
LIBACOP and LIBACOP2 Planner

Isabel Cenamor and Tomás de la Rosa and Fernando Fernández
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
icenamor@inf.uc3m.es, trosa@inf.uc3m.es, ffernand@inf.uc3m.es

Abstract

This document describes two planning portfolios devel-
oped for the Learning Track of IPC-2014 (International
Planning Competition). The Learning Instance-Based
Configured Portfolios are based on predictive models
learnt with training instances gathered from previous
executions of the base planners. For solving new plan-
ning problems, the portfolios select a group of planners
using the predictions of the learnt models. Specifically,
LIBACOP uses a classification model to select poten-
tial planners assigning the same execution time to each
of them. LIBACOP2 uses the same classification model
and, in addition, a regression model to predict the time
for each planner.

Introduction
In recent years, the notion of portfolio has appeared for im-
proving the performance of automated planners. The portfo-
lios are motivated by the general idea that none of existing
planners dominates all other in all cases (problems and do-
mains). In the IPC scope, they consist of assigning the avail-
able time (maximum execution time) to a sub-set of avail-
able planners and running this configuration. In the state of
the art, there are several portfolios that define different ways
to combine simple base planners (strategies).

The most common strategy is the static, where the portfo-
lio components and the time for each planner is previously
defined and maintained for all domains and problems. FDSS
(Fast Downward Stone Soup) (Helmert 2006) is an example
of this type of portfolio. It has various configurations based
on previous planning results, as a function of the track or the
component that is considered. It obtained good results in the
IPC-7.

The other possible strategy is dynamic, where the portfo-
lio does not commit to the same configuration in all cases.
An example of this type is PbP planner. PbP (Gerevini,
Saetti, and Vallati 2009) generates domain-specific multi-
planners from a set of domain-independent planning tech-
niques. It generates macro-actions, optimizes planner pa-
rameters and selects specific planners for each domain.
Therefore, it generates a different configuration for each do-
main. PbP won the learning track in IPC-6 and the follow-
ing version PbP2 (Gerevini, Saetti, and Vallati 2011) won in
IPC-7.

Our portfolios also follow a dynamic strategy, where a
different configuration per problem is generated. Planners in
the learning track exhibit two behaviours. The first one is
a base strategy without knowledge and the second one ex-
ploits the domain-knowledge acquired from training prob-
lems. Our base strategy is the result of applying the Pareto
efficiency technique (Censor 1977) to select a sub-set of
planners from all planners in sequential satisficing track in
IPC-7 plus LPG-tn (Gerevini et al. 2004) and SGPlan (Hsu
and Wah 2008). We select the planners that dominate all oth-
ers in at least one domain (from a set of training domains),
taking into account quality and time. The selected planners
are assigned the same running time. The learning-based be-
haviour is a dynamic strategy based on learning predictive
models of the planner performance: one portfolio with clas-
sification model (LIBACOP) and the other one with classi-
fication and regression models (LIBACOP2).

LIBACOP is a portfolio configurable with a predictive
classification model. This portfolio is an evolution of the
base strategy (without knowledge). LIBACOP selects a sub-
set of planners using a classification model. This model is
the result of a learning process, and predicts the behaviour
of the planners in future problems, i.e. whether they will
be able to solve a given problem. The planners with higher
confidence are selected, and they are ordered following such
confidence. Then, running time is divided uniformly among
them.

LIBACOP2 strategy is an evolution of LIBACOP. It has
an extra phase that includes a regression model to predict the
running time for the planners selected by the classification
model. In contrast LIBACOP2 assigns the time estimation
given by the regression model. In the next section we present
the general ideas of the portfolios, with their components
and how we finally created the portfolios.

General System Description
In this section, we explain the general process to configure
LIBACOP planners. For each configuration in our planner,
there is a learning phase for each domain. This process is de-
picted in Figure 1. For each domain, the system gathers some
examples of future problems. From these examples we learn
which sub-set of planners are likely to solve these problems.
The learning phase has two difference parts. The first one is
the characterization of the training problems (Extract Fea-



tures) and the second one is building the predictive models
(Planner Selection and Time Assignment).

Initial 
Selection

P1…P29

P1…P13
Classification

Based 
Selection

P1…P5

Extract 
Features

ProblemsProblems DomainDomain

Time 
Assignment

〈P1, t 〉…〈P5 , t 〉

Figure 1: System Diagram of LIBaCoP Planners

As base planners we considered the competitors from
IPC-7 plus LPG-tn and SGPlan. However, the initial set of
planners is large and we preferred to do a pre-selection of
them. The technique to implement the selection is Pareto ef-
ficiency.

Portfolio Components
The list of base planners included in our portfolios are:

• ARVAND (Nakhost, Valenzano, and Xie 2011)

• FD-AUTOTUNE 1 & 2 (Fawcett et al. 2011)

• FD STONE SOUP (FDSS) 1 & 2 (Helmert et al. 2011)

• LAMA 2008 & 2011 (Richter, Westphal, and Helmert
2011)

• PROBE (Lipovetzky and Geffner 2011)

• MADAGASCAR (Rintanen 2011)

• RANDWARD (Olsen and Bryce 2011)

• YAHSP2-MT (Vidal 2011)

• LPG-TN (Gerevini et al. 2004)

• LAMAR (Olsen and Bryce 2011)

• DAE-YAHSP (Dréo et al. 2011)

• SGPLAN (Hsu and Wah 2008)

The following step is problem characterization. We cre-
ate some features to characterize the planning executions. In
this phase, we also choose the output attribute of the learning
process. There are two different task in this process, one for
selecting the promising planners, which is whether the plan-
ner will find a solution for the problem in a 900 seconds.
And, the other one, for estimating the run time each selected
planner will spend in solving the problem.

Data Preparation
The first step is the characterization of the problem. For this
task, we consider some features in the planning task previ-
ously used (Roberts and Howe 2009) and include others for
a better particularization of the problem difficulty (Cenamor,
de la Rosa, and Fernández 2012). These features show good
accuracy for configuring portfolios (Cenamor, de la Rosa,
and Fernández 2013; Roberts et al. 2008). In addition, we
create some new features to improve the characterization of
the initial state of the problem. Such features are:

Previous Features From the previous work (Cenamor, de
la Rosa, and Fernández 2012), we include the number of ob-
jects and the number of goals, which are directly extracted
from the PDDL files. Also a group of elaborated features are
generated from the problem translation to the SAS+ formal-
ism (Backstrom and Nebel 1995) like the number of vari-
ables in the causal graph (CG), the ratio between the high
level variable and all variables in the CG, the standard de-
viation of the number of input edges in the CG, the average
number of output edges in the CG, the maximum and the
average weight of the output edges in the CG, the standard
deviation of the number of output edges in high level vari-
ables in the CG, the maximum weight of input edges in high
level variables in the CG, the number of variables in the do-
main transition graph (DTG), the number of edges in the
same graph and the maximum weight of input edges in the
DTG.

New Features We include information that appears in
the translation and preprocess of Fast Downward (Helmert
2006). The features are: the number of types of objects, the
number of functions, the number of auxiliary atoms in the
translation from PDDL to SAS+, the number of implied ef-
fects removed groups, all resulting from the translation pro-
cess. In addition, we include the most representative heuris-
tic functions computed for the initial state with unit cost:
hadd, hmax (Bonet and Geffner 2001), Context enhanced
additive (Helmert and Geffner 2008), hFF (Hoffmann and
Nebel 2011), Goal count (i.e., the number of unsatisfied
goals), Landmark count (Richter, Helmert, and Westphal
2008) and Landmark cut (Helmert and Domshlak 2009), the
ratio hFF/hmax and a set of features to characterize the fact
balance of the relaxed plan (RP ). We define the fact bal-
ance for fact p, as the number of times p appears as an add
effect of an action belonging to RP , minus the number of
times p is a delete effect of an action in RP , considering
original actions where deletes are not ignored. The intuition
behind fact balances is that high positive values would char-
acterize easier (relaxed) problems for a given domain, since
achieved facts do need to be deleted many times. Given that
the number of relevant facts of a planning task is variable,
we compute statistics (i.e., min, max, average and variance)
for the fact balance of the relevant facts. Additionally, we
compute statistics only considering facts that are goals, fol-
lowing the same procedure. Besides, the number of relevant
facts and the number of actions are included in the feature
selection.

In summary, we use 35 features, and the time to extract
features is negligible given that features wrt. graphs imply



basic arithmetic computations and heuristic functions are
only called once for the initial state.

Modelling the data
To continue with the process, we select and apply a variety
of modelling techniques to find the model with higher accu-
racy. The output models should be evaluated in the context
of the objective: planning capability of the developed port-
folio.

In this step, a classification model is created to predict
whether a planner will find a solution for a problem. Be-
sides, a regression model to predict the running time for each
planner is created. We trained with 25 algorithms (for differ-
ent model types: trees, rules, support vector machines and
instance based learning) using WEKA (Witten and Frank
2005). WEKA is a Data Mining toolkit that provides a stan-
dard format for running machine learning algorithms.

The last phase, the deployment, is the part of the process
that verifies previously held hypotheses through the knowl-
edge discovered in the earlier phases of the Data Mining
methodology. The final system gets a new problem and do-
main, calculates the features, queries the models, and returns
the sub-set of planners with their running time.

Deployment
In this section, we report an algorithmic version of the whole
system. We show the general behaviour of the portfolio as a
function of the learnt knowledge and the portfolio version.

The general working process appears in the algorithm 1.
The input of this algorithm is the problem (i), the domain
(d), the planners (Pini), the classification model (C), the
regression model (R) and the available time (T ). The out-
put is a sorted list with the planners and their running time
(Portfolio = [< p1, t1 > . . . < pc, tc >]). If the sys-
tem has the configuration by default (which means there is
not classification neither regression model) the output is a
base strategy. The time per the initial planners is the same
for all components. In other case, the features (f ) are ex-
tracted from the problem (i) and the domain (d). For each
planner, the algorithm asks for the confidence to the classi-
fication model. After that, the best 5 planners are extracted
with their parameters (i.e., their confidence, the set of initial
planners and the number of the selected planners). If the re-
gression model exists (LIBACOP2 planner), these planners
query for their running time, otherwise the planners get the
same time (180 seconds).

LIBACOP
The submitted version of LIBACOP planner uses a Ran-
domForest (Breiman 2001) in the classification task. This
model is a combination of tree predictors such that each tree
depends on the values of a random vector and with the same
distribution. It selects the 5 planners with the highest con-
fidence of solving the problem. The execution order of the
planners is based on their confidence. The running time is
assigned uniformly to each planner (180 seconds).

Data: Problem (i), Domain (d), Set of base planners
(Pini), Classification model (C), Regression
model (R), Available time (T )

Result: Portfolio Configuration: Sorted list of planners
with their running time,
Portfolio = [< p1, t1 > . . . < pc, tc >]

if C == null andR == null then
(No classification nor regression models available)
n = size(Pini);
Portfolio = [];
for p in Pini do

append(< p, T
n >,Portfolio)

end
else

(Classification model available)
f = ExtractFeatures(d, i);
Portfolio = [];
for p in Pini do

cp = GetConfidence (C, f, p)
end
n = 5 ;
Pbest = ExtractBestConfidence (Pini,~c, n);
ifR == null then

Portfolio = [];
for p in Pbest do

append(< p, T
n >,Portfolio)

end
else

(Regression model available)
Portfolio = [];
for p in Pbest do

append(<
p, T imeAssignment(R, f, p) >
,Portfolio)

end
end

end
Algorithm 1: LIBACOP planners

LIBACOP2
The submitted version of LIBACOP2 planner uses the same
classification model as LIBACOP (RandomForest) with the
5 planners with the highest confidence of solving the prob-
lem. The second step uses a DecisionTable (Kohavi 1995)
model to decide the running time for the selected planners.
The execution order of the planners is based on their confi-
dence.

Acknowledgements
We generated sequential portfolios of existing planners to be
submitted to the International Planning Competition 2014.
Thus, we would like to acknowledge and thank the authors
of the individual planners for their contribution and hard
work. This work has been partially supported by the Spanish
project TSI-090302-2011-6, TIN2012-38079 and TIN2012-
38079-C03-02.



References
Backstrom, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Breiman, L. 2001. Random forests. Machine learning
45(1):5–32.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2012. Mining
ipc-2011 results. In Proceedings of the Third Workshop on
the International Planning Competition.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2013. Learn-
ing predictive models to configure planning portfolios. In
Proceedings of the Workshop on the Planning and Learn-
ing.
Censor, Y. 1977. Pareto optimality in multiobjective prob-
lems. Applied Mathematics and Optimization 4(1):41–59.
Dréo, J.; Savéant, P.; Schoenauer, M.; and Vidal, V. 2011.
Divide-and-evolve: the marriage of descartes and darwin.
Proceedings of the 7th international planning competition
(IPC). Freiburg, Germany.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. Fd-autotune: Automated configuration
of fast downward. The 2011 International Planning Compe-
tition 31–37.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Lpg-td: a fully automated planner for pddl2. 2 domains. In
In Proc. of the 14th Int. Conference on Automated Planning
and Scheduling (ICAPS-04) International Planning Compe-
tition abstracts. Citeseer.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS-09).
Gerevini, A.; Saetti, A.; and Vallati, M. 2011. Pbp2: Auto-
matic configuration of a portfolio-based multi-planner. The
2011 International Planning Competition.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS.
Helmert, M., and Geffner, H. 2008. Unifying the causal
graph and additive heuristics. In ICAPS, 140–147.
Helmert, M.; Röger, G.; Seipp, J.; Karpas, E.; Hoffmann, J.;
Keyder, E.; Nissim, R.; Richter, S.; and Westphal, M. 2011.
Fast downward stone soup. The 2011 International Planning
Competition 38.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26(1):191–246.
Hoffmann, J., and Nebel, B. 2011. The ff planning system:
Fast plan generation through heuristic search. arXiv preprint
arXiv:1106.0675.
Hsu, C.-W., and Wah, B. W. 2008. The sgplan planning
system in ipc-6. In Proceedings of IPC.
Kohavi, R. 1995. The power of decision tables. In 8th Euro-
pean Conference on Machine Learning, 174–189. Springer.

Lipovetzky, N., and Geffner, H. 2011. Searching with
probes: The classical planner probe. The 2011 International
Planning Competition 30(29):71.
Nakhost, H.; Valenzano, R.; and Xie, F. 2011. Arvand: the
art of random walks. The 2011 International Planning Com-
petition 15.
Olsen, A., and Bryce, D. 2011. Randward and lamar: Ran-
domizing the ff heuristic. The 2011 International Planning
Competition 55.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Land-
marks revisited. In AAAI, volume 8, 975–982.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. The 2011 International Planning Competi-
tion 50.
Rintanen, J. 2011. Madagascar: Efficient planning with sat.
The 2011 International Planning Competition 61.
Roberts, M., and Howe, A. 2009. Learning from planner
performance. Artificial Intelligence 173(5):536–561.
Roberts, M.; Howe, A. E.; Wilson, B.; and desJardins, M.
2008. What makes planners predictable?. In ICAPS, 288–
295.
Vidal, V. 2011. Yahsp2: Keep it simple, stupid. The 2011
International Planning Competition 83–90.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.


