
Test Input Generation using UML Sequence and State Machines Models

Aritra Bandyopadhyay, Sudipto Ghosh
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523�

baritra,ghosh � @cs.colostate.edu

Abstract

We propose a novel testing approach that combines in-
formation from UML sequence models and state machine
models. Current approaches that rely solely on sequence
models do not consider the effects of the message path un-
der test on the states of the participating objects.

Dinh-Trong et al. proposed an approach to test input
generation using information from class and sequence mod-
els. We extend their Variable Assignment Graph (VAG)
based approach to include information from state machine
models. The extended VAG (EVAG) produces multiple exe-
cution paths representing the effects of the messages on the
states of their target objects.

We performed mutation analysis on the implementation
of a video store system to demonstrate that our test inputs
are more effective than those that cover only sequence dia-
gram paths.

Keywords: class models, model-based testing, sequence
models, state machine models, test input generation

1. Introduction

Current research has focused on using UML models to
support system testing. Testing approaches based on UML
sequence (or collaboration) diagrams [1, 3, 6] select a set of
message paths according to some structural coverage crite-
rion (e.g., all-message-path coverage). Test inputs are gen-
erated so that each message path is executed. However, such
approaches ignore the effect of a message sequence on the
states of the objects participating in the interaction.

Testing approaches based on state machine models [5,
13] select a set of transition sequences using state machine
coverage criteria (e.g., coverage of all states, transitions, or
transition pairs) and generate test inputs for each of those
transition sequences. For example, Offutt et al. [13] state
that “a complete sequence is a sequence of state transitions

that form a complete practical use of the system. In most re-
alistic applications, the number of possible sequences is too
large to choose all complete sequences.” Therefore, they
suggest that test engineers define meaningful sequences
from the diagram. One way to do that is to use the expe-
rience and knowledge of the test engineer. Other than that,
none of the state machine based testing approaches provide
any guidance for selecting meaningful sequences.

The motivation of our work stems from the two problems
described above. We assume that the developers have the
following design models: (1) a UML class model to specify
the structure, (2) state machine models to specify states and
transitions for each object as defined in the class diagram,
and (3) several sequence models to show critical scenarios
of system use. We improve sequence model based testing
by considering the effect of each message on the states of
the target object. We use sequence model interactions to
select key transitions and states from a state machine.

In our approach we combine the information from se-
quence and state machine models into one testable model.
We extend the work of Dinh-Trong et al. [6], which pro-
posed the use of a Variable Assignment Graph (VAG) to
combine information from a class and a sequence diagram.
We extend a VAG with information from the state machines
(if available) for each class defined in the class diagram. We
do not necessarily need state machine models of each class,
but the more we can use, the more effective is the approach.
We performed a mutation analysis of a video store system
to demonstrate that our test inputs are more effective than
those that cover only sequence diagram paths.

Section 2 summarizes the original VAG generation ap-
proach described in Dinh-Trong et al. [6]. Section 3 de-
scribes how the EVAG is constructed. Section 4 presents
the results of our pilot study. Section 5 describes related
work. Section 6 presents our conclusions and outlines di-
rections for future work.

2. Background

The test generation approach of Dinh-Trong et al. [6]
uses two types of UML models: class and sequence.

Class model information is needed to create a configura-
tion of objects on which the test is to be performed, such that
the configuration conforms to the class diagram. This infor-
mation includes: (1) constraints on attributes and the class
invariant (available in the OCL specification associated with
the class diagram), and (2) associations and multiplicities.

Sequence model information in the form of a sequence
of operations is needed to ensure that a certain path gets
executed. This, in turn, requires that we have (1) the pre-
condition of the operations (available in the OCL specifi-
cation associated with the class diagram), (2) conditions
along the path that must be satisfied (available in the opt,
alt, and loop fragments (CombinedFragments) of a se-
quence diagram), and (3) information about where and how
the values are defined (available in the sequence diagram
through actual parameters that are assigned to formal pa-
rameters or variables that hold the return values, and in the
class diagram through post-conditions of operations).

First, the information in a class diagram and a sequence
diagram is combined to generate a graph structure called
Variable Assignment Graph (VAG). Paths are selected from
the VAG based on some VAG-based structural coverage cri-
terion (e.g., cover all nodes, cover all edges, or cover all
paths). For each path, the constraints along the path are
combined into a constraint system. The constraint variables
are treated as symbolic variables. Since the authors are not
aware of any constraint solver that can solve this type of
constraints, they convert the constraints to Alloy [8]. If the
Alloy solver finds a solution, the test input is determined
from the solution. Otherwise, a new path is selected and the
process of constraint generation and solving is repeated.

A VAG is a control flow graph annotated with data-flow
information. The graph contains a message node for every
sequence diagram message. Edges between message nodes
represent the control flow between the corresponding mes-
sages. There are also control nodes, which show alternate
execution paths of messages from the CombinedFrag-
ments.

A message node in a VAG may contain any of the fol-
lowing three sections:

� Condition: It represents the constraints that must be
satisfied in order to send the message. The constraints
include the operation pre-condition, a predicate for the
existence of the target object of the message, and a
predicate for the existence of the link along which the
message is to be sent.� Control Action: It represents the implications of send-
ing a message and includes the assignment of the ar-

guments to the formal parameters of the operation in-
voked by the message.� Effect: It represents the changes in the system after the
operation invoked as a result of a message finishes ex-
ecution and returns. The effect of a message, � , is
associated with the message node of the return mes-
sage corresponding to � . Effects include the post-
conditions of the operation invoked by the message.

We use an example extended from Briand et al. [5] to il-
lustrate the steps involved in the generation of a VAG. The
example is the UML specification of a video store manage-
ment system. In Section 3, we use the example to illustrate
the generation of an EVAG from a VAG.

MembershipAccount Rental

+isOverdue()
+returnCopy()
+Rental(copy: Copy)

−timeSinceHeld: int
−maxHoldTime: int

...

...
+Title(in name:String)
+getOldestPending: Reservation
+getSecondOldestPending: Reservation
+makeReservation()

...

Title
1

1

0..10..1
reservation

1

+findCopyForRent(): Copy

−timeSinceHeld: Integer
−maxHoldTime: Integer
−state: enum{ForRent, OnHold, ForSale, Rented, Sold}

+Copy()
+rent(in r: Rental)
+holdExpire()
+cancelReservation()

1 title

−state: enum{Active, Overdue. Terminated}

+returnRental(rental: Rental)
+addRental(rental: Rental)
+updateDues()

1 rentedCopy

...

−name: String

title

Copy

11

1

0..* reservations

+returnIt()

0..* reservation

+beOldestPending()
+fulfill(r:Rental)
+cancel()
+expire()
+copyAvailable(in c: Copy)
+Reservation(t:Title)
−maxHoldTime: int
itimeSinceHeld: int

−state: enum{Pending, Outstanding, Cancelled, Expired, Fulfilled}

Reservation

0..* copies

0..1heldCopy

0..1 oldestPending
secondOldestPending

0..* rentals

+cancelReservation(title: Title, account: MembershipAccount)

+rentCopy(account: MembershipAccount, copy: Copy)
+returnRental(account: MembershipAccount, rental: Rental)

+makeReservation(title: Title, account: MembershipAccount)

VideoStore

0..* ttles

0..* accounts

Figure 1. Video Store Class Diagram Ex-
tended from Briand et al. [3]

Figure 1 shows a class diagram containing classes, Copy,
Title, Reservation, MembershipAccount, Rental, and Video-
Store. Figure 2 shows an interaction that occurs when a
rental is returned by a member.

Figure 3 shows the VAG generated using the sequence
diagram in Figure 2 The nodes are labeled with the oper-
ations of the messages they represent. Nodes a and b are
control nodes. Node a is used to select one of the two con-
ditional message paths resulting from the opt fragment in

rental: Rental

returnRental(account, rental)

opt [account.rentals−>includes(rental)]

updateDues()

reutrnCopy()

account:

1

2

3

5

89

rentedCopy:CopyvideoStore:VideoStore

6 returnIt()

MembershipAccount

7

4 returnRental(rental)

Figure 2. Sequence Diagram Showing Return-
ing a Rental by a Member

not account.rentals−>
(r:Rental | r = rental)

(r:Rental| r= rental)

Condition
copy.returnIt

Copy.AllInstance−>includes(copy)

Control Action

Effect
account.rentals−>excludes(rental)

Control Action

Condition
MembershipAccount.AllInstance−>

includes(account)

account.updateDues

Condition
account.returnRental

a account.rentals−>

Control Action

videoStore.returnRental:rental= rental

videoStore.returnRental

Condition
Rental.AllInstance−>includes(rental)

Control Action

rental.returnCopy4

3.

2

5.

1.

b

6. return MembershipAccount.returnRental

VideoStore.AllInstance−>includes(videoStore)
Condition

Control Action
account.returnRental:rental = videoStore.returnRental:rental

MembershipAccount.AllInstance−>includes(account)

videoStore.returnRental:account = account

rental.rentedCopy = copy

Figure 3. VAG Generated From Figs 1 and 2

the sequence diagram. Each branch is annotated with the
corresponding condition for execution of that branch. Node
b is used to merge them.

Consider message node 3 in Figure 2. It represents mes-
sage 4 in the sequence diagram. The Condition section
represents the condition that must exist in order to send the
message, returnRental() to the instance account of
the MembershipAccount class. The OCL statement in the

condition specifies that the recipient instance, account,
must exist before the message is sent.

The Control Action in the node states that the ar-
gument is assigned to the formal parameter of the oper-
ation, returnRental(). The name of the formal pa-
rameter is obtained from the signature of the operation,
returnRental(), in the class diagram. The name of
the argument is obtained from the sequence diagram mes-
sage. To avoid conflict of variable names, all variables
are expressed in a fully qualified form. The formal pa-
rameter and the argument of returnRental() for mes-
sage 4 are both rental. The formal parameter is ex-
pressed as account.returnRental:rental. The
argument, being a local variable of the operation, re-
turnRental() (message 1), is expressed as video-
Store.returnRental:rental.

Node 6 in Figure 2 represents the return message corre-
sponding to the call, returnRental(). The Effects
section of the node records the post-condition of return-
Rental(), which states that the Rental instance to be re-
turned is removed from the list of rentals in the account.

Each path from the start node to the end node of the VAG
represents a complete execution path in the sequence dia-
gram. The conjunction of the constraints in the edges and
Condition, Control Action, and Effect sections
along a VAG path together with the class diagram invari-
ant represents the condition that must be fulfilled in order to
execute the message path.

3. Proposed Approach

Test adequacy
criteria

Class and sequence
models under test

Integrate class
diagram and sequence

diagram

Generate
constraints

Constraint

Test inputs

[cannot find a solution]

machines

Add state machine
information

EVAG

Select path

Path

VAG

Solve constraint
satisfaction problem

[finds a solution]

under test
State

Figure 4. Our Approach

Figure 4 describes the activities in our approach. We first
construct the VAG as before, using a class diagram and a
sequence diagram. We augment the VAG with information
derived from the state machines of the participating objects
to build a testable model called the Extended Variable As-
signment Graph (EVAG).

The rest of the test generation process proceeds in the
same way as described in Section 2. We use structural cov-
erage criteria to select paths from the EVAG. For any se-
lected path, we generate the path constraints, which along
with the class diagram are transformed into an Alloy script.
The resulting Alloy script is executed to solve the con-
straints and the solution is converted to JUnit test cases. In
this paper, we only focus on the construction of the EVAG
from a VAG and the state machine diagrams.

We assume that each diagram is syntactically correct and
also syntactically consistent with each other; most UML
drawing tools can perform these checks. Each sequence
diagram lifeline has a corresponding class in the class di-
agram. Each message in the sequence diagram and each
call-event and action in the state machines conforms to the
corresponding operation signature in the class diagram. The
names of class attributes and formal parameters of opera-
tions are consistent across the diagrams. Currently, we sup-
port only call-events in the state machines and synchronous
operation calls in the sequence diagrams.

Select a
message
path

Sequence
Diagram

[more messages in the path]

[no more messages in the path]

the path

left in the VAG]
[more message sequences

[no more message paths]

State

Select

Select a

Transitions
Inline

message from

Initialize
EVAG

VAG

EVAG

Transitions

machines

Figure 5. EVAG Generation from VAG

The activity diagram in Figure 5 describes the EVAG
generation approach. First, we initialize the EVAG to be
a clone of the VAG. Then we consider all the message paths
in the corresponding sequence diagram, one at a time. Cur-
rently, if there are loops, we consider each loop twice, once
with zero and then with one traversal through the loop. We

examine each message one by one in each path. From the
state machines, we select a set of transitions that can re-
sult from a message and are relevant to the path. This pro-
cess is called Transition Selection. We keep modifying the
EVAG based on the selected transitions. This process is
called Transition Inlining. Modifications resulting from all
the messages in all the message paths eventually result in
the generation of the complete EVAG.

We use state machines from the video store example to
illustrate the steps in our approach. The state machines de-
scribing the behavior of Copy and MembershipAccount are
shown in Figures 6 and 7 respectively. Figure 8 shows the
EVAG that is obtained from the VAG in Figure 3.

3.1. Transition Selection

Transition selection for a message refers to the process of
identifying transitions that the message can fire in the state
machine of its recipient object. We select the transitions that
are valid for the message in the context of the path under
consideration. In the following steps, we describe how we
identify such valid transitions.

Step 1: Consider a path � �����	��
��
���
��������� . Sup-
pose that we need to select the transitions for some ��� in
the path. For the first message, ��� , in the path, the target
object can be at any state before � � was sent. Therefore,
we select any transition fired by � � from any state in the
state machine.

For all other � � , where ��� ����� , we identify all the states
that can result from ������� in the state machine of the target
object of ��� . We select all the transitions fired by � � from
those states.

Consider, for example, message 2 (updateDues())
during the execution of the path 1-2-3-4-5-6-7-8-9, in the
sequence diagram in Figure 2. The target of message 2 is
account, an instance of MembershipAccount. Just be-
fore message 2 is sent, !#"
"�$&%('*) can only be in the Active
state. This is because Active is the only state where the
event updateDues() is legal and the preceding message,
returnRental() (message 1), does not affect the state
of the !+"�"
$&%('*) object. In the state machine of Member-
shipAccount in Figure 2, there are three transitions fired as
a result of the message updateDues() from the Active
state. They are ,-! and ,/. . We select both the transitions.

If message � �102� exists, it can impose additional con-
straints for selecting transitions. We use the constraints to
further filter the set of transitions selected in step 1. We con-
sider two types of relationships that message � � may have
with � �304� . In both cases, the target object of � �302� must be
state-dependent and ���102� must fire some transition in the
target objects’ state machine. We now describe the steps for
selecting transitions in the two cases.

Step 2: The target object of � � is the source of � �102� .

setForSale()

sell()

<<destroy>>

Sold

Tq

exists(v:Reservation|v.state=#Pending)]/self.reservation.expire()

rent(r1)

OnHoldForRent

ForSale Rented

<<new>> cancelReservation()[not self.title.reservation−>
exists(v:Reservation|v.state=#Pending)]

holdExpire()[not self.title.reservation−>

Tp

returnIt()[self.title.reservation
−>exists(v:Reservation|v.state=#Pending)]
/self.title.oldestPending.copyAvailable(self);

rent(r2)/self.reservation.fulfill(r2);

cancelReservation() [self.title.
reservation−>exists(v:Reservation|

v.state=#Pending)]

returnIt()[not self.title.reservation−>
exists(v:Reservation|v.state=#Pending)]

/self.reservation.expire()
−>exists(v:Reservation|v.state=#Pending)]

holdExpire()[self.title.reservation

Tm

Figure 6. State Machine for the Copy Class from Briand et al. [3]

Terminated

<<destroy>>

Overdue

<<new>>

Active Ta

updateDues()

[self.rentals.exists−>
updateDues()

/renatl.returnCopy()
returnRental(rental)

[self.rentals.size < maxRentals]
/rental.rentCopy()

addRental(rental)

Tb
(r:Rental|r.timeSinceHeld > r.maxHoldTime)]

[self.rentals.exists−>

Tc
(r:Rental|r.timeSinceHeld > r.maxHoldTime)]

Td
returnRental(rental)
[rental.timeSinceHeld>
rental.maxHoldTime and

Te
returnRental(rental)

[not rental.timeSinceHeld> rental.maxHoldTime or
self.rentals−>exists(r:Rental| not r = rental

and r.timeSinceHeld > r.maxHoldTime)]

terminate[self.rentals.size = 0]

not self.rentals−>exists(r:Rental| not r = rental
and r.timeSinceHeld > r.maxHoldTime)]

/rental.returnCopy()

/rental.returnCopy()

Figure 7. State Machine for the MembershipAccount Class

Thus, the operations resulting from � � and � �102� have a
caller-callee relationship. The operation invoked as a result
of � � results in the sending of � �102� .

We examine the state machine of the target object of � � .
We select the transitions occurring as a result of � � accord-
ing to step 1. We filter the set of transitions by selecting
only those that generate � �102� as an action.

For example, consider the pair of consecutive messages,
returnRental() and returnCopy(), in the path, 1-
2-3-4-5-6-7-8-9, in the sequence diagram in Figure 2. The
operation, returnRental(), calls returnCopy(),
and thus the messages have a caller-callee relationship. The
target object of returnRental() is !+"�"�$&%5'*) . From the
state machine in Figure 7, we find that during the execu-
tion of the message path and just before the message re-
turnRental() is sent, !#"
"�$&%('*) can be in two states: Ac-
tive and Overdue. There are three transitions, ,-" , ,-6 , and
,-7 , from the states, Active and Overdue, that are fired
by the call returnRental(). We select these two tran-
sitions. Following step 2, we look for a call, return-
Copy(), as an action of some transition. We find that re-

turnCopy() is called as an action on all the transitions
that are fired by returnRental(). Therefore, all the
three transitions ,-" , ,-6 , and ,-7 are selected.

Step 3: The target objects of � � and � �302� are the same
irrespective of their source objects. The messages can be
the call events of two consecutive transitions in the state
machine of their target object. We select the transitions oc-
curring as a result of � � according to step 1. We filter the
transitions by selecting only those that are immediately fol-
lowed by a transition fired as a result of receiving � �102� .

The pair of consecutive messages, updateDues() and
returnRental() (messages 2 and 4), in the sequence
diagram in Figure 2 bears such a relationship because they
have the same target object, account. As illustrated in
Step 1, we select the transitions ,-! and ,/. for the message
updateDues(). Now we verify if the selected transitions
are followed by any transition fired by returnRental()
in the state machine of MembershipAccount class. We find
that ,-! is followed by ,-" and ,/. is followed by ,-7 in the in
Figure 7. Both ,-7 and ,-" are fired by returnRental().
Therefore, both ,/! and ,/. satisfy the condition described

in Step 3 and both of them are selected for the message
updateDues().

Subgraph
S

Subgraph
S

v

...

Effect
state = Overdue state = Active and ...

Condition
3b. return account.updateDues

and ...

 accuont.rentals.exists−>not accuont.rentals.exists−>

account.returnRental
Condition

state = Active and ...
Control Action

...

rental.timeSinceHeld>rental.maxHoldTime and
not account.rentals.exists−>

Condition
rental.returnCopy5

Control Action...

...

Control Action

Condition

...
state = Rented and ...

Effect
state = OnHold and ...

account.returnRental
Condition

state = Overdue and ...
Control Action

...

copy.title.reservations

r.state = Pending)
.exists−>(r:Reservation.exists−>(r:Reservation

r.state = Pending)

Subgraph
S

not account.rentals.exists(rental)

account.rentals.exists(rental)

videoStore.returnRental1.
Condition

Control Action
...

2a. account.updateDues
Condition

state = Active and ...
Control Action...

2b. account.updateDues
Condition

state = Active and ...
Control Action...

account.returnRental
Condition

state = Overdue and ...
Control Action

...

Control Action

Condition

...
state = Rented and ...

Effect
state = ForRent and ...

x

y

z

u

8a. return account.returnRental
Effect

state = Overdue and ... and ...

8b. return account.returnRental
Effect

state = Active

8c. return account.returnRental
Effect

state = Active and ...

4a. 4b. 4c.

6a. copy.returnIt 6b. copy.returnIt

7a. 7b.return copy.returnIt

3a. return account.updateDues

not copy.title.reservations w

return copy.returnIt

(r:Rental| r.timeSinceHeld > r.maxHoldTime)(r:Rental| r.timeSinceHeld > r.maxHoldTime)

and r.timeSinceHeld>r.maxHoldTime)
(r:Rental|not r = rental

and r.timeSinceHeld>r.maxHoldTime)

not rental.timeSinceHeld>rental.maxHoldTime or
 account.rentals.exists−>

(r:Rental|not r = Rental

Figure 8. Video System EVAG

3.2. Transition Inlining

Transition inlining refers to the process of expanding a
message node in a VAG to expose the transitions the mes-
sage can possibly fire. During this process, we inline the
transitions selected earlier into the corresponding VAG node
to construct the EVAG.

We illustrate transition inlining by taking an example
of a simple sequence diagram shown in Figure 9(a). Fig-
ure 10(a) shows a part of the VAG obtained from the se-
quence diagram and it contains the nodes for the message
� . It shows the node representing the message � along
with a predecessor node in the VAG. The call node is
followed by a subgraph containing all the VAG nodes repre-
senting messages that are directly or indirectly called by � .

m
y:Yx:X s1

s2

d1

d2

m[g1]

m[g2]

t1

t2...

(b) Selected transitions
from state machine model

(a) Partial sequence
model

Figure 9. Simple model

Condition

return m return m

predecessor

ag1 g2

y.state = d1 y.state = d2

Subgraph

y.state = s1 y.state = s2
Condition

EffectEffect

predecessor

Callee
Subgraph

Callee
Subgraph

Callee

(a) VAG (b) EVAG

b

1b. m1a. m
 m

return m

Figure 10. VAG and EVAG Obtained from Sim-
ple Model

The callee-subgraph is followed by the node representing
the return message of � .

Figure 9(b) shows two transitions that are selected for �
in the transition selection phase. The part of the EVAG ob-
tained by inlining the two selected transitions into the VAG
is shown in the Figure 10(b). The transformation consists
of three different steps.

Split the Call Node: For every transition) selected
for � , we make a copy of the call node of m. In the
Condition section of every copy of the call node we
add a constraint (object.state = StateName) us-
ing conjunction with the existing ones. The StateName
refers to the source state of the transition) to which the
copy of the call node corresponds. This condition specifies
that the target object must be in the state, StateName, in
order for the operation corresponding to � to be called on
it and also result in the firing of) . In this example, there are
two transitions and we generate two copies of the call node.

The generated copies of the call node are connected to
the predecessor node by introducing a control node ! , con-
necting the predecessor directly to ! and then creating edges
from ! to each of the call node copies. The edge from ! to
a call node copy is associated with the guard of the transi-
tion the call node copy corresponds to. In Figure 10(b), call
nodes 1a and 1b are created for transitions) � and)98 in Fig-
ure 9(b). The edges a---1a and a---1b are annotated
with guards :;� and : 8 of transitions) � and)98 respectively.

Split the Return Node: Similarly, we also split the
VAG node that represents the return message of the oper-

ation call. For every transition) selected for � , we make
a copy of the return node of � . In the Effect section of
every copy of the return node, we add a constraint (ob-
ject.state = StateName) as a conjunction of the
existing constraints. StateName refers to the destination
state of the transition) . The constraint specifies that the
target object must be in the state StateName after the op-
eration call fires the transition) and returns. Figure 10(b)
shows two copies of the return node for the two selected
transitions.

Duplicate the Callee Subgraph: To connect every pair
of corresponding copies of call and return nodes, we du-
plicate the callee subgraph and insert it between the nodes.
In this example, we generated two copies of the callee sub-
graph to connect the two pairs of call and return nodes.

We apply these rules to generate the EVAG in Figure 8
from the VAG in Figure 3. The ellipses in the nodes refer
to the constraints in the original VAG nodes, which were
copied to the corresponding EVAG nodes. The complete
constraint is not shown due to limited space. As described
earlier, we select the transitions ,-" , ,-6 and ,-7 for the
message returnRental(). To inline the transitions, we
make three copies of the original VAG call node of the mes-
sage account.returnRental(). The copies are 4a,
4b, and 4c, which represent calls to returnRental()
that fires transitions ,-7 , ,-" , and ,-6 respectively. The edge
from the predecessor to the call node copy is annotated with
the guard of the appropriate transition. For instance, the
edge z---4a is annotated with the guard of transition ,-7 .

Nodes 8a, 8b, and 8c represent the corresponding
copies of the return node for returnRental(). Each
call node copy is connected to its corresponding return node
copy by inserting a duplicated callee subgraph, < , of the
message returnRental(). The conditions of the call
node copies and the effects of the return node copies are
augmented with the state constraints for the appropriate
source and destination states.

3.3 Generating Test Inputs

Once we generate the EVAGs, we solve the path con-
straints to generate test inputs for each EVAG path. To our
knowledge, there exists no constraint solver that can solve
OCL constraints directly. We use Alloy [8] and its analyzer
to specify and solve the path constraints. Alloy’s declara-
tion syntax makes it easier to specify the structural proper-
ties of object oriented systems. Corresponding to each path
we generate an Alloy constraint program from the classes
and their associated OCL invariants in the class diagram
and the constraints associated with the path. We convert
the classes to Alloy signatures, the associations to Alloy re-
lations and the sequence diagram lifelines to singleton sig-
natures. We convert all the OCL constraints to Alloy ex-

pressions according to the rules described in Anastasakis et
al. [2]. The solution provided by the Alloy analyzer gives
an object configuration, initial values of the attributes, and
the arguments of the first message. We generate a JUnit test
case from the solution. We build the test fixture by creat-
ing the object configuration and setting the attributes as ob-
tained from the solution. The test case then calls the first op-
eration of the sequence diagram under test using the solved
values of the arguments. We transform the post-condition
of each system operation under test into a JUnit assert state-
ment and use this as our oracle.

Figure 11(a) illustrates a partial initial object configura-
tion obtained by solving the constraints of the VAG path
1-a-2-3-4-5-6-b-end in Figure 3. The VAG path is split into
12 possible execution paths in the EVAG in Figure 8. Fig-
ure 11(b) shows the object configuration obtained by solv-
ing the constraint along the EVAG path 1-x-y-2b-3b-z-4a-
5-w-6b-7b-u-8a-v-end. The object configuration contains
an additional Rental instance, rental1, which is over-
due (i.e., timeSinceHold > maxHoldtime) for the
account. This satisfies the condition on the edge y---2b,
thereby firing transition ,/. in the state machine of Member-
shipAccount. It also contains a Reservation object reser-
vation, in the Pending state. This enables the condition
on the edge w---6b, thereby firing transition , � , in the
state machine of class Copy in Figure 6.

title: Title

account:
MembershipAccount copy : Copy account:

MembershipAccount
timeSinceHeld = 8
maxHoldTime = 4

rental1 : Rental

title: Title
reservation:
Reservation

state = Pending

rental : Rental

copy : Copy

rental : Rental
rentals

rentedCopy

title

copies

rentals

rentals

rentedCopy

copies

(b) EVAG Test Case(a) VAG Test Case

Figure 11. Partial Object Configurations

The all-EVAG-path coverage criterion subsumes the all-
VAG-path coverage criterion. A VAG test input executing a
message that fires multiple transitions will always fire some
transition. For every such VAG test input, there is always an
EVAG test input that is designed to fire the same transition.

3.4 Automation of the Approach

The approach is currently being implemented in a pro-
totype tool. Generating a VAG from a sequence diagram
involves converting control structures of sequence diagrams
to a control flow graph. This is analogous to generating pro-
gram control flow graphs from a high-level program, which
has been already studied in the area of compilers and soft-
ware engineering. VAG generation also involves deriving

the constraints for each message node. Constraints are di-
rectly obtained from the models or derived in a straightfor-
ward fashion. This part has been automated.

Generation of an EVAG from a VAG is fully automatable
as well and is currently work in progress. To extract the
transitions resulting from a message, we need to determine
the state of the target object immediately before the message
is sent to it. We can obtain this information by keeping track
of changes in the states of the target object while we tra-
verse a message sequence. Under certain conditions (steps
2 and 3 of transition selection), we also resolve different
types of relationships between two consecutive messages,
such as caller-callee relationship. Relationship information
can be automatically derived from the sequence diagrams.
Transition inlining consists of well-defined rules of struc-
tural modifications of VAG with the selected transitions.

Algorithms for calculating a set of complete paths in a
graph satisfying some coverage criterion already exist (see
for example, [12]). We implemented one algorithm for the
VAG and are now re-implementing it for the EVAG.

Generating JUnit test cases from an Alloy solution is
possible as long a standard naming convention for the get-
ter and setter methods of classes is followed. Creating the
object structure in a JUnit test case requires us to invoke
the getter and setter methods. Because the implementation
may not be ready when the tests are generated, we have to
assume that the implementation will follow some standard
naming conventions for the methods.

4. Evaluation

We performed a pilot study to evaluate our test input gen-
eration approach on an implementation of the video store
system. The system manages copies of videos for different
titles. It also allows customers to create membership ac-
counts. Customers having membership accounts can rent or
return copies of videos and also make reservations for video
titles that do not have an immediately available copy. Mem-
bers can rent up to a certain maximum number of copies.
Every rental has a due date, and if a member possessing a
rental does not return it by the due date, the corresponding
account becomes overdue. With an overdue account, one
cannot rent any more copies.

We designed the system with nine classes: Title,
Copy, Reservation, MembershipAccount, Rental, Customer,
Rental, VideoStore, and VideoStoreAdministration. We
created four sequence diagrams, each elaborating a sys-
tem operation that represents a critical use case of the
system. The system operations are makeReserva-
tion(), cancelReservation(), rentCopy() and
returnRental(). We modeled the behavior of the
classes Copy, Reservation and MembershipAc-
count as finite state machines.

Our implementation conforms to the design models we
created. The implementations of the system operations fol-
low the call sequences modeled in their respective sequence
diagrams. We implemented the state-dependent behavior
of Copy, Reservation and MembershipAccount as transition
tables of their respective state machines, using conditional
statements. The implementation of the domain layer of the
system has a total of 863 lines of code.

We generated four VAGs from the sequence diagrams.
We selected and inlined transitions from the three state ma-
chines into the VAGs to generate four EVAGs. For each
of the EVAG and VAG paths we transform the path con-
straints into an Alloy constraint program. Some paths did
not produce any test inputs because of inconsistent path
constraints. This happened when path edges were associ-
ated with guard conditions that were inconsistent. Other-
wise, there were no constraints that were not solvable by
the Alloy analyzer. We obtained 31 test inputs, 12 from the
VAG paths and 19 from the EVAG paths.

We used MuJava [10], an automated mutation system for
Java programs, to generate mutants of our system and exe-
cute our tests on those mutants. We set up MuJava to apply
all the mutation operators it supports. MuJava generated
179 mutants by applying the following class-level and tradi-
tional mutation operators. The description of the operators
is taken from Ma et al. [10].

1. JDC: Java-supported default constructor creation.
2. PRV: Reference assignment with other comparable

variable.
3. EAM: Accessor method change
4. JID: Member variable initialization deletion.
5. JTD: this keyword deletion.
6. JTI: this keyword insertion.
7. JSI: static modifier insertion.
8. ROR: Relational operator replacement.
9. COR: Conditional operator replacement.

10. COD: Conditional operator deletion.
11. COI: Conditional operator insertion.
12. LOI: Logical operator insertion.
13. AOIU: Unary arithmetic operator insertion.
14. AOIS: Short-cut arithmetic operator insertion.

Table 1 summarizes the results we obtained. For ev-
ery mutation operator, all the mutants that are killed by
VAG test inputs are also killed by EVAG test inputs. Ta-
ble 1 shows that EVAG test inputs is considerably more
effective than VAG test inputs in killing the mutants that
are generated by mutating conditional, relational and logi-
cal operators (ROR, COR, COD, COI, and LOI). Many of
these operators appear in the code that checks the transi-
tion guard conditions in the implementation of the different
state machines. For a message that fires multiple transitions
in a state machine, VAG test inputs executing that message

Table 1. Results of Mutation Analysis
Mutation
Operator

Total Num-
ber of Mu-
tants

Mutants
Killed by
VAG Test
Inputs

Mutants
Killed by
EVAG Test
Inputs

JDC 1 1 1
PRV 1 1 1
EAM 5 1 4
JID 1 0 0
JTD 3 2 2
JTI 3 2 2
JSI 18 7 9
ROR 28 16 24
COR 10 0 7
COD 6 2 5
COI 28 15 26
LOI 14 8 10
AOIU 9 6 7
AOIS 52 12 14
Total 179 73 (40.8%) 112 (62.6%)

cause only one of the many transitions to fire. EVAG test
inputs result in firing all the transitions for such a message.
The EVAG test inputs cover 26 out of the 33 transitions in
the state machines while the VAG inputs cover 14 of them.
This is one of the reasons why the EVAG test inputs are
more effective in killing the mutants that target those tran-
sition guards.

For class-level mutation operators (JDC, PRV, EAM,
JID, JTD, JTI, JSI), EVAG test inputs killed more mutants
generated by some operators (EAM and JSI) than VAG test
inputs. This happened because EVAG test inputs achieved
higher coverage of class associations, attributes and meth-
ods. For the mutation operator JSI, although EVAG-based
testing was more effective, both the test sets failed to kill
many of the mutants. JSI mutates a class by declaring its
attributes static. We can kill such mutants in a test case
if we consider multiple instances of the class. However,
the constraint solver created a single instance each for some
of the classes. Therefore, JSI mutations applied to those
classes remained alive after both test sets. EVAG paths
sometimes resulted in more objects in the initial object con-
figuration than VAG paths due to the additional constraints
derived from the transition guards. This is the reason why
some JSI mutations were killed by EVAG test inputs but not
by VAG test inputs.

Both VAG and EVAG test inputs failed to kill most of
the mutants that were generated by the arithmetic opera-
tor insertion (AOIS). We explain the reason with a concrete
example. In our sequence diagrams, we have instances of
conditional expressions that involve comparison of two in-
teger variables, such as timeSinceHeld > maxHold-
Time. While generating mutants from the implementation,

AOIS arbitrarily applied arithmetic operators on the vari-
ables to generate mutants such as (timeSinceHeld >
--maxHoldTime). When we solved the path constraints
that contain the condition (timeSinceHeld > max-
HoldTime), the constraint solver generated solutions by
assigning values to the variables timeSinceHeld and
maxHoldTime, so that the condition was satisfied. To
kill such a mutant, we need close values for the variables
timeSinceHeld and maxHoldTime (values differing
by 1 in this case). However, the constraint solver generated
widely separated values for the variables. Therefore, the in-
sertion of arithmetic operators did not alter the value of the
comparison and our tests failed to kill the mutants.

As explained in the previous example, given the same set
of constraints, the effectiveness of our test inputs depends
on the solution produced by the constraint solver. The so-
lution that the Alloy solver produces is not always the same
for the same constraint program. Also, to avoid large ini-
tial object configurations, we solved the constraints with the
lowest bounds for the number of objects required to satisfy
the constraints. We determine the lowest bounds by manual
inspection of the constraints. The number used in the Al-
loy solver could affect the actual paths executed in the code
because the number of objects can affect certain conditions
and transition guards. Depending on which paths are exe-
cuted in the code, certain faults may or may not be revealed.

5. Related Work

Abdurazik and Offutt [1] use collaboration diagrams for
both static checking and test generation. They define a test
criterion that requires all the messages in collaboration dia-
grams to be sent at least once.

Offutt and Abdurazik [13] describe a test generation ap-
proach based on UML state machines. They present algo-
rithms to generate test inputs based on transition coverage,
transition pair coverage and full-predicate coverage criteria.

Pilskalns et al. [14] propose a framework for generating
test inputs by combining class diagrams and sequence dia-
grams. They convert each sequence diagram into a directed
acyclic graph called OMDAG, which models the control
flow of operation calls in the sequence diagram. They
also construct an Object-Method Execution Table to cap-
ture method call execution sequences for each test case.

Lugato et al. [9] present the tool AGATHA, which vali-
dates specifications described by UML state machines and
generates test cases from them as well. AGATHA val-
idates specifications using exhaustive symbolic path cov-
erage. Like our approach, it also generates test cases for
symbolic paths by constraint solving. However, unlike
AGATHA’s exhaustive path coverage approach, we iden-
tify and test the state machines based on critical scenarios
determined from the sequence diagrams.

Hartmann et al. [7] proposed an approach to generating
test inputs from UML state machines that model the be-
havior of distributed component-based applications. State
machines of individual components are combined and then
used to build a test design, which identifies behavioral
equivalence classes within the structure of the model. The
test design is used to generate test cases.

Naslavsky et al. [11] use sequence diagrams to generate
test inputs. A control-flow representation is used along with
domain analysis of the parameters of the sequence diagram.

Briand et al. [5] proposed an approach to generate con-
straints on test data for testing a transition sequence selected
from a state machine. From the transition sequence under
test, they build a graph structure called Invocation Sequence
Tree (IST). The authors use the IST structure to derive the
test constraints that must by satisfied by any test input that
executes the transition sequence under test.

All the above approaches use only one kind of behavioral
UML model for test generation, either sequence diagrams
or state machines. Our approach is novel in the sense that
we combine the information from two types of behavioral
models for the purposes of test input generation.

Briand et al. [4] present a system test methodology,
TOTEM, to generate test requirements from UML use case
diagrams, sequence diagrams and class diagrams. This is
another example where models of multiple types are used
just like ours, except that we are using more detailed state
information when available.

6. Conclusions and Future Work

We proposed an approach for generating an EVAG struc-
ture that combines information from UML sequence and
state machine models to generate test inputs. The pilot
study showed that our approach improved test effectiveness
by using more precise information about the effects of mes-
sage sequences from state machine models.

The pilot study described in this paper is the beginning
of a large scale validation activity to investigate the effec-
tiveness of the approach. We will evaluate the cost of test
input generation using our approach. We will extend our ap-
proach in order to support a wider range of UML features.
In this work we assumed that all events in a state machine
are call events. The presence of change events that fire when
a boolean predicate becomes true poses a new challenge be-
cause a message can fire a transition and as a side effect can
also enable the predicate of another change event. More-
over, we have only focused on synchronous operation calls
in sequence diagrams. We will investigate other types of
messages, especially asynchronous messages. We will also
compare the cost and effectiveness of our approach with
state machine based approaches.

References

[1] A. Abdurazik and A. J. Offutt. Using UML collaboration
diagrams for static checking and test generation. In Pro-
ceedings of the 3rd International Conference on the UML,
York, UK, October 2-6, 2000, volume 1939 of LNCS, pages
383–395. Springer, 2000.

[2] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.
Uml2alloy: A challenging model transformation. In Pro-
ceedings of the 10th International Model Driven Engineer-
ing Languages and Systems, Nashville, USA, 2007, pages
436–450, 2007.

[3] A. Andrews, R. B. France, S. Ghosh, and G. Craig. Test
Adequacy Criteria for UML Design Models. Journal of
Software Testing, Verification and Reliability, 13(2):95–127,
April-June 2003.

[4] L. Briand and Y. Labiche. A UML-based approach to system
testing. In Proceedings of the 4th International Conference
on the UML, pages 194–208, Toronto, Ontario, Canada, oct
2001.

[5] L. C. Briand, Y. Labiche, and J. Cui. Automated support for
deriving test requirements from UML statecharts. Software
and System Modeling, 4(4):399–423, 2005.

[6] T. Dinh-Trong, S. Ghosh, and R. France. A Systematic Ap-
proach to Generate Inputs to Test UML Design Models. In
Proceedings of the 17th IEEE International Symposium on
Software Reliability Engineering, pages 95–104, Raleigh,
NC, November 2006.

[7] J. Hartmann, C. Imoberdorf, and M. Meisinger. UML-
Based Integration Testing. In Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, pages 60–70, New York, NY, USA, 2000. ACM.

[8] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[9] D. Lugato, C. Bigot, Y. Valot, J.-P. Gallois, S. Gérard, and
F. Terrier. Validation and Automatic Test Generation on
UML Models: the AGATHA Approach. International Jour-
nal on Software Tools for Technology Transfer, 5(2):124–
139, 2004.

[10] Y. S. Ma, J. Offutt, and Y. R. Kwon. “MuJava: An Auto-
mated Class Mutation System”. Journal of Software Testing,
Verification and Reliability, 15(2):97–133, June 2005.

[11] L. Naslavsky, H. Ziv, and D. J. Richardson. Towards trace-
ability of model-based testing artifacts. In A-MOST ’07:
Proceedings of the 3rd International Workshop on Advances
in Model-based Testing, pages 105–114, New York, NY,
USA, 2007. ACM.

[12] S. C. Ntafos and S. L. Hakimi. On path cover problems in
digraphs and applications to program testing. IEEE Trans-
actions on Software Engineering, 5(5):520–529, 1979.

[13] A. J. Offutt and A. Abdurazik. Generating tests from UML
specifications. In Proceedings of the 2nd International Con-
ference on the UML, Fort Collins, CO, USA, October 28-30,
1999, volume 1723 of LNCS, pages 416–429, 1999.

[14] O. Pilskalns, A. Andrews, A. Knight, S. Ghosh, and R. B.
France. Testing UML Designs. Information and Software
Technology, 49(8):892–912, 2007.

