Using Subject-Oriented Modeling to Develop Jini Applications

Gagan Tandon and Sudipto Ghosh
Computer Science Department
Colorado State University
Fort Collins CO 80523, USA
Email: {gagan, ghosh} @cs.colostate.edu

Abstract

A major contributing factor to the complexity of cre-
ating and evolving distributed systems is the tangling of
middleware-specific functionality with core business func-
tionality in system designs. Changing middleware function-
ality that is entangled with business functionality can lead
to costly and risky rearchitecting of the system or exten-
sive redesign of parts of the system. The subject-oriented
software development approach addresses this problem by
separating the design of crosscutting features into design
subjects. In this paper we describe an approach for sep-
arating Jini middleware features as design subjects which
can be composed with primary design subjects that realize
the core functionality of the application. In this context, we
identify limitations in the existing specification notation and
propose extensions.

Keywords: Model Driven Architecture, distributed com-
puting, modeling and meta-modeling, service-oriented ar-
chitecture and design, Jini, UML, OMG, middleware plat-
forms, subject-oriented modeling, composition patterns.

1. Introduction

Advances in network and middleware technologies have
spawned a new generation of distributed software-intensive
systems. As organizations seek to gain competitive ad-
vantage through innovative service offerings and to satisfy
growing demand for sophisticated services, developers are
under increasing pressure to quickly evolve distributed sys-
tems to take advantage of new middleware technologies.

Middleware technologies provide abstractions that help
reduce coupling between clients and servers and provide
some level of programmatic transparency. However, cur-
rent techniques used to develop distributed systems do not
fully support the separation of concerns needed to decou-
ple evolution of the middleware platform from evolution
of the business functionality. Lack of support for separa-

tion of business and middleware concerns forces develop-
ers to consider and incorporate technology-specific middle-
ware elements into design artifacts that address business-
specific functionality. For example, client-server systems
include middleware functionality that enables clients to ac-
cess remote services in a transparent manner. In peer-
to-peer applications, each peer has middleware function-
ality that enables it to access other peers on the network.
Even though certain middleware services may be provided
as components, there are other middleware features that
crosscut components in the application’s software architec-
ture. Evolution of distributed systems is particularly dif-
ficult when middleware functionality is tangled with core
business functionality. A decision to evolve a system to take
advantage of a new distributed system platform can result in
costly and risky rearchitecting of the system when platform-
specific and platform-independent functionality are inter-
twined in a system. Similarly, changes in business func-
tionality can result in extensive changes to the system.

Existing object-oriented and component-based tech-
niques do not provide the separation of concerns mecha-
nisms needed to support evolution of distributed systems
with changes in middleware technologies. There is a move
towards the use of techniques, such as modeling and pro-
gramming using the aspect-oriented and subject-oriented
paradigms, that support the encapsulation of crosscutting
features. In this paper we describe the use of subject-
oriented modeling to design a distributed application that
uses Jini middleware [6]. We define Jini design subjects
that model Jini service lookup, service binding and leasing.
We describe the construction of a complete application us-
ing these subjects.

The remainder of this paper is structured as follows. We
summarize related work in Section 2. We give an overview
of the subject-oriented modeling approach in Section 3. We
describe the use of this approach to develop Jini applica-
tions in Section 4. We also point out some limitations with
the existing notation and propose extensions. We conclude
and outline directions for further research in Section 5.

2. Related Work

Middleware features at the code level can be described
using an aspect oriented programming (AOP) language [1,
10, 11, 12, 13, 16, 17, 19, 20]. An AOP aspect is an im-
plementation of a design concern that cross-cuts the pri-
mary functional units of a program. Bussard [2] encapsu-
lated several CORBA services as aspects using Aspect] to
make CORBA programming transparent to programmers.
Hunleth, Cytron, and Gill [9] suggest the creation of an
AspectIDL for CORBA to complement the IDLs that are
now available for languages such as Java and C++. Their
proposed AspectIDL supports several new types of Aspect]
introductions: interface method and field, interface super
class, structure field, oneway specifier, and IDL typedef and
enumerations.

The Model Driven Architecture (MDA) [14] initiative
recognizes the need for raising the level of abstraction at
which developers describe complex systems and advocates
the use of model-centric approaches to developing complex
systems. Often, companies use the time-to-deliver pressure
as an excuse to adopt code-centric approaches to software
development. However, developers are finding it increas-
ingly difficult to cope with the complexity of developing
secure, fault-tolerant, highly available distributed software
systems using only code level descriptions. MDA advocates
separation of technology independent concerns from tech-
nology specific concerns. A platform-independent model
(PIM) describes the behavior of the application “undistorted
by the idiosyncrasies of the technology or technologies in
which it will be implemented” [14]. A platform specific
model (PSM) describes an application in technology spe-
cific terms. An MDA design consists of PIMs, PSMs,
and PIM to PSM mappings. The mappings, ideally im-
plemented in tools, transform the PIMs to PSMs. Use of
an MDA approach makes it unnecessary to repeat the pro-
cess of modeling an application’s functionality and behavior
each time a new implementation platform comes along.

Researchers have started to address the problem of de-
scribing and using aspects at an abstraction level higher than
the code level (e.g., Clarke, Harrison, Ossher and Tarr [4],
Clarke and Murphy [5], Gray et al. [8], and Rashid et
al. [18, 21]). France et al. use aspect-oriented modeling
and composition at the design level [7]. Clarke et al. [4, 5]
proposed a subject-oriented design approach in which a de-
sign called a subject is created for each system requirement.
A comprehensive design is a composition of subjects. Sub-
jects are expressed as UML model views, and composition
merges the views provided by the subjects. Subject-oriented
modeling is an abstraction of the notion of subject-oriented
programming developed by Ossher, Tarr, Harrison and oth-
ers [15]. Specifying composition of subject-oriented de-
signs or code is a key enabling feature of subject-oriented

approaches. Ossher et al. describe several low-level and
high-level composition rules for composing object-oriented
programs (especially C++ programs). When used at the
modeling level, the subject-oriented approach aligns well
with MDA. The primary design subject is a PIM, and sub-
jects describe middleware functionality. The PSM is ob-
tained by composing middleware subjects with the primary
design subjects.

3. An Overview of Subject-Oriented Modeling

Subject-oriented modeling has been described in [3, 4,
5]. Requirements criteria are used to decompose designs
into subjects. Subjects are designed independently even
though they may interact with or crosscut other subjects.
A complete design is synthesized from several subjects us-
ing composition relationships. Each subject may consist of
one or more UML diagrams. Because requirements are sep-
arated into different design models, both overlapping and
crosscutting specifications can be supported. Multiple re-
quirements often involve the same core concepts. A subject
includes only those concepts that are involved in the design
realization of the corresponding requirement. Crosscutting
requirements are designed as separate subjects with compo-
sition capabilities that handle their integration with concepts
in other subjects.

The subjects need to be understood together as one com-
plete design. This is achieved by using composition rela-
tionships that allow the designer to (1) identify and specify
overlaps between subjects, (2) specify how models should
be integrated, and (3) specify how ensuing conflicts are rec-
onciled. Since separate subjects may have overlapping con-
cepts, these concepts need to be integrated into the same
unit. Subjects may need different methods for integration
depending on how they were modularized. For example,
design elements may be merged if they are all needed in the
integrated design. However, if a design element needs to be
replaced by another, there needs to be an override strategy to
replace the existing element with a new one. Conflicts that
arise during integration must be resolved in different ways.
For example, precedence relationships may be used to favor
one design subject over another. Since crosscutting require-
ments tend to have behavior that affects multiple classes in
different design subjects in a uniform way, the mechanism
for such composition may be defined as a composition pat-
tern. Pattern classes are those that are replaced during the
composition. Non-pattern classes are those that are added
to the composed subject.

The following Logging example is adapted from the
Tracing example provided in [5]. Consider a system where
all operations need to be logged. Logging is a crosscutting
feature. We can design a separate Logger subject that will
be composed with other design subjects to enable logging

of operation calls. Figures 1 and 2 describe the structure
and behavior of the Logger subject. The UML template in
Figure 1 defines the template parameters as classes and op-
erations within the design subject that need to be replaced
by classes and operations from other subjects at the time
of composition. A template parameter _-1oggedOp (. .)
represents any operation that needs to be logged. The “..”
indicates that operations with any signature can replace
_loggedOp(..).

AN

<<subject>>:Logger
<LoggedClass,_loggedOp(..)>

Logger LoggedClass

+ logEntry()
+ logExit()

+ loggedOp()
— _loggedOp()

Figure 1. Logger subject class diagram.

O

j< :LoggedClass :Logger
AnyActor

—
|

loggedOp()

l
|
r logEntry(String)

logExit(String)

j
(z _loggedOp() i
7

Figure 2. Logger subject sequence diagram.

Figure 3 shows the class diagram of the Currency—
Conversion design subject that realizes some business
functionality (convert ()). Figure 4 shows the bind-
ing relationship between CurrencyConversion and
the Logger. The bind attachment pattern specifies that all
classes in CurrencyConversion and all operations in
those classes will require the logging behavior.

As a result of composition, non-pattern classes from
the Logger subject (e.g., Logger) are added to the com-
posed output. The properties of the pattern class Logged-—
Class are added to each class that replaces it (e.g.,
CurrencyConverter. Sometimes a pair of operations
is defined and referenced within the same pattern class
(e.g., loggedOp(..) and _loggedOp(..)). One
is a template operation (_loggedOp (..)). For each
operation (e.g., convert ()), we add a new operation

<<subject>>:CurrencyConversionlﬁ

CurrencyConverter

+convert(string ¢, double amt)

Figure 3. A CurrencyConversion subject.

iLoggedClass, _loggedOp(..)>ﬁ

Logger CurrencyConverter

N -
~ -

bind[<CurrencyConverter, convert()>]

Figure 4. Bind specification for logging.

<<subject>>:LoggerCurrencyConversionﬁ

Logger CurrencyConverter

+ logEntry()
+ logExit()

t convert(string ¢, double amt)
r CurrencyConversion_convert(string c, double amt)

Figure 5. Composed class diagram.

O

j< :CurrencyConverter | :Logger
AnyActor

—
|

convert(c, amt) logEntry(convert.name)

T
|
|

t CurrencyConversion_convert(c, amt)
|
|
|
|

\
|
|
|
logExit(convert.name) D
|
|
|
|
|

Figure 6. Composed sequence diagram.

(CurrencyConversion_convert ()) that substitutes
the template operation, and create a new interaction dia-

gram. Figures 5 and 6 show the composed class diagram
and sequence diagram respectively.

4. Applying Subject-Oriented Modeling to Jini

Jini provides a distributed infrastructure for service-
oriented applications. Services announce their availability
on the network to enable clients to avail of the services.
The Jini specification provides the basic features of lookup
service discovery, service registration, service lookup, and
leasing.

Jini-aware applications first need to discover at least one
lookup service so that they can either register with the
lookup, or query the lookup for other services. There are
three discovery protocols: (1) unicast, (2) multicast request,
and (3) multicast announcement. The unicast discovery pro-
tocol is used when an application is already aware of a spe-
cific lookup service and wants to talk directly to it. The mul-
ticast request protocol is used when an application needs to
find out available lookup services. The multicast announce-
ment protocol is used by lookup services to announce their
presence. The application illustrated in this paper assumes
a multicast request discovery protocol. Subjects that model
each discovery mechanism can be developed separately.

Once a Jini service has discovered a lookup service, it
registers its proxy with the lookup service. The service cre-
ates a service item and fills in a set of standard attributes
(e.g., service name and location). The service item is passed
to the lookup service’s register operation. A client applica-
tion queries lookup services for other available services that
are registered. Searches are performed using the service
name, interface type, and other attributes. In this paper, we
use an application that relies on searches based on the in-
terface type. Once a proxy is downloaded to the client side,
the client can send requests to it. Proxies can either imple-
ment the entire business functionality inside themselves, or
perform some part and transmit the rest to a remote server,
or communicate the entire request to a remote server. In this
paper we describe the third scenario.

Clients and services use up memory, CPU, and storage
resources in the lookup services to store registration infor-
mation. There may be loss of performance if the informa-
tion is kept for a long time just because the lookup ser-
vice was unaware that the client and service were no longer
available. Jini uses leasing which allows resources to be
granted to consumers for a fixed time period. Once a lease
expires, the resource is reclaimed. Leases can also be re-
newed.

In this section we describe our design of subjects for each
feature. These subjects were composed with a subject that
specifies the core business functionality of a SmartHome
(SH) application. The SH application consists of a smart re-
frigerator that contains food from several food groups. Fig-

Refrigerator <<interface>>
SuperMarketInterface
— servObj: SuperMarketInterface 1 1
+ getFood()
+ Refrigerator()
+ requestFood() Z}
|
|
l
SuperMarket
@ + SuperMarket()
+ getFood()
— doSomething()

Figure 7. SH subject class diagram.

i :Refrigerator

requestFood(int,String):in

servObj:SuperMarketInterface

T
|
|
|
[ﬂ getFood(int,String):int

:

:SuperMarket

getFood(int,String):int

T
l
|
M
L doSomething()
|
|
|
|
|

Figure 8. SH subject sequence diagrams.

ures 7 and 8 describe the primary subject of the SH applica-
tion. When the Refrigerator wants to restore its food
supply, it calls the getFood () operation inside ser—
vOb j, am implementation of the SuperMarketInter—
face) and an instance of SuperMarket. The arguments
specify the name of fooditem and quantity requested. Fig-
ure 8 also describes the operation when getFood () oper-
ation is called on SuperMarket.

4.1. Jini Design Subjects

We designed a Jini subject that performs lookup service
discovery, service registration and service lookup. All three
are related features, and we decided to include them in one
subject even though not all may be used at the same time.
For example, a service uses the discovery and registration

<<interface>>

ServiceInterface Client

<<interface>>
java::rmi::Remote

+ template: ServiceTemplate

+ discoveryManager: LookupDiscoveryManage
Zr +request() + myListener: Di:coveryListener

+ p_servObj: Servicelnterface
+ types[0..*]: Class

<<interface>> I
|

BackendProtocol - +Client()

R ServiceProxy 1 | | —_ClientQ

+ backend: BackendProtocol #lookForService()
+ request() + run()

+ callRequest()

+ request()

Service 1 Listener

+ myListener: DiscoveryListener + discarded()
+ item: Serviceltem + discovered
+ discoveryManager: LookupDiscoveryManager
+ registrations: Hashmap

+ registration: ServiceRegistration 1
+ serviceRegistrar: ServiceRegistrar

+LEASE_TIME: int ServiceRegistrar

+ Service() 1
— _Service() 1 + getServiceID()
+ createServiceProxy() + lookup()
+ registerWithLookup() + register()
+ run()

Listener <<Subject>>: JiniBackProxy

+ discarded() <Servicelnterface,request(..)>

+ discovered <Service,_Service(..)>
<Client,_Client(..),callRequest(..),p_servObj:Servicelnterface>
<{BackendProtocol },request(..)>

<{Backend},request(..)>

Backend

_ _|d + Backend()
+ request()

Figure 9. Jini Backend Proxy subject class diagram.

:Service :Backend :ServiceProxy item:Serviceltem

<<create>> iﬂervicepmxy()
T T
<<create>>

I
<<create>> |

t

| m
<<create>> !

[

i

t = getSecurityManager()

]

myListener

:LookupDiscoveryManager

<<create>>

‘Thread

<<create>>

] _Service(..)
T_‘ run()

-

I
*[true] :sleep(long)

I
I
I I
I I
I I
I I
I I
I I
| |
I I
[t = null] setSecurityManage'r() |
- |
I I
I I
I I
I I
I I
I I
I I
I I
t T
I I
I I
I I
T I
I I
I I
I I
I I
I I
I I
I I
T [
I I
I I

D
1

Figure 10. Jini Backend Proxy subject sequence diagram for Service and ServiceProxy creation.

:Listener

discovered(ev:DiscoveryEvent,

:Service

:ServiceRegistrar

newregs = ev.getRegistrars()

*[int i; i<newregs.length;i++]

T

|

|

|

|

|

|

|

|

|

|

| |
[!reg1strations.contamsKey(newregs[1])] registration = register(item,LEASE_TIME):

jogistchithLookup(Scrviccchistra.r)

item.servicelD = registmliomgetServicelD@

g

registrations.put(registrar, registration)

Figure 11. Jini Backend Proxy subject sequence diagram for discovering a lookup and registering

the proxy with lookup service.

:Client template:ServiceTemplate

myListener:Listener

T

|

|

I . . |
<<create>> J;;q.i‘: Servicelnterface.class |
Ehahtisiga ,
] |

<<create>>

t = getSecurityManager()

[t = null] setSecurityManager()

<<create>>

discoveryManager:LookupDiscoveryManager

<<create>>

*[true] sleep(long),

'm :Thread

I
|
I
I
I
|
]t‘ _Client(..) :
I
I
I
I
I
I
Il
I
I
I

1]

Figure 12. Jini Backend Proxy subject sequence diagram for creation of Client, Listener, and

LookupDiscoveryManager.

features, and a client uses the discovery and lookup features.
Figure 9 shows the class diagram of this subject.

A DiscoveryListener is needed on both the server
and client sides to perform the initial discovery of a lookup
service. We create this listener inside the constructors of
the client and service classes. Java inner classes are used
in our design. In the figure, we do not show details of the
Listener class, such as the fact that it implements Jini’s
DiscoveryListener interface. Lookup services are in-

stances of the ServiceRegistrar. The proxy obtained
from the lookup service interacts with a Backend class
that implements all the business functionality. The Back—
end class is a static inner class within Service and im-
plements the BackendProtocol interface which has the
same method request (..) as does ServiceInter—
face.

The template in Figure 9 specifies the template param-
eters that are replaced by design elements from SH sub-

:Listener :Client

|
discovered(ev:DiscoveryEvent)
a7 newregs=ev.getRegistrars()

*[int i; i<newregs.length;i++]

[newregs[i] !=null]

prservaj = lonkForService(newregs[‘

-

lusve.lookyp(template)
|

Figure 13. Jini Backend Proxy subject se-
quence diagram for binding of p_servob3j, to
the proxy implementing the ServicelInter-
face.

:Client p_servObj:ServiceProxy

callRequest() ’_l_‘ request() m

p_servObj:ServiceProxy :Backend

request() o request() ‘m

Figure 14. Jini Backend Proxy subject se-
quence diagram describing the interaction
when the client requests the p_servobj.

jects during composition. Our definition of the template
differs from Clarke’s UML template [3, 5] which was used
to specify a subject’s pattern classes and the operations that
needed to be replaced. We observed that the composition
of subjects requires more than just composition of pattern
classes and their operations. We modified the template to
allow (1) the addition of pattern interfaces and their oper-
ations, (2) the replacement of attributes of pattern classes,
and (3) the replacement of operations of non-pattern classes
and interfaces. For example, during composition with the
SH application, the request (..) method in Servi-
ceInterface is replaced by a method from an interface
of another subject. The attribute p_servOb j of type Ser—
viceInterface is replaced by an attribute of a class
from another subject. A new non-pattern interface, Back—

]

JiniBackProxy N 7 SH

bind [

<SuperMarketInterface,getFood(int amt, String food)>

<SuperMarket,SuperMarket()>

<Refrigerator, Refrigerator(), requestFood(),servObj:SuperMarketInterface>

<SuperMarketInterface,getFood(int amt, String food)>
]<SuperMarket,gctF00d(int amt, String food)>

Figure 15. Binding specification between SH
and Jini Backend Proxy subijects.

endProtocol, is added to the SH design. New classes
such as Listener and Backend need to be introduced
inside the SuperMarket class. The request () opera-
tion inside Backend needs to be replaced by getFood () .

In the template, we use curly braces around the names of
non-pattern interfaces and classes (BackendProtocol
and Backend) to indicate that the names of their opera-
tions will get changed to the names of the operations speci-
fied in the binding specifications in Figure 15.

Figure 10 describes how the basic setup is performed
to create a new backend process, proxy object, service
item, discovery listener and other threads. When discovery
events occur in the server side, the service registers its proxy
service-item with the lookup service as shown in Figure 11.
The setup process for the client side is shown in Figure 12.
When discovery events occur at the client side, the client
queries the lookup service for appropriate services (see Fig-
ure 13). Figure 14 shows the interaction between the client
and backend server using the proxy, p_servOb7j, in be-
tween.

The binding specification shown in Figure 15 states the
relationship between the template specifications of the Jini
backend proxy subject and the elements in the SH subject
that will replace the template parameters. Since we allow
the specification of attributes, pattern interfaces and non-
pattern interfaces or classes in the template, the binding
specification needs to address the corresponding relation-
ships as well. The bind specification states the following:

e The pattern interface, ServiceInterface, is re-
placed by SuperMarketInterface.

e The request (..) operation is replaced by the
getFood (int, String) operation in Super-—
MarketInterface.

o The attribute p_servOb j of type ServiceInter—
face is replaced by servObj of type SuperMar—
ketInterface.

<<interface>>
java::rmi::Remote

f

<<interface>>
BackendProtocol

+ getFood()

<<interface>>
SuperMarketInterface

Refrigerator

+ getFood()

+ template: ServiceTemplate

+ discoveryManager: LookupDiscoveryManager
+ myListener: DiscoveryListener

+ p_servObj: SuperMarketInterface

+ types[0..%]: Class

ServiceProxy
+ backend: BackendProtocol

+ getFood()

+ Refrigerator()

— SH_Refrigerator()
lookForService()
+ run()

+ requestFood()

SuperMarket

+ myListener: DiscoveryListener

+ item: Serviceltem

+ discoveryManager: LookupDiscoveryManager
+ registrations: Hashmap

+ registration: ServiceRegistration

+ serviceRegistrar: ServiceRegistrar

+ LEASE_TIME: int

+ SuperMarket()

— SH_SuperMarket()

+ createServiceProxy()
+ registerWithLookup()

Listener
+ discarded()
+ discovered
1
1
ServiceRegistrar

+ getServiceID()
+ lookup()
+ register()

t = getSecurityManager()

:System

[t = null] setSecurityManager()

! myListener

<<create>>

J

+ run()
+ getFood()
— doSomething()
- <<Subject>>: JiniBackProxySH
Listener
+ discarded()
+ discovered
| Backend
+ Backend()
+ getFood()
— doSomething()
Figure 16. Composed class diagram.
:SuperMarket :Backend :ServiceProxy :Serviceltem
T T T
i | |
<<create>> é*’[:ifferviceProxy() : :
—_— i i
I I
I
<<create>> D :
— »
I
<<create>> : [j
<<create>> :

:LookupDiscoveryManager

<<create>>

:‘Thread

j SH_SuperMarket()
T_‘ run()

*[true] sleep(long)

LT

|
|
|
|
|
|
|
|
T
|
|
Ir
L
|
|
|
|
|
|
|
|
T
|
|
|
T
|
|
|
|
|
|
|
T
|
|

!

|
|
|
|
|
|
|
|
T
|
|
|
L
|
|
|
|
|
|
|
|
T
|
|
|
T
|
|
|
|
|
5|
|
T
|
|

ﬁ

u

Figure 17. Composed sequence diagram from Figure 10.

:Listener

discovered(ev:DiscoveryEvent) newregs = ev.getRegist

1]

*[int i; i<newregs.lengtl

i

:SuperMarket :ServiceRegistrar

rars()

h;i++]

T[Iregistrations.containsKey(newregs[i])

|
|
|
|
|
|
|
|
|
|
|
|

|
registration = register(item,LEASE_TIME):

jcgislchiLhLookup(Scrviccchislrar)

item.servicelD = registration.getSewicelD@

.

registrations.put(registrar, registration)

Figure 18. Composed sequence diagram from Figure 11.

:Refrigerato :ServiceTemplate

:System

myListener :LookupDiscoveryManager

<<create>> ﬂyﬁ: Servicelnterface.class
—

<<create>>

t = getSecurityManager()

[t = null] setSecurityManager()

J

<<create>>

J

<<create>>

T_‘ run()

*[true] sleep(long)

m ‘Thread

-

I
I
I
I
I
[
I
]T_‘ SH_Refrigerator() :
I
I
I
I
I
I
L
I
I
I

]

Figure 19. Composed sequence diagram from Figure 12.

e The request (..) operation in the non-pattern
class Backend incorporates the behavior of get-
Food (int, String) in SuperMarket.

The request () operations in Backend and Back—

endProtocol get changed to getFood () (from Su-
permarket and SuperMarketInterface).

4.2. Subject Composition

The approach for composing class diagrams in design
subjects is as follows:

1. Rename pattern interfaces using the application-

specific interfaces specified in the binding specifica-
tion. Retain all the non-template properties of the
application-specific interfaces. Add the non-template
properties of the pattern-specific interfaces to the
application-specific interfaces.

. Identify the operations in all the non-pattern interfaces

(or classes) that extend (or implement) the pattern in-
terfaces replaced in step 1. Rename them using names
of the application-specific operations that replaced the
pattern interface operations in step 1.

. Replace the pattern classes with the application spe-

:Listener :Refrigerator

|
discovered(ev:DiscoveryEvent)

newregs = ev.getRegistrars()

*[int i; i<newregs.length;i++]

[newregs[i] != null]

servODbj = lookForService(lusvc)

-

lusvc.lookuﬁ‘(lemplale)

Figure 20. Composed sequence diagram from
Figure 13.

:Refrigerator servODbj:ServiceProxy

T
| |
requestFood(int, String) getFood(int, String) :
L]
|
|

servODbj:ServiceProxy :BackendProtocol

T T

| |
getFood(int, String) : :
_— >

getFood(int, String)

Figure 21. Composed sequence diagram from
Figure 14.

cific classes named in the binding specification. Add
all the non-template inner classes, operations, and at-
tributes of the pattern classes to the application specific
class.

4. Replace pattern attributes and their types with the
corresponding application-specific attributes and their
types. This information is available in the binding
specification.

5. Replace the operations in the non-pattern interfaces
with the operations specified in the binding specifi-
cation. Rename operations accordingly in the non-
pattern classes that implement non-pattern interfaces.

6. Operations in the non-pattern classes inherit the behav-
ior of the corresponding template operations named in
the binding specifications.

The approach for composing sequence diagrams is as
follows:

1. Rename the template operations of the pattern classes
with names of corresponding operations from the bind-
ing specification using Clarke’s approach [3].

2. Introduce new sequence diagrams in the composed de-
sign subject as a result of step 6 in the class diagram
composition approach.

3. Replace the template attributes in the introduced se-
quence diagrams with corresponding attributes in the
binding specification.

We followed the steps listed below to compose the class
diagrams. The resulting diagram is shown in Figure 16.

1. The SuperMarketInterface in the SH subject
gets all the properties associated with ServiceIn—
terface. The request () operation in Servi-
celnterface is bound to the getFood () opera-
tion in SuperMarketInterface. Therefore, all
the request () operations in the non-pattern class
ServiceProxy that implement the ServiceIn-
terface are also replaced by getFood ().

2. We add all the non-template attributes, operations
and inner classes in Service to the SuperMar—
ket class. This class also gets associated with all
the classes/interfaces that the Service class was as-
sociated with. All the template parameters are suit-
ably replaced or renamed in SuperMarket. The
composition of Client and Refrigerator fol-
lows the same approach. The composition of at-
tribute p_servObj in Client with servOb7j in
Refrigerator takes two steps. First, the type of
p-servObj is changed to SuperMarketInter—
face. Next, following the binding specification,
p-servObj is replaced by servObj in the Re—
frigerator class.

3. The request () operation in BackendProtocol
is replaced by getFood () operation of SuperMar—
ketInterface.

Figures 17, 18, 19, 20, and 21 show the result of compos-
ing sequence diagrams shown in Figures 10, 11, 12, 13, and
14 respectively. We used the following steps to compose the
sequence diagrams:

1. The p_servObj attribute in Client is replaced by
the servObj attribute in Refrigerator. The se-
quence diagram in Figure 13 for downloading a proxy
is added to the composed subject with p_servOb j re-
placed with servObj. The Refrigerator’s in-
teraction with servOb j remains unchanged.

2. Since the request () operation in Backend is re-
named getFood (int, String) and it incorpo-
rates the behavior of getFood (int, String) in
SuperMarket, we need to create a new sequence di-
agram for this behavior (see Figure 22). All the oper-
ations that were part of the getFood (. .) operation

in SuperMarket are copied to the getFood (. .)
operation in the Backend. The getFood (..) op-
eration inside the SuperMarket class is retained in
the composed subject.

:Backend

|
Vr:‘ doSomething()
|
|

getFood(int,String):int

Figure 22. New sequence diagram for back-
end behavior.

3. The constructors SuperMarket () (and Refrig-
erator ()) are composed with Service () (and
Client ()). The constructor of SuperMarket is
replaced by a private method SH_SuperMarket ().
We add another constructor SuperMarket () which
executes the private SH_SuperMarket () method as
shown in Figure 17 (composed from Figure 10). The
Refrigerator () constructor is also composed in
a similar manner (see Figure 19).

4. The sequence diagrams for discovery of lookup ser-
vices are introduced in the composed design subject
without requiring composition. The template param-
eters in these sequence diagrams just need to be re-
placed by the parameters specified in the bind attach-
ment.

4.3. Design Subject for Leasing

Figure 23 shows the class diagram of the server side
leasing subject. We assume that the service intending
to use the leasing feature has already incorporated the
Jini service registration features. The template parame-
ter p-registration:ServiceRegistration will
need to be replaced by an attribute from the actual service
class. Figures 24 and 25 describe the creation and registra-
tion of the LeaseRenewalManager. The leasing sub-
ject was composed with the subject resulting from the com-
position of SH and Jini Backend proxy. Composed models
are not shown owing to lack of space.

5. Conclusions and Future Work

We modeled Jini features separately as design subjects
to reuse them in other Jini applications. We demonstrated
the application of composition patterns to compose the Jini
subjects with a smart home application. There were no con-
flicts during composition with Jini subjects. Therefore, we

<<interface>>
net::jini::lease::LeaseListener

+ notify()

<<subject>>:ServerLease
<Service, _Service(..),
registerWithLookup(..),

p_registration: Serv1ceReg1stratlon> Service

 Irm: LeaseRenewalManager
I p_registration: ServiceRegistration

+ notify()

+ Service()

— _Service()
registerWithLookup()
_registerWithLookup()

Figure 23. Leasing subject class diagram.

:Service Irm:LeaseRenewalManager

<<create>>

F_‘ <<create>>

< _Service()

:

Figure 24. Leasing subject sequence diagram
showing creation of LeaseRenewalManager.

:Service

T
registerWithLookup(Servicekegistrar)
_registerWithLookup(ServiceRegistrar)

14_1

e | Irm.renew(p_registration.getLease(),
} LEASE_FOREVER)

Figure 25. Leasing subject sequence diagram
showing registration of LeaseRenewalMan-
ager With the serviceRegistrar.

were able to achieve a clean separation of Jini features from
the design of business functionality in the application.

The subject-oriented design approach can also be used
to develop design subjects for different types of middleware

JiniBackProxySH ServerLease
bind[

<SuperMarket, SuperMarket(), registerWithLookup(ServiceRegistrar),
registration:ServiceRegistration>

1

Figure 26. Binding specification for leasing
subject.

technologies (e.g., Java RMI, CORBA). This will enable
the reuse of primary design subjects when middleware plat-
forms change.

We suggested some additions to the composition pattern
notation. Our approach requires the composition of inter-
faces in addition to classes. We also require the composi-
tion of attributes. We suggested a notation for describing
the composition of design elements in non-pattern classes
and interfaces with design elements of classes/interfaces in
primary design subject.

We are currently investigating techniques for mapping
the Jini subjects to code aspects using Aspect]. This will
enable the weaving of Jini code from libraries provided
by third party implementations together with the code that
implements core functionality. We will also evaluate the
subject-oriented approach with other middleware platforms.
This will help us understand the limitations of the subject-
oriented approach and develop appropriate extensions. We
are planning on carrying out empirical studies that assess
the advantages resulting from the reuse of design subjects,
and also the impact of this approach on the evolution of
software designs in general.

References

[1] L. Bergmans and M. Aksit. Composing multiple concerns
using composition filters. Communications of the ACM,
44(10), Oct 2001.

[2] L. Bussard. Towards a Pragmatic Composition Model of
CORBA Services Based on Aspect]. In Proceedings of
ECOOP 2000 Workshop on Aspects and Dimensions of Con-
cerns, Sophia Antipolis and Cannes, France, June 2000.

[3] S. Clarke. “Extending Standard UML with Model Com-
position Semantics”. Science of Computer Programming,
44(1):71-100, July 2002.

[4] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Separat-
ing concerns throughout the development lifecycle. In Pro-
ceedings of the 3rd ECOOP Aspect-Oriented Programming
Workshop, Lisbon, Portugal, June 1999.

[5] S. Clarke and J. Murphy. Developing a tool to support the
application of aspect-oriented programming principles to the

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

design phase. In Proceedings of the International Confer-
ence on Software Engineering (ICSE ’98), Kyoto, Japan,
April 1998.

W. Edwards. Core Jini. Prentice Hall, Inc. USA, 2001.

R. B. France, 1. Ray, G. Georg, and S. Ghosh. An aspect-
oriented approach to design modeling. 7o be published in
IEE Proceedings - Software, Special Issue on Early Aspects:
Aspect-Oriented Requirements Engineering and Architec-
ture Design, 2004.

J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling Cross-
cutting Constraints in Domain-Specific Modeling. Commu-
nications of the ACM, 44(10):87-93, Oct. 2002.

F. Hunleth, R. Cytron, and C. Gill. Building Customiz-
able Middleware Using Aspect Oriented Programming. In
OOPSLA Workshop on Advanced Separation of Concerns
in Object-Oriented Systems, Tampa, Florida, USA, October
2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with Aspect]. Commu-
nications of the ACM, 44(10):59-65, Oct. 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of Aspect]. In Proceed-
ings of the European Conference on Object-Oriented Pro-
gramming (ECOOP ’01), pages 327-353, Budapest, Hun-

gary, June 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP ’97), volume 1241
of Lecture Notes in Computer Science, pages 220-242, Jy-
vaskyla, Finland, June 1997.

K. Kieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods. Communications of
the ACM, 44(10):39-41, Oct. 2001.

Object Management Group. Model Driven Architecture.
URLhttp://www.omg.org/mda/,2004.

H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal.
Specifying subject-oriented composition. Theory and Prac-
tice of Object Systems, Wiley and Sons, 2(3), 1996.

H. Ossher and P. Tarr. Using multidimensional separation of
concerns to (re)shape evolving software. Communications
of the ACM, 44(10):43-50, Oct. 2001.

J. A. D. Pace and M. R. Campo. Analyzing the role of
aspects in software design. Communications of the ACM,
44(10):66-73, Oct. 2001.

A. Rashid, A. Moreira, and J. Araujo. Modularization and
Composition of Aspectual Requirements. In 2nd Interna-
tional Conference on Aspect-Oriented Software Develop-
ment, ACM, pages 11-20, Boston, March 2003.

A. R. Silva. Separation and composition of overlapping
and interacting concerns. In OOPSLA ’99 First Workshop
on Multi-Dimensional separation of Concerns in Object-
Oriented Systems, Denver, Colorado, November 1999.

G. T. Sullivan. Aspect-oriented programming using reflec-
tion and metaobject protocols. Communications of the ACM,
44(10):95-97, Oct. 2001.

J. Suzuki and Y. Yamamoto. Extending UML with Aspects:
Aspect Support in the Design Phase. In Proceedings of the
3rd ECOOP Aspect-Oriented Programming Workshop, Lis-
bon, Portugal, June 1999.

