An MDA Framework for Middleware Transparent
Software Development & Quality of Service

Devon M. Simmonds, Sudipto Ghosh, Robert France

Computer Science Department
Colorado State University
Fort Collins, CO 80523
Phone: (970) 491-4608
FAX: (970) 491-2466
simmonds, ghosh, francelcs.colostate.edu
http://www.cs.colostate.edu/

Abstract. Software development is plagued by a number of perennial
problems. Chief among these is software complexity. Experts agree that
complexity is and will remain a serious problem for the foreseeable future.
One approach to mitigating complexity is to apply the old divide and conquer
concept by targeting arcas of software development where significant gains are
likely. One such area is distributed systems. A major source of complexity in
distributed systems stem from the fact that the development and evolution of
software arec generally coupled to continuously changing middleware
technologies. This coupling is undesirable because changes in the middleware
necessitates changes in the application with resulting constraints on the
portability, interoperability, reusability, and evolvability of systems. We
present a Model Driven Architecture (MDA) framework that reduces
complexity by decoupling application development from the target
middleware. The framework is designed to facilitate quality of service
specification.

1 Introduction

Distributed systems [1] are becoming the norm for modern industries, and from all
indications will continue to do so for the foresecable future. As softwarc spans the
globe, facilitated by the rapid growth of the Internet [2], distributed systems will
become even more complex. This complexity will be driven by a need to integrate
and expand application domains, and provide cross-platform and multi-middleware
functionality. Middleware is that most fundamental component of distributed
systems, the purposc of which is to make distributed systems programmable.
Unfortunately, the development and evolution of distributed systems are generally
coupled to continuously changing middleware technologics. This coupling is
undesirable because changes in the middleware necessitates changes in the
distributed system. This places unnecessary constraints on the portability,
interoperability, reusability, and evolvability of distributed systems. Middleware has
thus become a major source of complexity for distributed systems.



Among the tasks that distributed systems are required to do is that of accommodating
and amalgamating a varicty of potentially conflicting quality of service (QoS)
requirements for example performance versus security. QoS issues in distributed
systems have come into vogue with the advent of the web services revolution [3], [4].
As more services become available on the Internet, there is a growing demand for
mechanisms to assure the quality of the available services. From a simple
teleconference to a life-critical or business-critical Internet collaboration,
deterministic QoS are in demand. This paper addresses middleware transparent
software development (MTSD) and QoS in distributed systems, with emphasis on
MTSD.

1.1 Middleware Transparent Software Development

There are a variety of distributed middleware technologies, including CORBA [5],
COM [6], Jini [7], SOAP and .Net [8]. The purpose of middleware is to make
distributed systems programmable by hiding infrastructural details from the
application program. Infrastructural details include operating system, hardware, and
network specifics. The benefits of middleware include transparent access to
infrastructural details, a menu of standard services (e.g. security, transactions), and
transparent access to local, remote, and mobile resources. The term transparent
access as used in these examples, refer to the fact that infrastructural details are
hidden from the application, for example, resources can be moved within a system
without affecting the operations of users.. By contrast, in MTSD, the term transparent
refer to the entire middleware rather than to middleware services. In being consistent
with the Model Driven Architecture (MDA) [9], the fundamental philosophy of
MTSD is that distributed systems development should be completely ignorant of
middleware concerns, allowing any middleware to be chosen and integrated after the
system has been developed.

The MDA and related research, have convinced most that technological proliferation
is inescapable in this pluralistic and multi-paradigmatic era. If this is so, then a
consensus will not be achicved on the foundational components of distributed
systems including hardware platforms, operating systems, network protocols, and
programming languages [10]. The absence of MTSD result in many problems. First,
code, component, and application reuse are constrained; secondly, the desired levels
of portability and interoperability cannot be achieved; and finally, system
maintenance (corrective, adaptive, perfective, and preventive) becomes an even
greater challenge [11].

1.2 Quality of Service

One of the foundational pillars of this research is aspect-oriented software
development (AOSD) [12]. AOSD is a new development paradigm that emphasizes
the separation of concerns and the encapsulation of crosscutting concerns or aspects.
A crosscutting concern is one that is scattered across many elements in a model, but
achieves one purpose. For example, security-related concerns may be scattered across
many classes in a Java application. In this research, we assume that both middleware



concerns, and quality of service properties such as fault tolerance and performance
arc crosscutting concerns that can be modeled as aspects [13], [14]. While our
framework addresses both QoS and MTSD issues, this paper focuses mainly on
MTSD since this is where we have done most work to date. Our framework is
consistent with the MDA initiative making it both portable and adaptable.

QoS have become an important topic in distributed systems with the increase in web-
based services, and the growth in the embedded systems market [15]. Conceptually,
middleware provides a very attractive vehicle for the specification and composition
of QoS properties. Two main reasons for this are as follows [16]:

1. QoS specification at the middleware level have a neat conceptual fit with
transparencies already provided by the middleware such as access and location
transparencies, and will of necessity have to use many standard facilitics alrcady
provided by the middleware.

2. QoS requirements may conflict and would require trade-off analysis to determine
the best configuration of QoS properties that meet QoS goals. Having this analysis
in the middleware would simplify the software development process and facilitate
QoS reuse.

The remainder of the paper is organized as follows. In Section 2 we present the
MTSD framework. Then is Section 3 a description of our application of the
framework to distributed systems development using the Jini middleware is
presented. The paper is completed with Sections 4 and 5 which present our final
thoughts and conclusions respectively.

2 The MTSD Framework

The objective of the framework is to provide a middleware transparent software
development process that facilitates the specification and composition of QoS
properties. The framework is aspect-oriented in that both middleware and QoS
concerns are treated as crosscutting concerns and modeled as aspects. The framework
associates each client and server with a list of components (see Figure 1). The
remainder of this section serves to declincate the meaning and roles of these
components. These descriptions represent our vision of the roles of these components
since the QoS components are not yet implemented and others have been
implemented only partially.

1. PIM: The platform independent model of the application. The PIM is a generic
model designed independent of middleware concerns.

2. MFA: A collection of middleware functional aspects (MFA). These aspects
capture the middleware functional requirements for an application, for example,
leasing, event handling and transactions. These are called functional to
differentiate them from the QoS aspects (QoSA). MFAs are application
independent generic aspects.



PSM

PIM |—P» Application EPIM
Converter
MFA Aspect
Weaver
QOSA

Composition /

Directives

Fig. 1. MTSD and QoS Framework Component View

3. QoSA: A collection of middleware quality of service aspects, (QoSA), for example
fault-tolerance and security. QoSAs are generic aspects developed independent of
any application.

4. Converters - (application and aspect): The application converter contains
standardized mappings that transform platform independent models, to enhanced
platform independent models (EPIM). The aspect converter contains standardized
mappings that transforms generic aspects (MFA, QoSA) to application specific
aspects (EMFA, EQoSA). Separate converters are required for each middleware.
Converters perform architectural, design or code transformations to prepare a
generic model for middleware specific aspect weaving.

5. EPIM, EMFA, EQoSA: These arc the enhanced models. Independent models
(PIM, MFA, QoSA) are developed without regard for a target middleware (PIM),
or target application (MFA, QoSA), and normally have to be transformed before
aspect weaving is possible. An enhanced model is an independent model that has
been transformed to make it ready for aspect weaving. The enhanced middleware
functional aspects (EMFA), and the enhanced quality of service aspects (EqoSA),
arc application independent, so they are transformed by the aspect converter to
make them application specific.

6. Aspect Analyzer: The aspect analyzer contains standardized mappings to perform
aspect composition analysis, composition conflict resolution, and trade-off
analysis. Its role is mainly analytical. It outputs transformed models and
composition directives that are used by the aspect weaver.

7. Composition Directives: These are the logic and semantic statements gencrated by
the aspect analyzer. The directives are used by the weaver to control and guide the
weaving process.



8. APIM, AMFA, AQoSA: These arc the analyzed models. APIM means analyzed
platform independent model. AMFA means analyzed middleware functional
aspects, and AQoSA means analyzed quality of service aspects. These models are
analyzed for composition conflicts and QoS feasibility.

9. Aspect Weaver: The weaver uses the analyzed models and the composition
directives to produce the final platform specific model(PSM).

10. PSM: A platform specific model. This is the final and complete model output by
the framework with all the required middleware and QoS elements.

The following is a simplified linear design overview of the PSM generation process.
In this example we ignore QoS concerns.

1. Create the PIM for the application (server/client) — no middleware consideration
necessary.

2. Select the target middleware and create the middleware aspects (MFA).

3. Transform the application to make it ready for the target middleware. This
generates the EPIM.

4. Transform aspects (MFA) to make them ready for target application.

5. Weave the aspects (EMFA) into the application (EPIM) to produce the PSM.

3 Application: MTSD & Jini

To date most of the work we have done is with the Jini middleware. We have
developed a simple stock broker distributed application and used it to test our
application. The basic requirement of the application is the buying and selling of
stocks through the broker. Figure 2 shows the actual components that were integrated
to produce the final PSM. We did not consider aspect analysis or quality of service
aspects in these examples. The application was written in Java and Aspect] was used
as the aspect weaver. We followed the simplified design process presented earlier.
This requires us to develop the Jini converters and MFA as a one-time exercise, and
the PIM classes and interfaces for each required distributed application. These aside,
the process is completely automated.

4 Discussion

Research in technology independent software development is a relatively new
phenomena spearheaded by the OMG and their MDA initiative. A significant amount
of work is also being done in web services and embebbed systems. QoS related
rescarch are numerous and include [17]: Advanced Resecarch Laboratory at



Washington University St. Louis, British Telecom University Research Initiative at
Lancaster University, The Control, Management and Telemedia (COMET) Group at
Columbia University, Global Resource Management at SRI, Network Weather
Service at the University of California, San Diego, Quality of Service for Objects
(QuO) at BBN, and the MicroQoSCORBA Project at Washington State University.
AOSD has also spawned an exciting conglomorate of research projects [12], some of
which are related to middleware and transparency. For example, Bussard [18]
successfully encapsulated several CORBA services as aspects using Aspect] to make
CORBA programming transparent to programmers. Hunleth, Cytron and Gill [19]
suggest the creation of an AspectIDL for CORBA to complement the IDLs that are
now available for other languages. There are many other notable research efforts for
example [20].

Stock Broker Stock Broker

Interface PIM InterfacEPIM
Jini Stock Broker
Stock Broker Application Stock Broker PSM
Class PIM Converter Class EPIM

Aspect]
Compiler &

Service Proxy | Weaver

— Jini Aspect
Jini MFA Converter Jini Broker EMFA

Fig. 2. The Jini Stock Broker MTSD Project

5 Conclusion and Future Work

The MTSD and QoS framework we propose is expected to have a positive effect on
the automation of distributed systems development. MTSD will allow tools to
automatically customize applications for a specific middleware or platform. Many
other exciting possibilities, such as configuring an application to work with multiple
middleware are also on the horizon. In this paper we presented a framework for
middleware transparent software development and quality of service composition.
We used aspects to model middleware technologies and decoupled the design of an
application from the target middleware. In the future we expect to apply the
framework to other middleware technologics such as CORBA, SOAP, .and Net. In
addition we also expect to implement the QoS and aspect analysis components of the
framework. The framework facilitates the static analysis of design models. We
believe that MTSD will make it possible to seamlessly migrate applications between



middleware and to compose applications to serve the requirements of different
middleware concurrently.

References

1. George Coulouris, Jean Dollimore, and Tim Kindberg. 2001. Distributed Systems Concepts

and Design. 3rd Edition, Addison-Wesley.

. CenterSpan. Internet Tutorial.. URL: http://www.centerspan.org/tutorial/net.htm

. InfoEther LLC. White Paper: Enabling the Web Services Revolution: Leveraging the

Transforming Power of the Personal Computee. URL: http://www.infoether.com/

4. Danicla Florescu, Andreas Grunhagen, and Donald Kossman. XL: An XML Programming
Language for Web Service Specification and Composition. Proc. The Eleventh Int'l World
Wide Web Conference, Honolulu, (May 2002).

5. The Object Management Group. The Common Object Request Broker Architecture
CORBA/IIOP 2.6. URL http://www.omg.org/corba/

6. Microsoft Inc., "Microsoft's COM+ Technology," URL http://www.microsoft.com/complus

7. Jim Waldo. Alive and Well: Jini Technology Today. IEEE Computer, Vol. 33, pages 107-
109, (June 2000).

8. The W3Schools.com Web Site. URL: http://www.w3schools.com/

9. The Object Management Group. The Model Driven Architecture (MDA). URL
http://www.omg.org/mda/

10. Richard Soley: MDA, An Introduction. URL: http://www.omg.org/mda/presentations.htm

11. Roger S. Pressman. Software Engincering: A Practitioner's Approach (4th Edition).
McGraw-Hill (2001).

12. The AOSD Web Page. URL: http://aosd.net/

13. Jeff Gray, Ted Bapty, Sandecp Neema, and James Tuck. Handling Crosscutting
Constraints in Domain-Specific Modeling. Communications of the ACM, (October 2001).

14. Geri George, Indrakshi Ray, and Robert France. Using Aspects to design a Secure System.
Proc. The Eighth IEEE International Conference on Engineering of Complex Computer
Systems — ICECCS, Greenbelt, Maryland, USA, (December 2002).

15. microqoscorba.cecs.wsu.edu. The MicroQoSCORBA Home Page: Overview.

16. D. M. Simmonds, S. Ghosh and R. B. France. An MDA Framework for Middleware
Transparent Software Development. To appear in Proceedings of RTAS 2003 Workshop
on Model-Driven Embedded Systems, Washington, D.C., (May 27-30, 2003).

17. Object Services and Consulting, Inc. Internet Tool Survey. URL
http://www.objs.com/survey/QoS.htm

18. Elisa L. A. Baniassad, Gail Murphy, Christa Schwanninger and Michael Kircher. Where
are Programmers Faced with Concerns?, Workshop on Advanced Separation of Concerns
in Object-oriented Systems at OOPSLA 2000.

19. Frank Hunleth, Ron Cytron and Christopher Gill. Building Customizable Middleware
using Aspect Oriented Programming . OOPSLA 2001 Workshop on Advanced Separation
of Concerns in Object-Oriented Systems, Tampa FL, USA. (October 14, 2001).

20. Douglas C. Schmidt, Aniruddha Gokhale, Balachandran Natarajan, Sandeep Neema, Ted
Bapty, Jeff Parsons, Andrey Nechipurenko, Jeff Gray, and Nanbor Wang. CoSMIC: A
MDA tool for Component Middleware-based Distributed Real-time and Embedded
Applications. Proc. OOPSLA Workshop on Generative Techniques for Model-Driven
Architecture, Seattle, WA USA, (November 2002).

W N



