An Aspect Oriented Model Driven Architectural
Framework for Middleware Transparency

Devon Simmonds, Sudipto Ghosh, Robert France
Computer Science Department
Colorado State University
Fort Collins, CO 80523
Phone: (970) 491-4608
FAX: (970) 491-2466
{simmonds,ghosh, france} @cs. colostate. edu

February 24, 2003

Abstract

While complex distributed applications are becoming the norm for modern businesses,
the underlying technologies are also changing constantly. Organizations are faced with a
number of options for selecting middleware technologies that provide consensus on interfaces
and interoperability on top of heterogeneous platforms, operating systems, network protocols
and programming languages. Organizations seek to minimize the overall cost of middleware
technology integration and evolution through the reuse of software artifacts. The Model
Driven Architecture (MDA) initiative is targeted at meeting the needs of the software indus-
try characterized by these challenges. The MDA initiative attempts to decouple the design of
the application from the target middleware. To support the MDA vision we propose a novel
approach that supports middleware transparent development of software. In our approach
we incorporate mechanisms that separate application development from concerns related to
the integration of the target middleware. This paper presents a framework for middleware
transparent software development and its use in developing Jini applications.

Keywords: Aspect oriented software development, Jini, middleware, distributed software,
transparency, MDA.

1 Introduction

Decades after the beginning of the modern computer industry and the introduction of “software
engineering” as a discipline [9], software development continues to be a difficult task. With the
advent and rapid growth of the Internet [2], distributed systems are quickly becoming the norm
for modern business applications. While distributed systems enable the sharing of resources in
spatially and temporally separated environments, they also bring in numerous challenges, such
as heterogeneity, openness, security, scalability, failure handling and concurrency [3]. Hetero-
geneity is inevitable in distributed applications because it is impossible to achieve consensus on
the foundational components of distributed systems — hardware platforms, operating systems,
network protocols, and programming languages [10].

Middleware technologies such as CORBA [12], COM [8], Jini [15], .Net and SOAP [4, 7, 14]
address these challenges and enable consensus on an application’s component interfaces and



interoperability. They help application developers achieve transparency in several contexts [3, 6]:
(1) local and remote accesses, (2) the location of resources, (3) concurrency and synchronization,
(4) mobility of resources, (5) scaling, (6) performance, (7) replication, and (8) failure handling.

The large number of available middleware technologies and the rapid growth in their devel-
opment and evolution presents challenges to software developers. Applications need to evolve
with changes in middleware technologies. Developers constantly need to keep up with changes
that affect the entire software development process. Application design and implementation are
closely coupled with the middleware technology that is incorporated. When a need arises to
change the middleware, entire applications need to be redesigned and implemented to incorpo-
rate the changes.

The Model Driven Architecture [12, 13] (MDA) initiative is targeted at meeting the needs
of the software industry that are faced with these challenges. The MDA initiative attempts
to decouple the design of the application from the target middleware. To support the MDA
initiative, we propose a novel approach that supports middleware transparent development of
software. Middleware transparency separates application development from the integration of
middleware and shields application architects from the details of specific middleware. The high
level design architecture is independent of the middleware. Elements of the application that
are specific to the middleware are modeled separately using aspects and seamlessly integrated
(woven) into the application later in the development process.

The remainder of the paper is organized as follows. We describe the framework and illustrate
its use in developing Jini applications in Section 2. In Section 3 we discuss related work and the
successes and challenges of realizing middleware transparency using our approach. We present
our conclusions in Section 4.

2 Framework for Achieving Middleware Transparency

The proposed framework consists of a five-stage process that is based on the MDA vision. The
framework has two objectives:

1. Provide a platform specific model (PSM)
2. Provide transformation models that separate the development of the platform independent
model (PIM) from the generation of the PSM.

In our framework, specifics of a middleware technology are treated as crosscutting concerns
and modeled as aspects. A crosscutting concern is one that is scattered across many elements in a
design model or code of the application, but achieves one purpose. For example, security-related
code may be scattered across many classes in a Java application. In this paper, the models reflect
the actual code that is present in the application. This is, however, not a restriction on our
framework. One can use models at a higher level of abstraction as well.

Model elements constitute a family of components and this family is the target of the cross-
cutting analysis. In distributed applications that use a middleware technology, components of
the application form a family for the middleware technology. The middleware crosscuts the
clients and the servers (or peer processes) in the application. The focus of our work is to isolate
and encapsulate the middleware related concerns.

In our framework, each client and server component is associated with a list of five models
that are also called generic components. These are shown in Figure 1.

1. A platform independent model (PIM): The PIM is the model that is written independent
of middleware considerations. The PIM for a server is called a platform independent



ST

Feedback loops

Figure 1: A Component View of the PSM Generation

server model (PISM), and that for a client, a platform independent client model (PICM).
At the programming level, these are simply an expression of our functional requirements
expressed using the target programming language.

2. An enhanced platform independent model (EPIM): The EPIM is an enhanced version of the
PIM that is made ready for aspect weaving. The EPIM for a server is called an enhanced
platform independent server model (EPISM), and that for a client, an enhanced platform
independent client model (EPICM). The EPIM is required because current aspect oriented
programming languages (AOPLs) are not able to meet all the needs of an application (e.g.
creating inner classes) prior to the weaving of the middleware specific aspects.

3. A converter: It provides a standardized mapping that transforms a platform independent
model (PIM) to its enhanced version, (EPIM). A client converter is called a c-converter,
while a server converter is called a s-converter. A separate converter is required for each
middleware. Converters perform architectural, design or code transformations which can-
not be done by the AOPL being used, for example code transformations such as creating
and inserting inner classes.

4. A collection of middleware specific aspects (MSA): These aspects capture the middleware
requirements for an application. MSAs are the main mechanism for separating PIMs from
PSMs. Aspect weaving transforms the enhanced model to its platform specific derivative.
The MSA for a server is called the middleware specific server aspects (MSSA), and that
for a client, the middleware specific client aspects (MSCA).

5. A platform specific model (PSM): It is the complete application integrated with the mid-
dleware. The PSM for a server is called a platform specific server model (PSSM), and that
for a client, a platform specific client model (PSCM).

The components can be classified into developed and generated items. Developers are re-
quired to build only three components — PIM, S-Converter, and MSA. The other two compo-
nents (EPIM and PSM) are generated as part of the transformation process. The transformation
is a three-stage process as described in Figure 2.

The rationale for the three-stage process is that current aspect oriented languages do not
provide the facilities to make all the modifications necessary to the platform independent models
(PICM and PISM). However, if this was possible, we would have a simpler two-stage process as
shown in Figure 3:

The process is conceptually simple. First, the PIM is created using the chosen development
paradigm. This could include for example aspect oriented analysis (AOA) and aspect oriented
design (AOD), or any development paradigm (e.g., object-oriented methods). Depending on the
target middleware, converters are created. The PIM is then fed into the converter to produce
the EPIM. Aspect weaving is then used to add the MSA to the EPIM and produce the PSM.



Feedback Loops

'

| '

Y

PIM Modeling

EPIM Generation

Y

PSM Generation

Figure 2: A Process View of the PSM Generation

Feedback Loops

PIM Modeling

= PSM Generation

Figure 3: Two Stage Process

2.1 Jini application development

Examples of each component from the development of a Jini-based application are given below.
AspectJ was used to write aspects that encapsulated Jini specific concerns. The models refer to

the code artifacts.

1.
2.

We used a converter to supply those conversions which cannot be enforced using AspectJ.

PISM — Java server code independent of any middleware.

EPISM — Java server code made ready for Jini.

the creation and insertion of inner classes.

These represent the EPIM to PSM mappings.

MSSA.

Conversions used in the Jini s-converter were:

1.
2.

Insert all required import and extends statements.

Create interface — insert a remote interface that corresponds with the server interface.

for the backend class.

. Any other required modifications.

. s-converter — a standardized mapping that performs transformations on the PISM that
cannot be done using the MSSA. These include the insertion of import statements, and

. MSSA — AspectJ aspects that capture the Jini requirements for Java server applications.

. PSSM — complete server code including all required middleware code. This code is pro-
duced in two stages, first the PISM is converted to the EPISM, then weaving adds the

. Modify constructor — modify the constructor to supply the codebase for the application.

. Create classes — create two inner classes: a service class (backend) and a proxy inner class




2.2 Roles of developers

The co-dependent and interacting components in our framework necessitate complementary
but differing roles for groups of software developers. The roles must be clearly defined and
appropriate standards specified. The standards and responsibilities imposed on each group may
vary depending on the target middleware and the sophistication of the available AOPL. In
general, PIM developers create an application independent of middleware considerations except
for an imposed programming standard. Converter developers must bridge the gap between the
AOPL and MSA. MSA developers for Jini must address such concerns as groups, leasing, naming
service, transactions, and security, as well as the parameterization of these concerns. Problem
resolution and troubleshooting could become be a large part of the job description of EPIM and
PSM composers since aspects composition can result in problems [1].

3 Discussion

A few recent projects have examined the use of Aspect Oriented Programming to achieve mid-
dleware transparency. Bussard [1] successfully encapsulated several CORBA services as aspects
using AspectJ to make CORBA programming transparent to programmers. Hunleth, Cytron
and Gill [5] suggest the creation of an AspectIDL for CORBA to complement the IDLs that are
now available for languages such as Java and C+4. The proposed AspectIDL would support
several new types of introductions (using the AspectJ definition): interface method and field,
interface super class, structure field, oneway specifier, and IDL typedef and enumerations. They
also introduce the concept of concerns that crosscut programming languages. In our previous
work [11] we used AspectJ to successfully encapsulate Jini specific code into a number of as-
pects that greatly simplified the application development process, and achieved a fair measure
of transparency.

We are yet to see other approaches that incorporate aspect oriented modeling to achieve
middleware transparency. Incorporating the use of aspects early on in the software develop-
ment process is expected to reduce development time for the incorporation of new middleware
technologies.

While our framework is promising and provides a model for reasoning and analysis of middle-
ware transparency issues, a number of challenges and issues remain. First, the framework needs
to be used with other middleware standards such as CORBA, SOAP, and .Net. This should
result in a much more evolved and useful framework. Secondly, we applied the framework at
the coding level for our Jini application. We need to analyze the framework in the context of
aspect oriented analysis (AOA) and aspect oriented modeling (AOM).

4 Conclusion

We presented a framework for software development incorporating the use of aspects to model
middleware technologies and decouple the design of an application from its target middleware.
This framework evolved from research in which we are currently engaged and is based on the
MDA vision. This work will provide many benefits such as reducing design complexity, re-
duced development time when incorporating new middleware technologies, maintainability, and
adaptable software evolution.



References

1]

[2]

[3]

[4]

[5]

[6]

[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]
[15]

Laurent Bussard. Towards a Pragmatic Composition Model of CORBA Services Based
on Aspectd. In Proceedings of ECOOP 2000 Workshop on Aspects and Dimensions of
Concerns, Sophia Antipolis and Cannes, France, June 2000.

CenterSpan. Internet Tutorial. URL http://centerspan.org/tutorial/net.htm/, 2003.

George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts and
Design. International Computer Science. Addison-Wesley /Pearson Education, USA, 2001.

Robert Englander. Java and SOAP. O’Reilly, California, USA, May 2002.

Frank Hunleth, Ron Cytron, and Christopher Gill. Building Customizable Middleware
Using Aspect Oriented Programming. In OOPSLA Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, Tampa, Florida, USA, October 2001.

Manish Parashar. Ece 451- Introduction to Parallel and Distributed Programming, Fall
2001. Department of Electrical and Computer Engineering, Rutgers University, 2001.

Microsoft Corporation. .Net. URL http://microsoft.com/net/, 2003.
Microsoft Inc. Microsoft’s COM+ Technology. URL http://www.microsoft.com/complus.

Roger S. Pressman. Software Engineering: A Practitioner’s Approach. Software Engineering
and Database. McGraw-Hill, United States, 1997.

Richard Soley. MDA, An Introduction. URL http://omg.org/mda/presentations.htm/,
2002.

Devon Simmonds and Sudipto Ghosh. “Middleware transparency through aspect-oriented
programming using AspectJ and Jini”. In Proc. of the Java/Jini Technologies II Conference
at ITCOM 2002, pages 133-141, Boston, Massachusetts, USA, August 2002.

The Object Management Group. The Common Object Request Broker Architecture
CORBA/IIOP 2.6. URL http://omg.org/corba/, 2003.

The Object Management Group. The Model Driven Architecture. URL http://omg.org/
mda/, 2003.

W3Schools.com. The W3Schools.com Web Site. URL http://w3schools.com/, 2003.

Jim Waldo. Alive and Well: Jini Technology Today. IEEE Computer, 33(6):107-109, June
2000.



