Middleware Transparent Software Development & the MDA

Devon Simmonds, Sudipto Ghosh, Robert France
Computer Science Department, Colorado State University
Fort Collins, CO 80523
Phone: (970) 491-4608, FAX: (970) 491-2466

August 20, 2003

Abstract

A major source of complexity in distributed systems stem from the fact that the development
and evolution of distributed systems are generally tightly coupled to continuously changing mid-
dleware technologies. This coupling is undesirable because changes in the middleware necessitates
changes in the application with resulting constraints on the portability, interoperability, reusability,
and evolvability of systems. The problem is made significant due to the proliferation of middleware
technologies and the pervasiveness of distributed systems. The Model Driven Architecture (MDA)
is an exciting initiative that advocates decoupling the design of an application from the integration of
the target middleware. To support the MDA vision we have developed an aspect-oriented middleware
transparent development framework [1, 2, 3, 4]. This paper motivates the framework components
and their use in Jini distributed systems development.

Keywords: Distributed systems, Middleware Transparent Software Development, MDA, middle-
ware, Jini, CORBA, AOSD.

1 Introduction

The software development industry has seen significant growth and maturation over the last four decades
of the 20th century. This growth and maturation can be seen in the evolution of programming paradigms,
software architectures, software engineering and reengineering methods and tools, database and systems
engineering, software and process metrics, and the diverse array of applications and application domains
that have embraced software. Despite these positives, software development continues to be plagued by
rising demand for software, increasing software complexity, and the inability to deliver quality products
on time and within budget [5]. Distributed systems [6] have becoming the norm for modern industries,
and indications are that this will continue to be so for the foreseeable future. The rapid growth of the
Internet and the associated web services revolution, are expected to make distributed systems not only
more pervasive but also more complex. This complexity will be driven by a need to integrate and expand
application domains, and provide cross-platform and multi-middleware functionality.

Distributed middleware such as CORBA [7], COM [8], Jini [9], SOAP and .Net [10], is that most
fundamental component of distributed systems, the purpose of which is to make distributed systems pro-
grammable by hiding infrastructural details including operating system, network and hardware specifics
from application programs. Unfortunately, the pervasiveness of distributed systems and the proliferation
of middleware technologies have conspired to create a very significant problem - the development and
evolution of distributed systems have become coupled to continuously changing middleware technolo-
gies. This coupling presents problems because changes in the middleware necessitates changes in the
distributed system. This results in undesirable constraints on the portability, interoperability, reusability,



and evolvability of distributed systems. Middleware has thus become a major source of challenge and
complexity in distributed systems development and evolution.

1.1 The Model Driven Architecture (MDA)

The problem of constantly changing technologies, while not new, has become a much more significant
problem in the last decade. During this time the Object management Group (OMG) [11], a large inter-
national trade association, has been championing the march to help reduce complexity, lower costs, and
hasten the introduction of new software applications. In order to achieve this the OMG has provided
a number of resources and standards, these include the Unified Modeling language (UML), the Meta-
Object facility (MOF), the Common Warehouse Metamodel (CWM), the Object Management Architec-
ture (OMA), and the Model Driven Architecture (MDA). The MDA and related research, is premised on
the assumption that technological proliferation is inescapable in this pluralistic and multi-paradigmatic
era. An immediate consequence of this is that a consensus will not be achieved on the foundational
components of distributed systems including hardware platforms, operating systems, network protocols,
and programming languages. The MDA advocates a modeling approach to software development that
decouples the specification of software functionality from the specification of the target technology. The
approach is model-driven, meaning that models are given first-class status im the MDA. The ultimate de-
sire is to use software design models to control the development of software including code generation.
The MDA proposes an architectural separation of concerns that articulates three views of a system, each
represented by a model. These models are:

1. A Computation Independent (business/domain) Model (CIM) - a representation of the system re-
quirements from a ”business” perspective without considering software concerns.

2. A Platform Independent Model (PIM) - a representation of a system that ignores details related to
specific platforms. It captures those elements of a system that remain the same from platform to
platform.

3. A Platform Specific Model (PSM) - a model of a system that combines platform independent
information with information related to a specific platform.

The term platform refer to a specific technology for example CORBA, .Net, Jini, etc. The three
primary goals of MDA are portability, interoperability and reusability.

1.2 Middleware Transparent Software Development (MTSD) Defined

Middleware provide many benefits to distributed systems, including, transparent access to infrastructural
details, a menu of standard services (e.g. security, transactions), and transparent access to local, remote,
and mobile resources. The term transparent as used in these examples, and when applied to middleware,
generally refer to the fact that infrastructural details are hidden from the application. Middleware there-
fore provides a number of transparencies including access, location, concurrency, replication, failure,
mobility, performance, and scaling transparencies. By contrast, in MTSD, the term fransparent refer
to the entire middleware rather than to middleware services and facilities. The objective of MTSD is
therefore to make the entire middleware invisible to the distributed systems developer. This vision is
consistent with the MDA and allows for a number of signigicant benefits. First application develop-
ers are spared from managing the complexity of middleware concerns, secondly, the complexity of the
software development process is reduced, and thirdly, the portability, interoperability and reusability of
middleware and functional concerns and greatly enhanced. In addition costs will be reduced throughout
the application life-cycle, there will be reduced development time for new applications, and MTSD will



facilitate improved application quality, the rapid inclusion of emerging technology benefits into exist-
ing systems, and an overall reduction in the complexity of application development, maintenance and
evolution.

MTSD can be divided into two major categories of projects. First, there is the development of new
distributed systems without the constraint of a target middleware. This is called middleware transpar-
ent software engineering (MTSE). Secondly, there is middleware transparent software reengineering
(MTSR) - the modification and redesign of applications to make them middleware transparent. MTSR
is an exciting research topic because of the myriad of legacy distributed systems in existence. If these
systems are to take advantage of advances in new technologies, then they will have to be re-engineered to
make it possible to integrate new and improved middleware technologies. MTSD subsumes both MTSE
and MTSR.

2 The MTSD Framework

The objective of the framework is to provide a middleware transparent software development process
that is MDA compliant. Presently only MTSE activities are addressed.

2.1 Framework Components

The framework is aspect-oriented and treats middleware as crosscutting concerns modeled as aspects [12,
13]. A crosscutting concern is one that is scattered across many elements in a model, but which achieves
one purpose. For example, security-related concerns may be scattered across many classes in a Java
application. The meaning and roles of these components are described in detail in [1, 2, 3, 4]. In this
paper we present a simplified framework that ignores aspect analysis which is yet to be implemented.
The other components of the framework are:

PIM EPIM
/V \ Aspect

Weaver
Enhanced Aspects /V
(MFA, QoSA) (EMFA,E QoSA)

—> PSM

Aspects

Figure 1: A Simplified Framework without Aspect Analysis

1. PIM: The platform independent model of the application, a generic model designed independent
of middleware concerns.

2. Aspects - MFA and QoSA: A collection of aspects that capture the middleware requirements (ser-
vices, facilities, QoS) for an application, for example leasing, transactions, and security. MFA
means middleware functional aspects, and QoSA means quality of service aspects. MFA includes
all non-QoSA aspects.

3. Converters - Standardized mappings that transform PIMs and middleware aspects to their enhanced
versions. Separate converters are required for each middleware. Converters perform architectural,
design or code transformations to prepare a generic model (PIM, MFA, QoSA) for a specific
context.



4. The Enhanced Models - EPIM, EMFA, EQoSA: Independent models (PIM, MFA, QoSA) are
developed without regard for a target middleware (PIM), or a target application (MFA, QoSA), and
have to be transformed by a converter before aspect weaving is possible. For example Section 3
shows a Jini PIM rearchitectured to contain additional inner classes required by Jini.

5. Aspect Weaver: The weaver produces the final platform specific model(PSM) by combining the
enhanced aspects (EMFA, EQoSA) and the EPIM.

6. PSM: The final and complete model output by the framework with all the required middleware
elements.

2.2 Framework Design Process Overview

The design process used by the framework to create applications is a simple three-stage semi-linear
process where the activities of stage 1 can be done concurrently as can the activities of stage 2. The three
stages consists of five activities as follows:

1. Stage 1: Create the PIM for the server/client - no middleware consideration necessary.

2. Select the target middleware and create the generic middleware aspects (MFA, QoSA).

3. Stage 2: Transform PIM to EPIM using the application converter.

4. Transform the generic aspects to enhanced aspects (EMFA, EQoSA) using the aspect converter.

5. Stage 3: Weave the enhanced aspects into the EPIM to produce the PSM. A separate PSM is
produced for each client and for each server.

2.3 The Rationale for Enhanced Models

The question of the purpose and relevance of enhanced models is an important one that continues to
generate interest. Figure 1 shows that there are two main input to the proposed framework - a PIM and
aspects (MFA, QoSA). The same figure also shows that there are enhanced models for each PIM and each
aspect. Each PIM has a particular architectural signature (structure) consisting of a collection of classes
with specific relationships, a collection of interfaces used by the classes, and a collection of methods par-
ticular to each class and interface. Although all PIMs are middleware independent, one PIM may differ
significantly from another PIM in its architectural signature. This difference and the fact that middleware
aspects require a PIM with a specific architecture in order for aspect weaving to be successful, provide
the rationale for an Enhanced Platform Independent Model (EPIM). An EPIM is simply a PIM that has
been refactored to produce the appropriate architectural signature required for a specific middleware as-
pect. The particular refactoring algorithm applied depends on the selected aspect (e.g. transaction) and
the selected middleware (e.g. Jini). For a given middleware, different aspects will require different ar-
chitectural signatures and for a specific aspect (e.g. transaction) the required architectural signature will
differ from middleware to middleware. In our framework the refactoring algorithm is encapsulated in a
converter. There are significant benefits to this separation. These refactoring transformations cannot be
specified in the PIM as that would make it platform specific, and it cannot be specified in the weaver (e.g.
Aspect]) as this would make the weaver application specific which is completely unacceptable. Speci-
fying the transformation in a separate component is therefore the only sure way to be MDA compliant
and provide the flexibility and structural coherence needed for the framework. A similar argument can
be provided for the need of enhanced aspects (EMFA, EQoSA). A generic middleware aspect (MFA,
QoSA) is intended to be used for any relevant application. At the time of its creation it is unnecessary to

4



determine the specific application to which a generic aspect will be applied. For practical purposes this
information would be unavailable for numerous situations. Generic middleware aspects are therefore ap-
plication independent. The application independent nature of generic aspects coupled with the fact that
each application has its own architectural signature, necessitates that generic aspects are transformed
before usage to make them application specific. A useful example is provided in the following section.

3 Application of Framework to Jini

Most of the work we have done is with Jini but some work has also been done with CORBA. Our
primary application is a simple stock broker distributed application. Its functional requirements includes
the registration of clients, and the buying and selling of stocks. We did not consider aspect analysis or
quality of service aspects in this example. The application was written in Java and Aspect] was used
as the aspect weaver. We followed the simplified design process presented earlier. This requires us to
develop the Jini converters and MFA as a one-time exercise, and the PIM classes and interfaces for each
required distributed application. These aside, the process is completely automated. Figures 2, 3, and
4 give a graphical view of the PIM, EPIM and the PSM for the application. The specific activities that
produced these models during the design phase will now be delineated.

1. Creating the PIM & MFA - The MFA were developed and reported in [1]. The PIM (see Figure 2)
was developed and tested as a stand alone Java application. It consists of a single interface and
three classes.

2. Generating the Enhanced Models (EPIM, EMFA).

A number of differing Jini design models are possible. The one we chose to use required that
the services to be made available by the server be captured in a inner class and that a proxy for
this inner class be created as well. The aspect converter implemented a simple string matching
algorithm that replaces generic class names and class attributes in the aspects with the actual class
names and attributes from the Stock Broker application. The application converter was written
using the Java Tree Builder software [14]. It generated the EPIM (see Figure 3) by a refactorization
of the PIM to include seven new components all of which are required by Jini. The tasks performed
by the application converter are as follows:

(a) Create a remote interface to be used by the server

(b) Create two inner classes: a server (from the PIM) and a proxy for the server.
(c) create a wrapper class as the outer class for the two classes just mentioned.
(d) Insert import statements from the interface into the wrapper class.

(e) Add throws clauses and/or exceptions statements specific to Jini to the client and server code.

3. PSM Generation. Aspect] was used as the weaver. This is both an asset (Aspect] is Java compati-
ble) and a challenge (our directives are limited to those of Aspect]).

The MFA is not shown but it includes all the components in Figure 4 (the PSM) that are not found
Figure 3 (the EPIM). These components include the discovery, lookup, lease, and activation packages.



Authorization

StockBrokerInterface
register()
buy()
sel}ll() StockHolder
A /

Broker

Figure 2: The jini StockBroker PIM

Remote
CF Authorization

RemoteStockBrokerInterface

register
buy
sell

StockHolder

V<
~
~
~
~
~
~
~

Broker > Activatable

Serializable

Runnable

BrokerProxy StockBrokerService

O

StockBrokerInterface

Figure 3: The Jini StockBroker EPIM

4 Discussion and Conclusion

MDA related research and success stories [15] are numerous and progressively increasing. They include
for example research on problems in electric power generation, transmission, distribution and industrial
use at the Asea Brown Boveri (ABB) Research Center Heidelberg, Germany; and the Open System
Architecture for Condition-Based Monitoring/Maintenance (OSA-CBM) Project. Apart from our work
[1, 2, 3, 4], research specifically related to MTSD exist but under differing nomenclature, for example
the ArcStyler [15] project. Other researchers have examined the use of Aspect Oriented Programming to
achieve middleware transparency for example, Bussard [16] successfully encapsulated several CORBA
services as aspects using Aspect] to make CORBA programming transparent to programmers. Significant
related work have also been done by Hunleth, Cytron and Gill [17], Douglas C. Schmidt et al [18], Jeff
Gray et al [12], Robert France et al [13], and Charles Zhang et al [19].



Activation
‘Activatable‘ ‘ ActivationException ‘ -
RemoteException
ActivationID Remote
ActivationGroup RMISecurityManages
— discovery
ActivationGroupID
ActivationGroupDesc <<interface>>

DiscoveyListener

Authorization
StockHolder
lease -
LookupDiscovey
<<interface>> —

Lease :
LEASE_TIME:int .
item:Serviceltem Broker I'—‘[>| Activatable
UnknownLeaseException disco:LookupDiscovery

registrations:Hashtable Tkup\
codebase:String -
<<interface>>

. . N RemoteStqckBrokerlInterface
BrokerProxy constructorProxy(String) ServiceRegistrar
discovered(DiscoveryEvent)

UnicastRemoteObject

I

H

StockBrokerService

/ discarded(DiscoveryEvent) <<interface>>
O registerWithLookup(ServiceRegistrar ServiceRegistration| Remote
createProxy():StockBrokerInterface
Serializable| computeSleepTime()
renewLeases()
Runnable run()

StockBrokerInterface

Figure 4: The Jini StockBroker PSM

The MTSD framework we presented is designed to facilitate quality of service composition. This is
important because of the close afiinity between middleware and QoS. The framework frees developers
from considering middleware concerns early in the software development life cycle, and facilitates the
MDA goals of portability, interoperability and reusability. It raises the level of abstraction of distributed
systems development, allowing the resolution of issuesat design time rather than in coding, and fosters
the static analysis of design models and the rapid inclusion of emerging technology benefits into existing
systems.

References

[1] Devon Simmonds and Sudipto Ghosh. “Middleware transparency through aspect-oriented pro-
gramming using Aspect] and Jini”. In Proc. of the Java/Jini Technologies 1l Conference at ITCOM
2002, pages 133-141, Boston, Massachusetts, USA, August 2002.

[2] Devon Simmonds, Sudipto Ghosh, and Robert France. “An Aspect Oriented Model Driven Ar-
chitectural Framework for Middleware Transparency”. In Proc. of the Early Aspects Wprkshop at
AOSD 2003, Boston, Massachusetts, USA, August 2003.

[3] Devon Simmonds, Sudipto Ghosh, and Robert France. “An MDA Framework for Middleware
Transparent Software Development”. In Proc. of RTAS 2003 Workshop on Model-Driven Embedded
Systems, Washington, D.C., USA, May 2003.



[4] Devon Simmonds, Sudipto Ghosh, and Robert France. “An MDA Framework for Middleware
Transparent Software Development & Quality of Service”. In To appear in Proceedings of QoS in
CBSE Workshop at RST2003, Toulouse, France, June 2003.

[5] Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill series in
computer science. McGraw-Hill, United States, 2001.

[6] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts and Design.
International Computer Science Series. Addison-Wesley/Pearson Education, USA, 2001.

[7] The Object Management Group. The Common Object Request Broker Architecture CORBA/IIOP
2.6. URL http://omg.org/corba/, 2003.

[8] Microsoft Inc. Microsoft’s COM+ Technology. URL http://www.microsoft.com/complus.
[9] Jim Waldo. Alive and Well: Jini Technology Today. IEEE Computer, 33(6):107-109, June 2000.
[10] W3Schools.com. The w3schools.com web site. URL http://w3schools.com/, 2003.
[11] The Object Management Group (OMG). The OMG Web Page. URL http://omg.org/, 2003.

[12] Jeff Gray, Ted Bapty, Sandeep Neema, and James Tuck. “Handling Crosscutting Constraints in
Domain-Specific Modeling”. Communications of the ACM, pages 87-93, October 2001.

[13] Geri George, Indrakshi Ray, and Robert France. Using aspects to design a secure system. In The
Eighth IEEE International Conference on Engineering of Complex Computer Systems - ICECCS,
Greenbelt, Maryland, USA, December 2002.

[14] Jens Palsberg, Kevin Tao, and Wanjun Wang. The Java Tree Builder. Department of Computer
Science, Purdue University, URL: http://www.cs.purdue.edu/jtb/.

[15] The Object Management Group. MDA Success Stories. URL: http://www.omg.org/mda/products-
success.htm, 2003.

[16] Laurent Bussard. Towards a Pragmatic Composition Model of CORBA Services Based on As-
pect). In Proceedings of ECOOP 2000 Workshop on Aspects and Dimensions of Concerns, Sophia
Antipolis and Cannes, France, June 2000.

[17] Frank Hunleth, Ron Cytron, and Christopher Gill. Building Customizable Middleware Using
Aspect Oriented Programming. In OOPSLA Workshop on Advanced Separation of Concerns in
Object-Oriented Systems, Tampa, Florida, USA, October 2001.

[18] Douglas C. Schmidt, Aniruddha Gokhale, Balachandran Natarajan, Sandeep Neema, Ted Bapty,
Jeff Parsons, Andrey Nechipurenko, Jeff Gray, and Nanbor Wang. Cosmic: A mda tool for compo-
nent middleware-based distributed real-time and embedded applications. In Proc. OOPSLA Work-
shop on Generative Techniques for Model- Driven Architecture, Seattle, WA USA, November 2002.

[19] Charles Zhang and hans Arno. Jacobsen. Quantifying aspects in midleware platforms. In Proc. of
AOSD 2003, Boston, Massachusetts, USA, August 2003.



