
AGAP: As Good As Possible

Lukáš Chrpa and Mauro Vallati
PARK Group

School of Computing and Engineering
University of Huddersfield
{l.chrpa, m.vallati}@hud.ac.uk

Abstract

Despite the advances made in the last decade in automated
planning, no planner outperforms all the others in every
known benchmark domain. This observation motivates the
idea of selecting different planning algorithms for different
domains. Moreover, the planners’ performances are affected
by the structure of the search space, which depends on the
encoding of the considered domain. In many domains, the
performance of a planner can be improved by exploiting ad-
ditional knowledge, extracted in the form of macro-operators
or entanglements.
In this paper we propose AGAP, an automatic algorithm se-
lection approach for Planning that: (i) for a given domain
initially learns additional knowledge, in the form of macro-
operators and entanglements, which is used for creating dif-
ferent encodings of the given planning domain and problems,
and (ii) explores the 2 dimensional space of available algo-
rithms, defined as encodings–planners couples, and then (iii)
selects the most promising algorithm for optimising the qual-
ity of the solution plans.

Introduction
Although in the last decade the performance of domain-
independent planners has significantly improved, there is no
planner that outperforms all others in every benchmark do-
main. The performance of current planning systems is typ-
ically affected by the structure of the search space, which
depends on the planning domain and its considered encod-
ing. In many domains, the planning performance can be im-
proved by deriving and exploiting knowledge about the do-
main and problem structure that is not explicitly given in the
input formalization, and that can be used for optimizing the
planner behaviour.

These observations motivate the idea of extracting addi-
tional knowledge about the planning domains and automat-
ically selecting the most promising planning algorithm, ex-
ploiting such knowledge, for a given domain.

In this paper we propose AGAP, an automatic algorithm
selection approach for planning that: (i) for a given domain
initially learns additional knowledge, in the form of macro-
operators and entanglements (inner and outer), which is used
for creating different encodings of the given planning do-
main and problems (i.e. planning domain/problem reformu-
lation), and (ii) explores the 2 dimensional space encodings

(e)–planners (p), and then (iii) selects the best algorithm
〈e, p〉 for optimising the quality of the solution plans.

In the proposed approach, each algorithm has two dimen-
sions: one dimension is represented by different encodings
of a given domain, the other is represented by existing high-
performance domain-independent planners. We decided to
consider each couple 〈e, p〉 as a different algorithm because
the different knowledge carried in the generated encodings,
e, makes even the same planner p perform very differently.

AGAP is an evolution of the system proposed in (Val-
lati, Chrpa, and Kitchin 2013); AGAP is focused on qual-
ity of the solutions, and considers a different set of plan-
ners and a larger set of reformulation techniques. We are not
aware of other completely automated planning systems ex-
ploiting a pure algorithm selection approach, in the sense
that they automatically select a single algorithm for solv-
ing a specific class of planning problems. If we include the
portfolio-based approach for planning, which can be con-
sidered as a superset of the algorithm selection one, our ap-
proach is related to the work of (Howe et al. 1999; Roberts
and Howe 2007), PbP2 (Gerevini, Saetti, and Vallati 2009;
2011) and FastDownward Stone Soup (Helmert, Röger, and
Karpas 2011; Seipp et al. 2012), with some significant dif-
ferences.

The major difference between all the approaches above
and AGAP is that we made a domain-specific selection of a
single algorithm, which is defined by a couple encoding–
planner. Moreover, the Roberts and Howe approaches se-
lect the planners to exploit online, while we select the algo-
rithm offline. Additionally the knowledge generated by the
Roberts and Howe systems is domain-independent, while
the knowledge generated and exploited by AGAP is domain-
specific.

PbP2 learns a domain-specific portfolio. It incorporates
seven planners it can choose from. It lets them learn macro-
actions for the given domain, and runs up to three best-
performing ones in a round-robin fashion with learned time
slots. What differentiates our approach from PbP2, is that (i)
we generate new encodings of given domains by looking for
both macro-operators and entanglements, (ii) we explore the
two-dimensional algorithm space encodings–planners, and
(iii) we select only one algorithm to exploit on a domain.

FastDownward Stone Soup is a recent approach to se-
lecting and combining a set of forward-state planning tech-



niques included in the well known domain-independent
planner FastDownward (Helmert 2006). Their approach
is domain-independent, it does not extract any additional
knowledge from the planning domains (in the form of
macro-operators or entanglements). It exploits a statical
combination of several different planning techniques for
solving a single problem.

In the rest of the paper, first we give the necessary back-
ground on planning problem reformulations, then we de-
scribe the AGAP approach and finally we give conclusions.

Planning Problem Reformulations
Analogously to the possibility that a planning system can be
implemented in many different ways, so planning domains
and problems can be also encoded in several different ways.
Typically, environment and action descriptions correspond
with real situations which produces useful outputs for agents
(or robots) that they can easily execute. On the other hand,
sometimes such an encoding is not very efficient and there-
fore some additional planner independent knowledge (e.g.
macro-operators) is often included to increase the efficiency
of planning engines.

Macro-operators
A macro-operator, shortly macro, encapsulates a sequence
of (primitive) planning operators and can be represented
as an ordinary planning operator. In the well-known plan-
ning domain Blocksworld, it may be observed that in-
stances of the operator unstack(?x ?y) are followed
by instances of the operator putdown(?x). Hence, it
is reasonable to assemble these operators into a macro
unstack-putdown(?x ?y). Creating macros (Daw-
son and Siklóssy 1977), which can be understood as ‘short-
cuts’ in the state space, is therefore a well known and studied
approach which in some cases can speed up plan genera-
tion considerably (Newton et al. 2007; Botea et al. 2005).
Macros can be added into planning domains and reformu-
lated domains can be passed to any planning engine. To raise
the efficiency of the planning process, an approach (Chrpa
2010) besides generating new macros also removes some
primitive operators which are very likely useless. In our ex-
ample, if the new macro unstack-putdown(?x ?y) is
created, then it may be observed that the primitive operator
putdown(?x) is useless (unless an initial state consists of
a situation where the robotic hand holds some block).

Entanglements
Entanglements (Chrpa and McCluskey 2012) are relations
between planning operators and atoms (predicates). Entan-
glements aim to capture the causal relationships character-
istic for a given class of planning problems which in many
cases enable a reduction of the branching factor in the state
space. There are two kinds of entanglements, outer and inner
entanglements.

Outer entanglements are relations between planning op-
erators and initial or goal atoms (predicates) which refer to
situations where to solve a given planning problem we need

only such instances of operators where instances of a cer-
tain predicate in an operator’s precondition or positive (add)
effects respectively are present in an initial state or goal sit-
uation respectively. In the Blocksworld it can be observed
that unstacking blocks only occurs from their initial posi-
tions. In this case an ‘entanglement by init’ will capture that
if an atom on(a b) is to be achieved for a correspond-
ing instance of operator unstack(?x ?y) (unstack(a
b)), then the atom is an initial atom. Similarly, it may be
observed that stacking blocks only occurs to their goal posi-
tions. Then, an ‘entanglement by goal’ will capture that atom
on(b a) achieved by a corresponding instance of operator
stack(?x ?y) (stack(b a)) is a goal atom. Encoding
outer entanglements into planning domains and problems is
done by introducing static predicates which allow only in-
stances following conditions of outer entanglements (for de-
tails, see (Chrpa and McCluskey 2012)).

Inner entanglements are relations between pairs of
planning operators and predicates which refer to situa-
tions where one operator is an exclusive ‘achiever’ or
‘consumer’ of a predicate to or from another operator.
In the Blocksworld it may be observed that operator
pickup(?x) achieves predicate holding(?x) exclu-
sively for operator stack(?x,?y) (and not for opera-
tor putdown(?x)), i.e., pickup(?x) is ‘entangled by
succeeding’ stack(?x,?y) with holding(?x). Sim-
ilarly, it may be observed that predicate holding(?x)
for operator putdown(?x) is exclusively achieved
by operator unstack(?x ?y) (and not by operator
pickup(?x)), i.e., putdown(?x) is ‘entangled by pre-
ceding’ unstack(?x ?y) with holding(?x). Encod-
ing inner entanglements into planning domains and prob-
lems must ensure ‘achiever’ and ‘consumer’ exclusivity
given by these inner entanglements. It is done by using spe-
cific predicates, ‘locks’, which prevents executing certain in-
stances of operators in some stage of the planning process.
An instance of an operator having a ‘lock’ in its precondition
cannot be executed after executing an instance of another
operator (‘locker’) having a ‘lock’ in its negative effects un-
til an instance of some other operator (‘releaser’) having a
‘lock’ in its positive effects has been executed. For example,
a situation where pickup(?x) is ‘entangled by succeed-
ing’ stack(?x,?y) with holding(?x) is modeled
such that pickup(?x) is a ‘locker’ for putdown(?x)
and stack(?x,?y) is a ‘releaser’ for putdown(?x).
For details, see (Chrpa and McCluskey 2012).

Entanglements are extracted from training plans, solu-
tions of simpler problems, in such a way that we check
for each operator/pair of operators and related predicates
whether the entanglement conditions are satisfied in all the
training plans (some error rate might be allowed since train-
ing plans may consist of ‘flaws’ such as redundant ac-
tions). Although applying extracted entanglements might
cause loss of solvability of some non-training problems, it
has been empirically shown that it does not happen (or hap-
pens very rarely) if the structure of the training problems
is similar to the testing problems one. For deeper insights,
see (Chrpa and McCluskey 2012).



Combining Macros and Entanglements
It is well known that adding macros into planning domain
models may significantly increase the branching factors be-
cause macros, especially more complex ones, can have much
more instances than primitive operators. Outer entangle-
ments, on the other hand, eliminate some unpromising oper-
ators’ instances. AGAP considers two different approaches
for combining them.

MUM (Chrpa, Vallati, and McCluskey 2014) is a tech-
nique for generating macros which exploits outer entan-
glements. For generating a set of macro candidates, it in-
vestigates dependencies and independencies of actions in
plans (Chrpa 2010). Then, MUM selects ‘proper’ macros
according to number of components of argument matching
graphs. In an argument matching graph of a macro, nodes
are macro’s arguments and edges between nodes indicate
that corresponding arguments appear together in a static or
‘entangled’ predicate (clearly, such predicates are defined in
macro’s scheme). Heuristically, it is assumed that smaller
number of argument matching graph components implies
smaller number of macro’s instances. Note that MUM ap-
plies (outer) entanglements only on macros (not the prim-
itive operators), so completeness is not compromised even
if some detected entanglements are incorrect. Aggressive
MUM is a technique similar to MUM, but it applies outer
entanglements also on primitive operators, which results in
potential incompleteness.

‘Combo’ encapsulates a technique for macro generation
from inner entanglements (Chrpa et al. 2013). The technique
exploits the ‘natural property’ of inner entanglements, i.e.,
that one operator achieves a predicate (or predicates) for an-
other operator. To generate a macro it must be ensured that
no other operator has to be applied in between. In particular,
a possible achiever for the second operator does not ‘clob-
ber’ any predicate for the first one; if the first operator is an
achiever for some other operator (not the second one), the
second operator is not a ‘clobberer’ for that operator; the first
operator does not achieve predicates for multiple instances
of the second operator. Taking into account exclusivity of
predicate achievement or requirement given by inner entan-
glements, we can remove one or both primitive operators
after a macro is generated (Chrpa et al. 2013). After gener-
ating macros (and removing concerned primitive operators)
outer entanglements are applied on macros as well as on the
rest of primitive operators.

The Proposed Approach
AGAP includes the following existing high performance
domain-independent planners: Lama-11 (Richter and West-
phal 2010; Richter, Westphal, and Helmert 2011), LPG
(Gerevini, Saetti, and Serina 2003), Metric-FF (Hoffmann
2003), Mp (Rintanen 2012), Probe (Lipovetzky and Geffner
2011) and SGPlan (Chen, Wah, and Hsu 2006). We selected
them due to their good performances in International Plan-
ning Competitions (IPC) and the different techniques they
exploit.

The learning phase of AGAP is composed of four steps:
(i) extraction of additional knowledge (macros and entan-

glements), (ii) generate new encodings of planning do-
mains/problems, (iii) generation of all the algorithms as cou-
ples 〈e, p〉, (iv) measurement of the performances of the
available algorithms, and (v) selection of the most promising
algorithm for solving the testing instances.

Through these techniques AGAP is able to generate at
most four new encodings per domain: Outer entanglements
(only), MUM, Aggressive MUM and Combo. The maxi-
mum number of algorithms per domain is 30, which arises
from 6 included planners that can be used with 5 different
encodings.

The current version of AGAP runs the available algo-
rithms on training problems. The performances are mea-
sured in terms of CPU time required for solving each train-
ing instance, quality of the solutions found, and the num-
ber of solved problems. The performances of each algorithm
〈e, p〉 are then compared in order to select the most promis-
ing one to execute on testing problems.

For selecting the most promising algorithm, AGAP uses
the quality IPC score. It is a value, firstly introduced in IPC-6
(Fern, Khardon, and Tadepalli 2011), which considers quali-
ties and number of solved problems together. It is very useful
because it synthesizes different aspects of planners’ perfor-
mance in a single value, that can then be compared through
different planners. AGAP selects the couple which achieved
the best IPC score on the learning problems; if more algo-
rithms achieved the same score some secondary criteria are
used. These criteria include the number of solved problems,
the number of problems in which the couple has been the
fastest and the mean CPU time on solved problems. For the
incremental planners1, i.e. LPG and Lama, the best solution
found within the CPU time limit is considered.

The quality score is defined as Score(A, p), which is 0 if
p is unsolved, and Q∗

p/Q(Ap) otherwise (Q∗
p ≤ Q(A)p for

any A). Quality is measured in terms of number of actions.
The IPC score on a set of problems is given by the sum of
the scores achieved on each considered problem.

The learning phase of AGAP requires running all the
available algorithms, namely every planner for every encod-
ing (30 in the current version), the time spent for the learning
phase could be high. Therefore, it seems reasonable to use
some sort of heuristic which can prune unpromising couples
before or at an early stage of the learning phase. A simple
approach may be based on an ‘incremental pruning’ strat-
egy, i.e., solve a part of the training problems with all the
couples, after that remove the worst ones and continue solv-
ing another part of the training problems with the remaining
couples, then prune the worst and so on. A more sophisti-
cated approach could be based on exploiting knowledge we
have about planners and/or encodings.

References
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI planning with automatically

1An incremental planner produces a sequence of solutions with
increasing plan quality which are generated with increasing CPU
times.



learned macro-operators. Journal of Artificial Intelligence
Research (JAIR) 24:581–621.
Chen, Y.; Wah, B. W.; and Hsu, C.-W. 2006. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan.
Journal of Artificial Intelligence Research (JAIR) 26:323–
369.
Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-
tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI-12), 240–245. IOS Press.
Chrpa, L.; Vallati, M.; McCluskey, T. L.; and Kitchin, D. E.
2013. Generating macro-operators by exploiting inner en-
tanglements. In Proceedings of SARA.
Chrpa, L.; Vallati, M.; and McCluskey, T. L. 2014. Mum: A
technique for maximising the utility of macro-operators by
constrained generation and use. In Proceedings of ICAPS.
Chrpa, L. 2010. Generation of macro-operators via inves-
tigation of action dependencies in plans. Knowledge Engi-
neering Review 25(3):281–297.
Dawson, C., and Siklóssy, L. 1977. The role of prepro-
cessing in problem solving systems. In Proceedings of the
5th International Joint Conference on Artificial Intelligence
(IJCAI-77), 465–471. William Kaufmann.
Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The first
learning track of the international planning competition.
Machine Learning 84:81 – 107.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS-09),
19–23. AAAI Press.
Gerevini, A.; Saetti, A.; and Vallati, M. 2011. PbP2: Au-
tomatic configuration of a portfolio-based multiplanner. In
Booklet of the 7th International Planning Competition.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A baseline for building planner portfolios.
In Proceedings of the ICAPS-11 Workshop of AI Planning
and Learning (PAL).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research (JAIR) 20:291–
341.
Howe, A.; Dahlman, E.; Hansen, C.; vonMayrhauser, A.;
and Scheetz, M. 1999. Exploiting competitive planner per-
formance. In Proceedings of the 5th European Conference
on Planning (ECP-99), 62–72. Springer-Verlag.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: An automatic algorithm configura-

tion framework. Journal of Artificial Intelligence Research
(JAIR) 36:267 – 306.
Lipovetzky, N., and Geffner, H. 2011. Searching for
plans with carefully designed probes. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS-11). AAAI press.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20:1–59.
Newton, M. A. H.; Levine, J.; Fox, M.; and Long, D. 2007.
Learning macro-actions for arbitrary planners and domains.
In Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS-07), 256–263.
AAAI press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. In Booklet of the 7th International Planning
Competition.
Rintanen, J. 2012. Engineering efficient planners with SAT.
In Proceedings of the 20th European Conference on Artifi-
cial Intelligence (ECAI-12), 684–689. IOS Press.
Roberts, M., and Howe, A. 2007. Learned models of perfor-
mance for many planners. In Proceedings of the ICAPS-07
Workshop of AI Planning and Learning (PAL).
Roberts, M., and Howe, A. 2009. Learning from planner
performance. Artificial Intelligence 173(56):536 – 561.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning portfolios of automatically tuned planners. In
Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS-12).
Vallati, M.; Chrpa, L.; and Kitchin, D. E. 2013. An auto-
matic algorithm selection approach for planning. In IEEE
25th International Conference on Tools with Artificial Intel-
ligence (ICTAI), 1–8.
Wilcoxon, F., and Wilcox, R. 1964. Some rapid approx-
imate statistical procedures. Technical report, American
Cyanamid Co.


