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Abstract

In the last International Planning Competition (IPC 2011), the
most efficient planners in the satisficing track were planners
that used unit-cost heuristics. These heuristics ignore the real
cost of the actions and return instead an estimate of the plan
length to the goal. The main advantage of these heuristics
compared with real-cost heuristics is that they solve a greater
number of problems (also known as coverage), which has a
high impact on the IPC score. However, a priori heuristics
that predict the real cost should find solutions of better quality.
To increase the effectiveness of real-cost heuristics and reduce
the impact of their drawbacks without losing quality, we
study the use of machine learning techniques to automatically
obtain good combinations of those heuristics per domain. In
particular, regression techniques are used to predict the real
cost from any state to the goal. We use the heuristic estimations
and the real costs obtained from solving easy problems as
attributes. Later, we feed those instances to several machine
learning techniques to obtain prediction models. All learned
models approximate the real value with high correlation.
Finally, we implemented the most suitable model in the LAMA
planner and we called it LLAMA (for Learning LAMA).
The main difference respect to LAMA is that we use more
appropriate cost-sensitive heuristics during the anytime phase.

Introduction

In the last IP(ﬂ (2011), the approach employed by most
planners was heuristic forward search. Heuristic planners
search in a state space guided by one or more heuristic
functions. Heuristic functions can take into account the real
cost of actions or assume that all actions have unitary cost.
The former are real-cost heuristics, whereas the latter are unit-
cost heuristics. Overall, real-cost heuristics find solutions
of better quality and unit-cost heuristics find solutions
expanding fewer nodes. Therefore, unit-cost heuristics often
solve more problems under time and memory constraints.

A common solution to the downfalls of both kinds of
heuristics is using anytime schemes that employ both types
of heuristics. Generally, the first solution is found using unit-
cost heuristics with greedy search algorithms and subsequent
solutions are found using real-cost heuristics with more
conservative algorithms (Richter and Westphal 2010).

1http: //ipc.icaps—conference.org/

Based on (Virseda, Borrajo, and Alcazar 2013), this
work is focused on improving the efficiency of real-cost
heuristics. With this purpose, we learn from existing domain-
independent heuristics per domain. We follow a procedure
similar to the one proposed by Arfaee et al. (2011)), although
in our case we obtain the training instances from small
problems (as commonly done in the learning track of the
IPC) instead of learning per problem and from initial ad-hoc
heuristics.

In order to minimize the error derived from the use of a
single heuristic, we study whether a combination of more
than one real-cost heuristic function can be useful to improve
the performance of the planner. Given that it is hard to know
a priori which heuristic combination will work well for
a specific domain, we use machine learning techniques to
try to infer useful combinations of heuristics. We extract
learning instances from solutions to small problems in each
domain. The instances will be composed of the values
that each domain-independent heuristic returns for each
state and the real cost to the goal. Then, we use two
approaches based on machine learning techniques to find
a useful combination of heuristics. First, we generate a
regression model, which can be used later as the new domain-
dependent heuristic; it computes at each state the values of
several selected heuristics and returns a linear combination
of the former values for that state. Second, we use an
attribute selection technique to select a subset of heuristics
to be used in an alternating queue, as previous works have
shown that this way of combining heuristic estimators is
overall very effective (Roger and Helmert 2010). For the
experimentation we use Fast Downward (Helmert 2011), a
planning framework that implements several state-of-the-
art heuristics, and WEKA (Witten and Frank 2005), an
environment with multiple machine learning techniques. Our
approach is an offline learning technique, as the real cost to
achieve the goals must be known beforehand to create the
training instances.

The rest of the document describes our approach and gives
the details of the employed components and techniques.

Description of the Approach

Our approach involves two phases: training and testing.
The training part is also divided into two parts: gathering
the training instances and learning models from them. The
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training instances are obtained computing the values of a set
of heuristics (given as input) and the real cost to the goal
of a set of states. The states are those that appear along the
solution paths of easy problems solved by different methods.
Then, regression models are built using different machine
learning techniques. The aim of the models is to predict the
real cost of the solution by combining heuristics.

The testing phase implements the chosen regression
model in a planner and compares its performance against
different state-of-the-art approaches. Different combinations
of heuristic functions are studied.

Training

Given a set of training problems P in a domain D, a set
of heuristic functions H = hq, hs, ..., h,, and a machine
learning technique L, the training phase returns a regression
model R. A regression model R : T" — R takes as input a
tuple t(n) = (h1(n), ha(n), ..., hy,(n)) and returns a real
number, the combined heuristic value of node n according
to the regression model R. Each h;(n),j = 1..m is the
heuristic value of heuristic h; for node n.

We first solve a set of simple problems to obtain training
instances for the learning process. We keep the solutions
of those problems; in particular, for each state along the
solution plan we store the value returned by each heuristic
h; € H for that node, as well as the cost from that node
to the goal according to the computed solution. Suppose
7 = (a1, as,...,a,) is the solution to a training problem
p € P,and S; = (so,51,82,...,5n) is the set of states
in the solution path, such that so = I, s, is a goal state
(sn € G), and a; is applicable in the state s;_1, generating
state s;. For each state s; € S, and for each heuristic
h; € H, we compute h;(s;). Also, we compute c(s;) =
> n_;c(ax). Then, for each s; € S of each solution of
problems in P, we generate a training instance of the form:
(hi(si), - hin(si), c(s4))-

There are several ways of computing the solutions of
the problems during the training phase. Ideally, an optimal
planner should be used to ensure that the solution plan is
optimal. With an optimal solution plan, the cost to the goal
for each state along the solution path is guaranteed to be h*,
the perfect heuristic value using the real actions costs. Using
the optimal solution avoids introducing noise in the training
instances due to imprecisions in the estimation of the cost
to the goal. It is not guaranteed though that using optimal
solutions will yield more accurate models; other methods,
such as the use of suboptimal planners or random walks from
the goal, may also be valid alternatives.

Once the training instances are generated, several machine
learning techniques are used to compute different regression
models. This is done per domain, so there will be several
models for each domain. Prior to learning, we perform
attribute selection to avoid the use of correlated attributes that
may not contribute to the overall process. Finally, we estimate
the accuracy and correlation of the models to compare them
and select the most suitable one. Algorithm [I]shows how the
whole training process is performed.

Algorithm 1: Description of the training process.

input : solving_method, M
heuristic_set, H
problem_set, P
attribute_selection, AS
learning_technique, L
output: regression_model, R
begin
instance_set < (;
foreach problem € P do
solution_path < apply(M ,problem);
foreach node € solution_path do
instance < compute_instance(node, H);
L instance_set <— instance_set U instance;

instance_set <—apply(A.S,instance_set);
return R <+ apply(L,instance_set);

end

Testing

We test our approach in each of the domains used in the
training phase. The problems used in the testing phase are
more challenging than those used for training. To asses the
viability of the learning process, the best regression model in
each domain is used as the heuristic function of the planner.
In particular, we compare the score of each heuristic against
the score obtained by using the learned model as heuristic.
This is done both in terms of coverage and IPC score.

Planner Components

This section describes the elements involved in the planner
implementation. This includes the chosen heuristics, the
methods used to generate the training instances and the
machine learning methods.

Heuristic Functions
The following heuristic functions were used in our setting:

Additive heuristic (Add) (Bonet and Geffner 2001) is the
sum of the accumulated costs of the paths to the goal
propositions in the relaxed problem (a delete-free version
of the problem).

Blind heuristic returns the cost of the cheapest applicable
action for non-goal states and O for goal states.

Causal graph heuristic (CG) (Helmert 2004) is the sum of
the costs of the paths in the domain transition graphs which
are necessary to consider to reach the goal propositions.

Context-enhanced additive heuristic (CEA) (Helmert and
Geffner 2008) is the causal graph heuristic modified to
use pivots that define contexts relevant to the heuristic
computation.

Fast Forward heuristic (FF) (Hoffmann 2003)) is the cost
of a plan that reaches the goals in the relaxed problem (a
delete-free version of the problem).

Goal count heuristic is the number of unsatisfied goal
propositions.



Landmark count heuristic (LM-Count) (Richter, Helmert.
and Westphal 2008) is the sum of the costs of the
minimum cost achiever of each unsatisfied or required
again landmark. Landmarks are computed using the RHW
method; disjunctive landmarks were taken into account.

Landmark-cut heuristic (LM-Cut) (Helmert and
Domshlak 2010) is the sum of the costs of each
disjunctive action landmark that represents a cut in a
justification graph towards the goal propositions.

Max heuristic (Bonet and Geffner 2001)) is the maximum
of the accumulated costs of the paths to the goal
propositions in the relaxed problem (a delete-free version
of the problem).

Generation of Training Instances

Initial experiments showed that using optimal solutions does
not guarantee more accurate models. Hence, three methods
were used to generate the training instances. Each method has
been tested in isolation; that is, the set of training instances
obtained with each method was used to learn different
prediction models.

FDSS optimal solution is the solution found by the optimal
version of Fast Downward Stone Soup (FDSS) (Helmert|
Roger, and Karpas 2011), winner of the optimal track at
IPC’11.

LAMAT11 best solution is the solution that
LAMAI11 (Richter and Westphal 2010), winner of
the satisficing track at IPC’11, finds. The solution is
not guaranteed to be optimal, although the solutions are
expected to be close to the optimal one due to the anytime
scheme that LAMAI11 uses. The FF and the landmark
count heuristics are used during the search process.

Multi-Heuristic First Solution (MHFS) is the first solution
found employing all the studied heuristics in the alternation
open list implemented by Fast Downward (Roger and
Helmert 2010). Besides the choice of heuristics, greedy
best-first search with regular evaluation and no preferred
operators was used. We selected this scheme because we
found interesting to compute the solution paths employing
the same heuristics that will be used afterwards as
attributes in the learning process.

Machine Learning methods

The machine learning techniques used to compute the models
were the following:

Attribute Selection obtains a subset of relevant features.
We employed this technique because some heuristics yield
very similar values in some domains, so including all of
them may not be useful in the learning process. Also,
the computation of several heuristics can be expensive,
so removing uninteresting or correlated heuristics may
increase the performance of the planner. We used
Correlation-based Feature Selection (Hall 1998)). This
attribute selection method is independent from the
regression learning method used afterwards.

Regression Analysis is used to compute the prediction
models. The following techniques have been used with
10 fold cross-validation:

Linear Regression (LR) models are linear functions that
minimize the sum of squared residuals of the model.

MS5P  (Quinlan 1992) models are regression trees that
approximate the value of the class. This method is
more flexible than Linear Regression because M5P can
capture non-linear relations.

MSRules (Quinlan 1992)) is similar to M5P, but generates
rules instead of regression trees.

SVMreg (Shevade et al. 2000) implements Support
Vector Machines for regression.

Experimentation

This section includes some experimentation that justifies our
choices of parameters. It describes results obtained in both
phases: training and testing. The results in the training phase
are used to compare the accuracy of the different regression
models. The results in the testing phase are used to compare
the approach against state-of-the-art heuristics.

Results on Training

To obtain the set of training instances, three problem solving
methods were proposed: FDSS, LAMA11 and MHFS. The
total number of training problems was 280, 20 problems per
domain, obtained from the optimal track of IPC’11. FDSS
solved only 181 problems, whereas LAMA11 and MHFS
solved all problems. Since FDSS solved fewer problems, the
models obtained with this approach employ fewer training
instances.

To analyze the accuracy of the four described regression
methods, we show the average correlation and average
computation time of the model of each instance-generating
method and regression technique over all domains in Table ]
As we can see, all four regression techniques have high
accuracy, but Linear Regression is noticeably faster. Results
are also consistent across domains too. Accuracy is higher
and time is smaller for all learning methods with the training
sets obtained with FDSS.

Even if the FDSS method generates fewer instances, the
results obtained are similar to the LAMA11 method. Looking
at the quality of the solutions of the instances solved by
both methods, we can observe that LAMAI1 is usually
very close in quality (less than 10% worse than the optimal
cost on average in all domains except for nomystery). This
means that the instances solved by both methods produce
similar training examples a priori, which leads us to deduce
that fewer instances may lead to similar results in terms of
accuracy as long as these instances are representative enough.

As linear regression is simpler and its accuracy during
training is similar to the rest of the regression techniques, all
models used from this point on will be the ones computed
with it. Of course, good accuracy during training does not
guarantee good results in the testing phase, but we will
assume it is true. Hence, the new heuristic values of each
search node n will be obtained using a linear equation of the
form:



Instance-
generating | Classifier | Correlation Time(ms)
method
AR 0.9263 94.29
GP 0.9462  7,657.14
LR 0.9451 74.29
FDSS M5P 0.9505 362.86
M5Rules 0.9500 543.57
REPT 0.9451 65.71
SMOreg 0.9450 970.00
AR 0.9195 127.14
GP 0.9337 12,121.40
LR 0.9291 98.57
LAMAIl | M5P 0.9344 669.29
M>5Rules 0.9329 1,140.00
REPT 0.9387 93.57
SMOreg 0.9207 1683.57
AR 0.9271 130.00
GP 0.9445  20,095.00
LR 0.9399 101.43
MHFS M5P 0.9495 736.43
M>5Rules 0.9492 1,201.43
REPT 0.9479 94.29
SMOreg 0.9384  2,495.00

Table 1: Average of the correlation and computation time
of the models over the 20 domains for each instance-
generating method and regression technique with/after
attribute selection.

hr(n) = wihi(n) + woho(n) + ... + wph,(n) + k

where w; is the weight associated to h; (w; = 0 if h; was
not selected by Attribute Selection, and we would not need to
compute their values when searching) and % is a constant. We
set hp to zero if hg < 0. Regarding k, some clarifications
must be made. The heuristic function hr will be used in
all nodes. Since the function of an inadmissible heuristic is
to help discriminate between nodes, adding or subtracting a
constant has no effect at all. In this case, though, hz may have
negative values due to negative weights and/or a negative k.
This means that taking k out of i will affect the cases in
which hr < 0 (either before or after the removal of k), which
may affect the ranking of the nodes during search. Therefore,
k is necessary to ensure a consistent behavior.

The heuristic values are not normalized, so the weight is
not proportional to the relevance of the heuristic. For instance,
the Add heuristic yields much higher values than Goalcount,
so Goalcount will have higher weights than Add in most
cases to compensate for it.

An additional advantage of using Attribute Selection is that
in most cases it does not select more than one “expensive”
heuristic, because highly correlated heuristics tend to have
a similar computational cost. This avoids cases in which
computing several expensive heuristics does not improve
over using only one of them, which is important to decrease
the time spent evaluating states. An alternative could have

been using learning algorithms that can take into account the
cost of computing the value of an attribute (Nunez 1991)),
although after Attribute Selection this may be redundant and
would force us to use a reduced set of learning techniques.

Results on Testing

To assess the effectiveness of our approach, the learned
models were implemented in Fast Downward. In all cases,
only linear regression was used. We tested two different
configurations for each instance-generating method (FDSS,
LAMAT11 and MHFS): the linear combination of weighted
heuristics as the only heuristic function of the planer (LR);
and an alternation multiple queue (Roger and Helmert 2010)
that uses the heuristics selected during the learning process
(ASH), instead of using the learned model. The motivation
behind ASH is that alternation queues are often better than
the sum of heuristics (Roger and Helmert 2010). These new
planners were compared with all the studied heuristics and
the combination of the FF and LM-Count heuristic in an
alternation queue, as done in LAMAI1.

Greedy best-first search with regular evaluation and no
preferred operators have been used for all the versions for the
same reasons as in the previous section. The scores were
computed as in the IPC. The metric used in the IPC is
quality-oriented; nevertheless, in this work we will report
the parameters: quality, expanded nodes and time. When
computing the score for time, all the instances solved by a
planner in less than one second are assumed to be solved
in exactly one second. This is so because below one second
the factors that affect the total time may be others than the
efficiency of the search process. Also, due to the way the
score is computed, too low values may skew the results
favorably in favor of configurations that can solve some
instances in very little time. All scores are computed using
Equation [T}

(1

best-v " if solution found
scorep , = P . i
0, if no solution found

where r is a configuration (heuristic), p is a problem, best_v
is the best value found by any configuration for p and v,, ,- is
the value of r for p.

Table 2] shows the quality, expanded nodes and time scores
and the number of solved problems for each heuristic, the
FF/LM-Count heuristic combination with an alternation
queue and all our approaches. The performance of the
FDSS and LAMAL11 instance-generating methods is similar,
probably because the solutions found by LAMAII1 are
close to the optimal ones, and despite the fact that the
FDSS instance-generating method generates fewer learning
instances. The best instance-generating method with respect
to the evaluated metrics is MHFS, in both the LR and ASH
combination methods. This is due to the way MHFS obtains
the solutions. The role of heuristics is more important when
computing the first suboptimal solution, than when finding
subsequent (or optimal) solutions by exploring the search
space more exhaustively. It is more likely that the best
heuristics in the problem were accurate along the first solution
path, as they succeeded guiding the search.



Heuristic Quelifiy  1Sggeruafeal (Vg Coverage
score nodes score  score
Add 118.71 50.96 25.62 143
Blind 31.00 023 0.68 31
CG 127.18 3742 44.07 152
CEA 121.51 62.29 24.36 145
FF 108.31 44.48 23.69 132
Goalcount 108.18 27.23 30.30 119
LM-Count 137.56 5140 62.53 161
LM-Cut 98.70 4474 14.01 114
Max 65.90 2341 18.94 70
Combination Qualllyy - 1B GENGER g Coverage
score nodes score  score
FELM-Count | 150.79 104.06 42.96 184
LR #Dss) 120.05 71.10 17.20 150
ASH (Fpss) 156.60 88.17 37.15 182
LR @amA1D 113.02 65.09 13.81 144
ASH @amain | 152.53 76.49 24.46 184
LR wHFs) 150.18 81.70 30.86 185
ASH wHFs) 192.33 101.38 52.04 217

Table 2: Results regarding quality, number of expanded
nodes, execution time and number of solved problems for
individual heuristics and combination of heuristics. The
instance-generating methods appear in parentheses.

LR with the MHFS instance-generating method can
solve 185 problems, 24 problems more than LM-Count, the
best single heuristic. This approach can solve a problem
more than the FF/LM-Count combination. The results with
respect the quality score are similar. ASH(MHFS) can solve
217 problems, 33 problems more than the FF/LM-Count
combination (the one used in LAMA11). ASH(MHES) is
also the best configuration in terms of quality. Regarding
time, the LM-Count heuristic is the best one, despite solving
fewer problems. A similar behaviour can be seen with respect
to the number of expanded nodes, where the FF/LM-Count
combination is slightly better than ASH(MHFS) with worse
coverage.

Overall, the comparison between the linear combination of
heuristics and their use in an alternation list favors the latter.
This was at least to be to some extent expected, because: first,
alternation lists exploit effectively the strengths of the more
informative heuristics in the instance while paying only a
linear amount of time as penalty; and second, they introduce
diversity, which tends to be beneficial in most planning
domains where plateaus may hinder the search process.

Implementation Details

After the experimentation we are now in position to design a
competitive planner. From our observations, the use of cost-
sensitive heuristics leads to an improvement in quality, but
it is still lackluster in terms of coverage. For this reason, we
adopt a strategy similar to LAMA’s. LAMA uses an anytime
scheme composed by several phases, in which first unit-cost
heuristics are used (in particular the FF and LandmarkCount
heuristics) along with greedy best first search, deferred

evaluation and preferred operators, and after founding the
first solution a series of searches are sequentially performed,
in which greedy enhancements are disabled and Weighted
A* is used with a decreasing weight.

The main drawback of LAMA’s strategy is that using the
FF and LandmarkCount heuristics after the first solution
is found is unjustified. Because of this, LLAMA learns
which combination of heuristics is the most appropriate per
domain and uses that combination instead of the FF and
LandmarkCount heuristics once the first solution is found.
This achieves the same coverage as LAMA but aims to
improve the quality score thanks to the learning phase.

LLAMA’s anytime phase is identical to LAMA’s except
for the employed heuristics. The heuristics are used in an
alternating queue instead of using the linear combination, as
Table 2] shows that the combination in an alternation queue
performs much better.
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