An Aspect-Oriented Approach to Developing
Middleware-based Applications

Sudipto Ghosh, Brahmila Kamalakar
Computer Science Department
Colorado State University
Fort Collins, CO 80523, USA

{ghosh, brahmila}@cs.colostate.edu

ABSTRACT

Middleware technologies provide features such as con-
nectivity and dependability (e.g., security and fault tol-
erance services). A major challenge to software de-
velopment organizations is the complexity of creating
and evolving distributed systems resulting from the tan-
gling of middleware-specific functionality with core busi-
ness functionality in system designs. We present an
MDA-compliant middleware transparent software devel-
opment approach in which application designs are devel-
oped independently of the middleware platform. Mid-
dleware features are encapsulated as aspects and woven
with artifacts that realize core functionality. Our ap-
proach enables easy replacement of one dependability
mechanism by another, and easy migration from one
middleware platform to another. The approach also
promotes reuse of aspects in multiple applications.

Keywords

MDA, OMG, UML, aspect-oriented software develop-
ment, distributed computing, modeling and meta-model-
ing, middleware technologies.

1. INTRODUCTION

The rapid growth of the Internet has resulted in wide-
spread use of distributed applications that communicate
with the help of middleware. Middleware platforms pro-
vide features and services that facilitate development of
distributed applications. However, such features are of-
ten scattered across and tangled with modules providing
core functionality. Using current software development
techniques, application design and implementation be-
comes tightly coupled with the specific middleware tech-
nology that is incorporated into the application. Even

OOPSLA and GPCE Workshop on Model Driven Software Development

2004 Vancouver, Canada

though certain middleware services may be provided as
components (e.g., connectivity) these components may
be crosscut by other middleware features (e.g., security,
events and transactions). The crosscutting nature of
middleware makes understanding, analyzing and chang-
ing middleware features difficult. Since businesses need
to keep up with advances in middleware technology,
entire applications need to be redesigned and reimple-
mented to migrate from one middleware technology to
another.

We propose a middleware transparent software devel-
opment (MTSD) approach that decouples the design
of middleware specific features from the design of core
business functionality. The approach uses aspect-oriented
modeling and programming techniques because they pro-
vide the necessary constructs for encapsulating cross-
cutting design and code elements. Software developers
design primary models of the core application function-
ality. Other features of the application that will be re-
alized as middleware services are modeled separately as
aspects and seamlessly woven into the application later
in the development process. MTSD supports incorpora-
tion of new dependability mechanisms and middleware
features. It enables reuse of high-level application de-
sign and architectures that are independent of the mid-
dleware. MTSD supports the OMG’s MDA initiative.
In this paper, we present an overview of the MTSD ap-
proach.

2. RELATED WORK

Aspect-oriented software development [9] has introduced
aspect languages like Aspect] and Aspect C# which
help in abstracting and encapsulating crosscutting con-
cerns at the programming level. Simmonds et al. [12]
captured Jini middleware details in the form of code as-
pects. Pichler et al. [10] demonstrated the use of aspects
with the Enterprise Java Beans container architecture.
Zhang and Jacobsen [13] analyzed the use of aspects
in middleware architectures and quantified crosscutting
concerns in the implementations of middleware applica-
tions.

Bussard [1] described the encapsulation of CORBA fea-

tures as code aspects and proposed the creation of a
library of aspects for different CORBA features to ease
the development of CORBA applications. Hunleth [5]
proposed the creation of an Aspect-IDL for CORBA
to support several new types of AspectJ introductions:
interface method and field, interface, super class, struc-
ture field, oneway specifier, and IDL typedefs and enu-
merations.

The MDA initiative [11] employs design level abstrac-
tion to describe software systems. In the MDA ap-
proach, the Platform Independent Model (PIM) cap-
tures the functionality and behavior of the application
free from the middleware technology. Integration of
middleware technology specific mappings with the PIMs
yields the Platform Specific Models (PSM).

Clarke et al. [2] used the subject-oriented modeling ap-
proach to capture reusable patterns of cross-cutting be-
havior at the design level. Each requirement is treated
as a separate design subject. Design subjects are com-
posed to obtain the complete system design.

France et al. [4] propose an aspect-oriented modeling
(AOM) approach in which software designers specify

primary models (base functionality), aspect models (non-

orthogonal crosscutting functionality for dependability)
and composition directives to obtain the integrated de-
sign. Cross-cutting design concerns are captured in as-
pect models using the Role-Based Metamodeling Lan-
guage (RBML) [3]. We adopt the AOM approach for
the development of middleware-based applications.

3. MTSD APPROACH

The MTSD approach is illustrated in Figure 1. In this
approach, the application developer models the appli-
cation free from middleware concerns in a Middleware
Transparent Design (MTD) model. The MTD model
contains UML class diagrams and interaction diagrams.
Other views (e.g., statecharts and activity diagrams)
may also be used. In the MDA terminology, the MTD
is the PIM.

Middleware specific features are localized in aspect mod-
els. Generic aspect models in the form of aspect libraries
are provided by the middleware platform vendor. These
models are described using the RBML [3] in terms of
static and interaction pattern specifications. There is
one aspect model for each feature (e.g., connectivity,
directory service, security, and replication).

The application developer specifies the bindings from
the generic aspect models to the application context
and generates the context-specific aspect models. The
generation can be automated in part; it still requires
binding information as input from the application de-
veloper.

These models are implemented in an aspect language
(currently in AspectJ). The developer transforms an as-

Generic Generic Generic
Middleware| | Middleware Middleware
Aspect Aspect Aspect
Model - 1 Model -2 Model - n
MTD Bind Bind | - Bind
Model
Context Context Context
Specific Specific Specific
Middleware| | Middleware Middleware
Aspect Aspect Aspect
Implement Model - 1 Model -2 Model —n
MTD Map Map Map

Implementation

|
Code Code Code
Enhance Aspect — 1 Aspect — 2 Aspect —n

Weave

Enhanced

Implementation

Complete
Application

Figure 1: The MTSD Approach.

pect model to code aspects with the help of mappings
that convert aspect model constructs to AspectJ con-
structs. This task may also require input from the ap-
plication developer. For example, for the authorization
aspect, we need to provide information in the form of
application-specific role names and their access privi-
leges.

The application developer implements the MTD model.
The MTD implementation then needs to be converted
into an Enhanced MTD implementation to make it ready
for aspect weaving for a specific middleware platform.
Different middleware platforms need different applica-
tion architectures. For example, Jini requires that a
proxy object be implemented by the developer. The
code for the proxy object is usually written as a Java
inner class. Java RMI requires proxy stubs to be au-
tomatically generated from the server implementation.
The client implementation in the MTD does not pos-
sess knowledge about the nature of proxies and assumes
that the server object is local. Thus, the client (and the
server in some cases) may need to be modified to adapt
them to the middleware platform used in the applica-
tion. The enhanced MTD implementation is woven with
code aspects using the AspectJ compiler.

The generic aspect models can be reused to develop
other applications. The mappings from the context-
specific aspect models to code aspects in AspectJ are
described in terms of generic aspect models and AspectJ
constructs. Thus, these mappings can also be imple-

mented in a tool and reused. The mappings defined to
enhance an MTD implementation and convert it into a
form required for weaving are also reusable. The MTD
models and implementations can be reused with aspects
for other middleware technologies when migrating from
one middleware technology to another.

4. CURRENT RESULTS

In our work we have used of the MTSD approach for
incorporating remote connectivity, security, and trans-
action features into CORBA-based distributed applica-
tions [6, 7, 8]. The CORBA features were treated as
reusable patterns for use with any application. The
core designs for these features were specified using the
RBML as generic aspect models independent of the ap-
plication context. RBML static pattern specifications
were used to specify the static structure of the feature
and RBML interaction pattern specifications were used
to specify the behavior. The generic aspect models were
mapped to the application context and transformed to
AspectJ code using the transformations developed as a
part of this research. The code aspects were woven with
the MTD implementation after making the required en-
hancements to ensure CORBA compliance.

The bindings for obtaining the context-specific diagram
elements such as classes, interfaces, operations, message
parameters, return types and attributes from the corre-
sponding roles in the generic aspect model are specified
by the application developer. In some cases, the appli-
cation developer needs to specify the actual values cor-
responding to certain message parameters in the generic
aspect models. For example, in authorization, the ap-
plication developer needs to specify the value of
SERVER_QOP_CONFIG_TYPE that is needed to create a new
policy to override default policies.

The types of bindings required for CORBA are, stamp
out, bind, generate(stamp out) and generate(bind). Gen-
erate(bind) and generate(stamp out) are the bindings
that are applied to obtain the context specific diagram
elements corresponding to the elements that are gener-
ated on IDL compilation. These two types of bindings
will not be applicable to other middleware technologies
because IDL compilation is specific to CORBA. Hence,
the types of bindings may differ with the type of mid-
dleware used.

The approach allows multiple features to be incorpo-
rated into the application without having to deal with
one complex design model that realizes all the features.
This is because each context-specific aspect model is
separately transformed to code and then woven with
the MTD implementation.

The context-specific aspect model for a particular fea-
ture may constitute context-specific aspect models that
conform to more than one pattern. For example, the
context-specific class diagram for connectivity in a Bank
application [6] used in the transaction service illustra-

tion was obtained by composing the context-specific class
diagrams corresponding to the Naming Service with In-
heritance and the ServiceCreator-InType patterns. The
context-specific interaction diagrams corresponding to
both the patterns were used to describe the context-
specific interaction diagrams of the connectivity feature.
Thus, there is one context-specific aspect model per
middleware feature.

AspectJ transformations to map the context-specific as-
pect models to AspectJ code were described in terms
of AspectJ language constructs and the generic aspect
models pertaining to the middleware feature. AspectJ

offers the constructs necessary for transforming the CORBA

aspect models to code. The code aspects were created
using the AspectJ transformations and context-specific
aspect models. Aspect ordering had to be ensured when
multiple CORBA features were incorporated into the
application. For example, authentication is performed
before remote connectivity and authorization. The as-
pect ordering was ensured using aspect precedence, an
aspectJ construct, in the aspect code. The precedence
was specified in cases where multiple advices were de-
fined on the same pointcut. Different aspect prece-
dences are required for different combinations of middle-
ware aspects (e.g., authentication and remote connec-
tivity, or authorization and remote connectivity) that
are woven with the application. The correct aspect
precedence has been worked out for the combination
of the features used in our work.

User-defined exceptions that need to be raised and han-
dled by a service method in an aspect are obtained from
the IDL specification of the method. Specific CORBA
exceptions that have to be handled in the aspect are
specified by the application developer. The application
developer defines the exception handling behavior.

Before the code aspects can be woven with the MTD
implementation, certain middleware feature-specific en-
hancements are necessary to be made to the MTD im-
plementation. The enhancements are needed for ensur-
ing the presence of the required pointcuts in the MTD
implementation for advices to take effect and for compli-
ance with the middleware technology. In some cases, the
MTD implementation enhancements are reusable with
different middleware feature mechanisms. For example,
connectivity using the IOR mechanism and the nam-
ing service with inheritance and tie require the same
MTD implementation enhancements. By studying the
enhancements required for various middleware features
and middleware technologies, the enhancements reusable
with different features and different middleware tech-
nologies can be determined. Construction of the server
and client objects has been used as the pointcut for
many of the advices. In the connectivity aspect, when
the ORB is initialized, the command-line arguments
have to be sent as parameter to the constructor. For
authentication, there is no need to send the command-
line arguments when the constructor is called. Hence,

the execution of the single argument constructor with
command-line arguments is used as the pointcut for
both the advices. By detailed observation, such mul-
tiple use pointcuts can be identified. The pointcuts de-
fined independent of the application architecture make
them reusable across applications.

Varying degree of dependence of the aspect code on the
application context was observed with different CORBA
features. For example, the naming service and the IOR
mechanism aspects are generic in nature. The naming
service aspects depend on the application context for
the service name and service object. The IOR mecha-
nism aspects depend on the application context for the
location of the IOR file and the service object. How-
ever, the transaction service code aspects depend on
the application context to a higher degree. For example,
the implementation of the Resource interface is depen-
dent on the application business functionality. Suitable
MTD implementation enhancements and input from the
application developer are needed to develop such as-
pects. Similarly, input from the application developer
is needed to implement operations such as the domain,
getRunAsRole, and getRequiredRoles in the authoriza-
tion aspect.

MTSD allows the reuse of the base application design
and implementation for introducing different middle-
ware features. For example, the Bank application that
was used to illustrate CORBA remote connectivity us-
ing OSAgent was reused in the CORBA authentication
and CORBA authorization illustrations. MTSD also al-
lows replacement of one middleware feature mechanism
with another, thereby making the middleware feature
mechanism reusable. For example, the IOR connec-
tivity feature mechanism for remote connectivity was
replaced by naming service with inheritance in the Hel-
loWorld example. With MTSD, more than one middle-
ware feature may be incorporated into the same applica-
tion. This was demonstrated by incorporating naming
service with inheritance and transactions in the CORBA
transaction service illustration. The middleware feature
aspects also can be reused in multiple applications. This
was demonstrated by reusing naming service with inher-
itance in the Bank example for CORBA transactions.
The transformations from context-specific aspect mod-
els to AspectJ code are described in terms of generic as-
pect models and AspectJ constructs, thus making them
reusable.

S. FUTURE WORK

There are several areas of research that can be investi-
gated in the MTSD context.

5.1 Applying MTSD to CORBA Features

In our work, secure CORBA applications and CORBA
transaction-based applications were developed using the
MTSD approach. The next step is to apply the ap-
proach to other CORBA features such as trader ser-
vice, interface repository, dynamic invocation interface,

dynamic skeleton interface, event service, and fault tol-
erance. Aspect models may be developed for fault tol-
erance mechanisms using object replication. The fault-
tolerance aspects are responsible for maintaining replica
consistency, replication transparency and failure trans-
parency. There are two types of fault-tolerance mech-
anisms: those that are provided by the middleware in-
frastructure, and those that are provided by the appli-
cation. In both cases, the MTSD approach can provide
the advantages resulting from the decoupled design of
business functionality and fault tolerance concerns. In
infrastructure-controlled fault tolerance, the aspect im-
plementations will utilize the API and services provided
by the middleware platform vendor. In application-
controlled fault tolerance, the aspect implementations
will be developed by the application developer.

The MTSD approach has to be applied to different ven-
dor implementations of CORBA (e.g., IONA and BEA).
The MTSD approach needs to be applied to C++ im-
plementations of CORBA using AspectC++.

The application architecture in which one CORBA ser-
vice is created and activated by another CORBA ser-
vice, which in turn is activated by the Server, conforms
to the ServiceCreator-InType pattern. An instance of
this pattern was found in the Bank application, where
the Bank service created and activated accounts. The
Bank service was created and activated by the Server.
There may be other patterns for other application ar-
chitectures present in CORBA applications. These pat-
terns need to be identified.

CORBA requires the declaration of the service inter-
faces in an IDL format. Hence, the Java interface writ-
ten by the developer needs to be converted to the CORBA
IDL format. An IDL file corresponding to the Java in-
terface may be generated automatically with the help
of a tool. Such a tool needs to be developed.

5.2 Applying MTSD to Other Middleware
The MTSD approach needs to be applied to other mid-
dleware technologies such as Java RMI, Jini, SOAP-
RPC, and EJB. This will help in characterizing prop-
erties of middleware features that make them isolatable
as aspects. This will also help in evaluating the MTSD
approach in terms of the ease of migrating applications
from one middleware technology to another.

The aspect models developed in our work are CORBA-
specific. Another step may need to be introduced in the
MTSD process, which specifies the middleware feature
(e.g., security and transactions) as aspect models inde-
pendent of the middleware technology (e.g., CORBA
and Jini). These aspect models may then be refined
to aspect models specific to the required middleware
technology and implementation (e.g., JacORB and Vis-
ibroker for CORBA).

5.3 A Variant of the MTSD Approach

In our work, the generic aspect model for a particular
middleware feature is mapped to the application con-
text using the bindings specified by the application de-
veloper. In the next step, the context specific aspect
models are mapped to code aspects in AspectJ, using
the transformations identified in this research. Alterna-
tively, the generic aspect models may be mapped to code
aspects in AspectJ and then later mapped to the appli-
cation context. Abstract aspects and abstract pointcuts
may be used to map the generic models to code. The
MTSD approach may be tried out for this method of
transforming the aspect models to code.

5.4 Formalization and Tool Support
Currently, the transformations from the aspect mod-
els to code are not formally defined. A specification
language with formal semantics needs to be developed
for describing the transformations. The transformations
specified in a formal language will be useful for testing
the conformance of the aspect code that is generated
using the transformations.

The approach may be implemented in a toolset. A tool
needs to be developed for applying the context-specific
bindings specified as input from the application devel-
oper to obtain context-specific aspect models from the
generic aspect models in an automated manner. An-
other tool can automate the development of code as-
pects from the context-specific aspect models using the
code transformations developed in this research.

5.5 Evaluation of the MTSD Approach

The MTSD approach needs to be applied to various
application architectures and the effect of using multiple
potentially conflicting aspects with one primary model
needs to be investigated. Resolving such conflicts by
preserving the properties of the aspects in the woven
code has to be studied.

An evaluation of the MTSD approach in terms of a cost-
benefit analysis can be conducted by developing dis-
tributed applications with and without using the MTSD
approach. The approach should be evaluated with the
model bindings and code transformations being applied
automatically with the help of a tool. The time and
effort required for applying the MTD implementation
enhancements for different middleware features have to
be measured.

Verification techniques to ensure that the woven code
actually preserves the specified properties of the aspects
have to be investigated. Validation techniques to ensure
the correctness of the generic aspect models, and the
context-specific aspect models obtained from the generic
models have to be developed.

6. REFERENCES

[1] L. Bussard. Towards a Pragmatic Composition
Model of CORBA Services Based on AspectJ. In

[2]

3l

[4]

[5]

[6]

[7]

(8]

[9]

[11]

[12]

Proceedings of ECOOP 2000 Workshop on
Aspects and Dimensions of Concerns, Sophia
Antipolis and Cannes, France, June 2000.

S. Clarke. Extending Standard UML with Model
Composition Semantics. Science of Computer
Programming, 44(1):71-100, July 2002.

R. France, D.-K. Kim, S. Ghosh, and E. Song. A
UML-based pattern specification technique. IEEE
Transactions on Software Engineering, 30(3),
March 2004.

R. B. France, I. Ray, G. Georg, and S. Ghosh. An
aspect-oriented approach to design modeling. To
be published in IEE Proceedings - Software,
Special Issue on Early Aspects: Aspect-Oriented
Regquirements Engineering and Architecture
Design, to appear, 2004.

F. Hunleth, R. Cytron, and C. Gill. Building
Customizable Middleware Using Aspect Oriented
Programming. In OOPSLA Workshop on
Advanced Separation of Concerns in
Object-Oriented Systems, Tampa, Florida, USA,
October 2001.

B. Kamalakar. Aspect-Oriented Development of
CORBA-based Applications. Master’s Thesis (in
preparation), Department of Computer Science,
Colorado State University, Fort Collins, Colorado,
USA, 2004.

B. Kamalakar and S. Ghosh. An Aspect-Oriented
Approach for Developing CORBA Applications.
Submitted to Information and Software
Technology. Available at http://www.cs.
colostate.edu/homes/ghosh/papers/ist.pdf,
2004.

B. Kamalakar, S. Ghosh, and P. Vile. Middleware
transparent development of dependable corba
applications. In 15th IEEE International
Symposium on Software Reliability Engineering,
page to appear, St. Malo, France, November 2004.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP ’01), pages 327-353, Budapest,
Hungary, June 2001.

R. Pichler, K. Ostermann, and M. Mezini. On
Aspectualizing Component Models. Software
Practice and Ezperience, 33(10):957-974, August
2003.

Richard Soley. MDA, An Introduction. URL
http://omg.org/mda/presentations.htm/, 2002.

D. Simmonds, S. Ghosh, and R. B. France.
Middleware Transparent Software Development
and the MDA. In UML 2003 Workshop on

[13]

SIVOES-MDA, to appear in Proceedings SIVOES
2003, Electronic Notes in Theoretical Computer
Science, Elsevier, San Francisco, CA, October
2003.

C. Zhang and H.-A. Jacobsen. Refactoring
Middleware with Aspects. IEEE Transactions on
Parallel and Distributed Systems,
14(11):1058-1073, November 2003.

