary model. Preconditions and postconditions are appended to matching
operations in the composed model. Constraints are appended to matching
attributes in the composed model. For matching associations, the stronger
multiplicities are used in the composed model.

4 Jini Case Study

We used the developmental framework shown in Figure 5. The framework
consists of the following:

(i) PIM: The platform independent model of the application.

(ii) Aspects — MFA and QoSA: A collection of aspects that capture the
middleware requirements (services, facilities, and QoS) for an application,
for example leasing, transactions, and security. MFA means middleware
functional aspects, and QoSA means quality of service aspects. MFA
includes all non-QoSA aspects.

(iii) Conwverters - Standardized mappings that transform PIMs and middle-
ware aspects to their enhanced versions. Separate converters are required
for each middleware. Converters perform architectural, design or code
transformations to prepare a generic model (PIM, MFA, and QoSA) for
a specific context.

(iv) Enhanced Models - EPIM, EMFA | EQoSA: Independent models (PIM,
MFA, and QoSA) are developed without regard for a target middleware
or a target application, and have to be transformed by a converter before
aspect weaving is possible.

(v) Aspect Weaver: The weaver produces the final platform specific model(PSM)
by combining the enhanced aspects (EMFA and EQoSA) and the EPIM.

(vi) PSM: The final and complete model output by the framework with all
the required middleware elements. In this case, the PSM describes the
code model.

10

PIM

PSM

Aspects

(MFA, QoSA)

Fig. 5. Developmental Framework

Figure 5 shows that there are two main inputs to the framework - a PIM
and some aspects (MFA and QoSA). The figure also shows that there are
enhanced models for each PIM and each aspect. Each PIM has a particu-
lar architectural signature (structure) consisting of a collection of classes with
specific relationships, a collection of interfaces used by the classes, and a collec-
tion of methods particular to each class and interface. Although all PIMs are
middleware independent, one PIM may differ significantly from another PIM
in its architectural signature. This difference and the fact that middleware
aspects require a PIM with a specific architecture in order for aspect weaving
to be successful, require the use of an Enhanced Platform Independent Model
(EPIM). An EPIM is simply a PIM that has been refactored to produce the
appropriate architectural signature required for a specific middleware aspect.
The particular refactoring algorithm applied depends on the selected aspect
(e.g., transaction) and the selected middleware (e.g., Jini). For a given mid-
dleware, different aspects will require different architectural signatures and
for a specific aspect (e.g. transaction) the required architectural signature
will differ from middleware to middleware. In our framework the refactoring
algorithm is encapsulated in a Conuverter.

There are significant benefits to this separation. These refactoring trans-
formations cannot be specified in the PIM as that would make it platform
specific. They cannot be specified in the weaver (e.g., AspectJ) as this would
make the weaver application specific which is completely unacceptable. Spec-
ifying the transformation in a separate component is therefore the only sure
way to be MDA compliant and provide the flexibility and structural coherence
needed for the framework. A similar argument can be provided for the need
of enhanced aspects (EMFA, EQoSA). A generic middleware aspect (MFA,
QoSA) is intended to be used for any relevant application. At the time of
its creation it is unnecessary to determine the specific application to which
a generic aspect will be applied. For practical purposes, this information
would be unavailable for numerous situations. Generic middleware aspects
are, therefore, application independent. The application independent nature
of generic aspects coupled with the fact that each application has its own ar-
chitectural signature, necessitates that generic aspects are transformed before
usage to make them application specific.

We used the following three-stage design process to create the application.
The activities of stage 1 can be done concurrently as can the activities of stage
2.

Stage 1 Tasks:
(a) Create the PIM for the server/client - no middleware consideration

11

NA LAV LL

Activation
‘ UnicastRemoteObject ‘

‘Activatable‘ ‘ ActivationException ‘ -

‘ ActivationID ‘ Remote

‘ ActivationDesc ‘ MarshalledObject

‘ ActivationGroup ‘ ‘ RMISecurltyManageJ

o discovery
‘ ActivationGroupID ‘
‘ ActivationGroupDesc ‘ <§1nterface.>>
DiscoveyListener

DiscoveyEvents

lease -
LookupDiscovey
- ServerAspect
<<interface>> —
Lease LEASE_TIME:int
‘ item:Serviceltem
UnknownLeaseException disco:LookupDiscovery
registrations:Hashtable Lookup
codebase:String -
<<interface>>
constructorProxy(String) ServiceRegistrar
discovered(DiscoveryEvent) _
discarded(DiscoveryEvent) <<interface>>
registerWithLookup(ServiceRegistrar ServiceRegistration
createProxy():StockBrokerInterface
computeSleepTime()
renewLeases()
run()
Fig. 6. Jini StockBroker MFA
necessary.

(b) Select the target middleware and create the generic middleware as-
pects (MFA, QoSA).
Stage 2 Tasks:
(a) Transform the PIM to EPIM using the application converter.
(b) Transform the generic aspects to enhanced aspects (EMFA, EQoSA)
using the aspect converter.
Stage 3 Tasks:
Weave the enhanced aspects into the EPIM to produce the PSM. A
separate PSM is produced for each client and for each server.

For our case study, we selected a simple distributed stock broker applica-
tion. We did not consider quality of service aspects. Our only concern was
to provide connectivity and develop a Jini-compliant application. The func-
tional requirements of this application included providing the ability to clients
to register with the stock broker service, and buy and sell stocks. We wrote
the application in Java and used Aspect] as the aspect language.

We developed the Jini converters and MFA as a one-time exercise. We
also developed the PIM classes and interfaces for the application. All other

12

steps in the process are completely automated. Figures 6, 7, 8, and 9 give a
graphical view of the MFA, PIM, EPIM and the application PSM respectively.
The specific activities that produced these models during the design phase are
described below:

(i) Create the PIM and MFA: The PIM shown in Figure 7 was developed and
tested as a stand alone Java application. It consists of a single interface
and three classes. The MFAs are shown in Figure 6.

Authorization

StockBrokerInterface

register()

buy()

sell() StockHolder

S~
~
~
~
~
~
~
~

Broker

Fig. 7. Jini StockBroker PIM

(ii) Generate the Enhanced Models (EPIM, EMFA)

A number of Jini design models are possible. The one we chose to use
required that the services to be made available by the server be captured
in a inner class and that a proxy for this inner class be created as well.
The aspect converter implemented a simple string matching algorithm
that replaces generic class names and class attributes in the aspects with
the actual class names and attributes from the Stock Broker application.
The application converter was written using the Java Tree Builder [16].
It generated the EPIM (see Figure 8) by refactoring the PIM to include
seven new components all of which are required by Jini. The tasks per-
formed by the application converter are as follows:

(a) Create a remote interface to be used by the server

(b) Create two inner classes: a server (from the PIM) and a proxy for
the server.

(c) Create a wrapper class as the outer class for the two classes just
mentioned.

(d) Insert import statements from the interface into the wrapper class.

(e) Add throws clauses and/or exceptions statements specific to Jini to
the client and server code.

(iii) PSM Generation: The AspectJ compiler was used as the weaver. This
is both an asset and a challenge: Aspect] is Java compatible but our
directives are limited to those of AspectlJ.

13

Remote
? Authorization

RemoteStockBrokerInterface

register
buy
sell

StockHolder

Broker > Activatable

Serializable

Runnable

BrokerProxy StockBrokerService [

O

StockBrokerInterface

Fig. 8. Jini StockBroker EPIM

5 Conclusions and Future Work

We presented a middleware transparent approach incorporating aspect-oriented
software development techniques to decouple the design of an application from
the specifics of the middleware technologies. This approach evolved from our
current research and is based on the MDA vision. The approach will provide
many benefits such as reduced design complexity and development time when
incorporating new middleware technologies, maintainability, and adaptable
software evolution.

We are investigating several middleware technologies to identify what fea-
tures can be easily isolated as aspects. We are also evaluating which aspects
are best specified and composed at the design level and which ones at the
code level. Specifying aspects at the design level removes the limitations of
aspects at the code level, raises the level of abstraction, and permits early de-
sign decisions. We are developing composition techniques that can be used for
aspect-oriented design models. We are developing static and dynamic anal-
ysis techniques to validate the designs and code resulting from the weaving
of middleware aspects with the rest of the application. We also plan to eval-
uate the impact of using an aspect-oriented approach on the maintenance of
middleware-based applications.

14

NA LAV LL

Activation

‘ UnicastRemoteObject ‘
‘Activatable‘ ‘ ActivationException ‘ -
RemoteException
‘ ActivationID ‘ Remote
‘ ActivationDesc ‘ MarshalledObject
‘ ActivationGroup ‘ ‘ RMISecurltyManagex{
. discovery
‘ ActivationGroupID ‘
- Authorization
‘ ActivationGroupDesc ‘ §<1nterfa?e>>
DiscoveryListener

StockHolder

lease -
- LookupDiscovery
- StockBrokerService
<<interface>> —
Lease :

LEASE_TIME:int
item:Serviceltem Broker ——l> Activatable

‘ UnknownLeaseException| disco:LookupDiscovery
registrations:Hashtable Lookup Remote—
codebase:String Stock—

<<interface>>
: Broker—

BrokerProxy c?nstructorPrF>xy(Str1ng) ServiceRegistrar

discovered(DiscoveryEvent)
/ discarded(DiscoveryEvent) — <<interface>>
O registerWithLookup(ServiceRegistrar ServiceRegistration
createProxy():StockBrokerInterface
Serializable computeSleepTime()
renewLeases()
Runnable run()
StockBrokerInterface

Fig. 9. Jini StockBroker PSM
6 Bibliographical references

References

[1] L. Bergmans and M. Aksit. Composing multiple concerns using composition
filters. Communications of the ACM, 44(10), Oct 2001.

[2] L. Bussard. Towards a Pragmatic Composition Model of CORBA Services
Based on AspectJ. In Proceedings of ECOOP 2000 Workshop on Aspects and
Dimensions of Concerns, Sophia Antipolis and Cannes, France, June 2000.

[3] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Separating concerns throughout
the development lifecycle. In Proceedings of the 3rd ECOOP Aspect-Oriented
Programming Workshop, Lisbon, Portugal, June 1999.

[4] S. Clarke and J. Murphy. Developing a tool to support the application of
aspect-oriented programming principles to the design phase. In Proceedings
of the International Conference on Software Engineering (ICSE ’98), Kyoto,
Japan, April 1998.

[5] M. Corporation. .Net. URL http://www.microsoft.com/net/, 2003.
15

[6] J. L. Fiadeiro and A. Lopes. Algebraic semantics of co-ordination or what is
it in a signature? In A. Haeberer, editor, Proceedings of the 7th International
Conference on Algebraic Methodology and Software Technology (AMAST’98),
volume 1548 of Lecture Notes in Computer Science, pages 293-307, Amazonia,
Brasil, January 1999. Springer-Verlag.

[7] R. France and G. Georg. Modeling fault tolerant concerns using aspects.
Technical Report 02-102, Computer Science Department, Colorado State
University, 2002.

[8] R. B. France, S. Ghosh, E. Song, and D. K. Kim. A Metamodeling Approach
to Pattern-Based Model Refactoring. IEEE Software Special Issue on Model-
Driven Development, 20(5):52-58, September 2003.

[9] R. B. France, D. K. Kim, E. Song, and S. Ghosh. Using Roles to Characterize
Model Families. In Proceedings Tenth OOPSLA Workshop on Behavioral
Semantics: Back to the Basics, Portland, Oregon, October 2001.

[10] R. B. France, I. Ray, G. Georg, and S. Ghosh. “An Aspect-Oriented Approach
to Design Modeling”. Submitted to IEE Proceedings — Software, Special Issue
on Early Aspects, Aspect-Oriented Requirements Engineering and Architectural
Design.

[11] G. Georg, R. France, and I. Ray. An Aspect-Based Approach to Modeling
Security Concerns. In Proceedings of the Workshop on Critical Systems
Development with UML, Dresden, Germany, 2002.

[12] G. Georg, R. France, and I. Ray. Designing High Integrity Systems using
Aspects. In Proceedings of the Fifth IFIP TC-11 WG 11.5 Working Conference
on Integrity and Internal Control in Information Systems (IICIS 2002), Bonn,
Germany, November 2002.

[13] G. Georg, 1. Ray, and R. France. Using Aspects to Design a Secure System. In
Proceedings of the Interational Conference on Engineering Complex Computing
Systems (ICECCS 2002), Greenbelt, MD, December 2002. ACM Press.

[14] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling Crosscutting Constraints
in Domain-Specific Modeling. Communications of the ACM, 44(10):87-93, Oct.
2002.

[15] F. Hunleth, R. Cytron, and C. Gill. Building Customizable Middleware Using
Aspect Oriented Programming. In OOPSLA Workshop on Advanced Separation
of Concerns in Object-Oriented Systems, Tampa, Florida, USA, October 2001.

[16] Jens Palsberg. JTB: Java Tree Builder. URL http://www.cs.purdue.edu/
jtb/.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
Getting started with AspectJ. Communications of the ACM, 44(10):59-65, Oct.
2001.

16

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In Proceedings of the Furopean Conference on Object-
Oriented Programming (ECOOP 01), pages 327-353, Budapest, Hungary, June
2001.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP ’97), volume 1241 of

Lecture Notes in Computer Science, pages 220-242, Jyvaskyla, Finland, June
1997.

[20] K. Kieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented programming with
adaptive methods. Communications of the ACM, 44(10):39-41, Oct. 2001.

[21] D. K. Kim, R. B. France, S. Ghosh, and E. Song. Using Role-Based
Modeling Language (RBML) as Precise Characterizations of Model Families.
In Proceedings of the 8th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS), Greenbelt, MD, December 2002.

[22] D. K. Kim, R. B. France, S. Ghosh, and E. Song. A Role-Based Metamodeling
Approach to Specifying Design Patterns. In COMPSAC 2003 (to appear),
Dallas, TX, November 2003.

[23] Microsoft Inc. Component Object Model (COM) Website. URL http://www.
microsoft.com/com/.

[24] OMG — The Object Management Group. Common Object Request Broker
Architecture CORBA/IIOP 2.6. OMG, 2002.

. Ossher an . Tarr. sing multidimensional separation of concerns to
25| H. Ossh d P. T Usi ltidi ional i f
(re)shape evolving software. Communications of the ACM, 44(10):43-50, Oct.
2001.

[26] J. A. D. Pace and M. R. Campo. Analyzing the role of aspects in software
design. Communications of the ACM, 44(10):66-73, Oct. 2001.

[27] A. Rashid. A Hybrid Approach to Separation of Concerns: The Story of SADES.
In 8rd International Conference on Meta-Level Architectures and Separation
of Concerns (Reflection), Springer-Verlag Lecture Notes in Computer Science
2192, pages 231-249, Kyoto, Japan, September 25-28 2001.

[28] A. Rashid and R. Chitchyan. Persistence as an Aspect. In 2nd International
Conference on Aspect-Oriented Software Development, ACM, pages 120-129,
Boston, March 2003.

[29] A. Rashid, A. Moreira, and J. Araujo. Modularization and Composition of
Aspectual Requirements. In 2nd International Conference on Aspect-Oriented
Software Development, ACM, pages 11-20, Boston, March 2003.

[30] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early Aspects: A Model
for Aspect-Oriented Requirements Engineering. In IEEE Joint International
Conference on Requirements Engineering, IEEE Computer Society Press, pages
199-202, Essen, Germany, September 9-13 2002.

17

[31] A. R. Silva. Separation and composition of overlapping and interacting
concerns. In OOPSLA ’99 First Workshop on Multi-Dimensional separation
of Concerns in Object-Oriented Systems, Denver, Colorado, November 1999.

[32] G. T. Sullivan. Aspect-oriented programming using reflection and metaobject
protocols. Communications of the ACM, 44(10):95-97, Oct. 2001.

[33] J. Suzuki and Y. Yamamoto. Extending UML with Aspects: Aspect Support
in the Design Phase. In Proceedings of the 3rd ECOOP Aspect-Oriented

Programming Workshop, Lisbon, Portugal, June 1999.

[34] W3C. Simple Object Access Protocol (SOAP). URL http://www.w3.org/TR/
SOAP/, 2003.

[35] J. Waldo. “Alive and Well: Jini Technology Today”. IEEE Computer,
33(6):107-109, June 2000.

[36] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1999.

18

	Introduction
	Background
	Overview of Proposed Approach
	Code Level Middleware Transparent Development
	Design Level Middleware Transparent Development

	Jini Case Study
	Conclusions and Future Work
	Bibliographical references
	References

