The ROLLENT Planning and Learning System at the IPC-8 Learning Track

Raquel Fuentetaja and Lukas Chrpa and Tomas de la Rosa and Mauro Vallati
{rfuentet,trosa} @inf.uc3m.es
Universidad Carlos III de Madrid, Spain
{l.chrpa,m.vallati} @hud.ac.uk
University of Huddersfield, United Kingdom

Abstract

This paper describes the ROLLENT system submitted to the
Eight International Planning Competition, Learning Track.
ROLLENT combines two machine learning techniques: gen-
eration of entanglements and decision tree learning by
ROLLER. Entanglements capture causal relationships for a
class of problems while ROLLER learns relational decision
trees useful to sort the applicable operators at a given state.
The key idea is to exploit both types of knowledge during
planning. Specifically ROLLENT planning phase applies this
knowledge to guide a “vanilla” search algorithm based on
Depth First Search.

Introduction

ROLLENT has its roots in the ideas of combining general
learning techniques for learning specific heuristics, which
has a long history in several fields of Al (McCluskey 1987
Garcia-Duran, Ferndndez, and Borrajo 2007; Balduccini
2011; Petrovic and Epstein 2008). Specifically, the objec-
tive of ROLLENT is to maintain the search algorithm sim-
ple and understandable and to adapt the behaviour of such
algorithm by exploiting different forms of automatically ex-
tracted knowledge.

The application of machine learning techniques to plan-
ning has been explored mostly by exploiting a single type
of knowledge. Usually, it is difficult to integrate several ma-
chine learning systems, particularly when they are planner-
specific. On the other hand, in the area of machine learn-
ing, the combination of multiple learnt models has been well
studied (Dietterich 2000). The base idea is to combine sev-
eral learnt models that are precise and diverse enough to ob-
tain a stronger model that compensates their individual defi-
ciencies. Typically, this refers to predictive models with the
same variable to be predicted and does not apply directly to
learning systems for planning. However, the idea of obtain-
ing stronger models by the combination of several learning
techniques is also attractive in planning, but has been ex-
plored rarely.

This paper is structured as follows. First two sections pro-
vide an overview of the two learning tecniques integrated
in ROLLENT: extraction of entanglements and decision tree

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning. Then, it describes how they are combined. Finally,
it provides some details of ROLLENT related to the Learning
Track of IPC-8.

Entanglements

(Outer) entanglements are relations between planning oper-
ators and initial or goal predicates which are used to elimi-
nate unpromissing instances of planning operators. In other
words, (outer) entanglements say that to solve a given plan-
ning problem some operators can be restricted to be appli-
cable only when some preconditions are in the initial state
or some positive effects are target goals. In the well-known
BlocksWorld domain, it can be observed that unstacking
blocks only occurs from their initial positions. In this case
an entanglement by init will capture that if an atom on (a
b) is to be achieved for a corresponding instance of oper-
ator unstack (?x ?y) (unstack (a b)), then the atom is
an initial atom. Similarly, it may be observed that stacking
blocks only occurs to their goal positions. Then, an entan-
glement by goal will capture that atom on (b a) achieved
by a corresponding instance of operator stack (?x ?y)
(stack (b a)) is a goal atom. Encoding (outer) entangle-
ments is done by introducing supplementary static predi-
cates having the same arguments as predicates involved in
the entanglement relations and instances of these static pred-
icates corresponding to instances of original predicates in
the initial or goal state are added to the initial state. For ex-
ample, if on (a Db) is in the initial state, then static-on (a
b) is added to the initial state. These supplementary static
predicates are added into preconditions of operators in-
volved in the entanglement relations, so they allow only
such operators’ instances that follow conditions of entangle-
ments.

Entanglements are extracted from training plans, solu-
tions of simpler problems, in such a way that we check for
each operator and related predicates whether the entangle-
ment conditions are satisfied in all the training plans (some
error rate might be allowed since training plans may con-
sist of ‘flaws’ such as redundant actions). Although apply-
ing extracted entanglements might cause loss of solvabil-
ity of some non-training problems, it has been empirically
shown that it does not happen (or happens very rarely) if the
structure of the problems is similar (only numbers of objects
increase). For deeper insights, see (Chrpa and McCluskey

2012).

Roller: Decision Tree Learning for planning

Roller (de la Rosa et al. 2011) is an inductive learning sys-
tem that learns relational decision trees for planning. These
decision trees contain control knowledge useful to sort the
successors of a given node for state space search planners.
Roller receives as inputs a domain, expressed in PDDL
(STRIPS), and a set of training problems. Then, it extracts
training instances from the search trees generated to solve
training problems. These training instances are used to train
TILDE (Blockeel and De Raedt 1998), an off-the-shelf re-
lational classification tool that generate decision trees.

Decision trees are binary trees in which each node repre-
sents a query about a feature expressed as a positive pred-
icate logic literal. The main features considered by Roller
are: (1) helpful actions, whether a particular action is help-
ful or not at the current state. The notion of helpful actions
was first introduced in the FF planner (Hoffmann and Nebel
2001); (2) target pending and achieved goals, whether a tar-
get goal is pending or achieved in the current state; and (3)
static facts, whether a fact is static, i.e. it is defined at the
initial state and any action modifies it. The Roller approach
is specific to planners that incorporate a notion of helpful
actions, i.e. a heuristic able of dividing the successors of a
given node in two sets representing bad and good succes-
sors. Roller provides an order of successors that can correct
this heuristic by experience.

Roller generates two types of decision trees: operator
trees and binding trees. The leafs of operator trees provide
an order to sort applicable operators at a given state, depend-
ing on the features indicated by the path from the root node
to the leaf. Only one operator tree is generated per domain.
Binding trees allow to sort the instantiations of each oper-
ator. Leafs of binding trees recommend to select or reject
an instantiation. For a domain, Roller generates one binding
tree per operator. As an example, Figure 1 shows part of the
operators tree learned in Depots. The branch in bold states
that if there is a 1oad helpful action and a 11 £t helpful ac-
tion and there is not an unload helpful action for the current
state, the operators have to be applied in the order given by
the reached leaf: first 11 £t with a support of 3 over 6, then
drive, drop and load with a support of 1 over 6, and fi-
nally unload. Figure 2 shows part of the bindings tree for the
operator drive in Depots. Instantiations of drive matching
with the branch in bold are recommended to be rejected.

Roller operates in two phases: the learning phase and
the planning phase. In the learning phase, the set of deci-
sion trees for a domain is generated using a set of training
problems. In the planning phase, a state space search al-
gorithm is applied to solve a new problem in that domain.
The base search algorithm is Depth-First Search (DFS) with
chronological backtracking endowed with the helpful ac-
tions heuristic and an strategy to explore first the space gen-
erated by helpful actions. When this base algorithm con-
siders Roller decision trees, applicable actions are sorted
and re-classified as helpful/non-helpful following the advice
they provide. Basically, decision trees are used to compute a
priority for each applicable action. Then, these actions are

selected(-A,-B,-C)

helpful_load(A,B,-D,-E,-F,-G) ?

+—-yes: helpful lift(A,B,-H,-1,-J,G) ?

| +——yes: nothelpful unload(A,B,-K,-L,-M,-N) ?

| | +—-yes: [lift] 6.0

|| [[drive:1.0,lift:3.0,drop:1.0,load:1.0,unload:0.0]]
| | +—-no: [lift] 12.0

Figure 1: Partial view of the operators tree in Depots.

selected_drive(-A,-B,-C,-D,-E,-F)
helpful_drive(A,B,C,D,E) ?

+—-yes: nothelpful load(A,B,-G,-H,C,D) ?

| +—-yes: helpful_unload(A,B,-I,-J,C,D) ?

| | +——yes: [rejected] 12.0 [[selected:0.0,rejected:12.0]]
| | +—-no: nothelpful lift(A,B,-K,-L,-M,E) ?

| | +--yes: [selected] 20.0 [[selected:18.0,rejected:2.0]]
| | +--no: helpful_unload(A,B,-N,-O,-P,-Q) ?

Figure 2: Partial view of the bindings tree for the operator
drive in Depots.

sorted by decreasing priorities.! The only actions consid-
ered now as non-helpful are those with a priority of zero.
Roller planning algorithm is the addition of both, the base
algorithm and the mechanisms to sort and re-classify ac-
tions considering decision trees (originally this algorithm
was called Depth-first Helpful Context Policy (DHCP) (de la
Rosa et al. 2011)). This is a complete algorithm given that it
considers all applicable actions at every node.

The Rollent System

For inductive learning tasks, one of the reasons that justify
the use of a combination of several learning techniques, in-
stead of a single one, is representational (Dietterich 2000).

'Ties are broken arbitrarily.

Domain Training Problems

'E;F;""t“'"'"' T T L eaming phase

' ENTANGLEMENTS ROLLER
+ | Extraction & Reformulation Learning

|—> Ref. Domain —’ A

Ref.Training
Problems

DecisionTrees
(Ref. Domain)

Entanglements

Figure 3: Rollent learning phase.

Entanglements Decision Trees

'5.;;&;,,}3;;;1 """"""""""""""""" '

“\) Ref. Domain

A

7
ENTANGLEMENTS
Reformulation

Domain ROLLER

Planning

Problem ———» L

Ref. Problem‘

v

Solution Plan

Figure 4: Rollent planning phase.

It could be the case that the true function cannot be repre-
sented. This is one of the ways in which a learning algorithm
fails. There are also statistical reasons, related with the num-
ber of training problems; and computational reasons, related
with the use of greedy algorithms to generate the model.
However, we focus on the representational issue, since com-
bining entanglements and relational decision trees learnt by
Roller improves this aspect specially.

Given the different nature of the knowledge represented
by entanglements and Roller, it seems clear that considering
both types of knowledge can improve the representational
power of the learnt model. This idea is also supported by the
fact that previous results for both techniques considered sep-
arately showed they are valuable to guide search algorithms
for solving planning tasks (Chrpa and McCluskey 2012;
de la Rosa et al. 2011).

The ROLLENT system combines entanglements and de-
cision trees in a modular way consisting on apply them in
sequence. This is possible because entanglements can be
expressed by reformulating the planning domain and prob-
lems. Otherwise, the only option would be to implement a
new planner considering both knowledge. Figure 3 shows
the learning phase. Inputs are a domain and a set of train-
ing problems. Entanglements are generated first, producing
the reformulated domain and training problems. Then, de-
cision trees are learnt considering the reformulated domain
and problems. Thus, entanglements-related knowledge is in-
corporated naturally in decisions trees since this knowledge
expressed by means of domain predicates. These new predi-
cates are considered by the learning algorithm to be included
as queries in decision trees. In this sense, the representa-
tional power of decision trees increases. Additionally, the
search space for the reformulated problem is smaller than
the original one which can facilitate the learning task when
entanglements are successful.

In the planning phase, shown in Figure 4, inputs are the
original domain and a problem. In a first step they are refor-
mulated to include entanglements. Then, the Roller planning
algorithm is applied using the decision trees generated in the
learning phase.

The planning algorithm can be more aggressive than the
individual Roller planning algorithm on the original domain.
This algorithm uses decision trees to sort successors and is
therefore complete. However, the incorporation of entangle-
ments in the domain has the effect of pruning successors,
which results in a reduction of the branching factor. For this

reason, planning using the combination can be incomplete.

Competition Details

In this section we describe some specific details of the ROL-
LENT system submitted to the IPC:

The base planner The base search algorithm is Depth-
First Search (DFS) with chronological backtracking en-
dowed with the helpful actions heuristic and an strategy to
explore first the space generated by helpful actions. This
algorithm could be enough to solve problems in some do-
mains, but we expect it to show very poor performance given
the large size of the test distributions at IPC-8 Learning
Track.

Training problems As in ROLLER, training problems for
generating DCK should be small enough to be explored
completely using a BFS + Branch and Bound algorithm.
We have used the random problem generators provided by
the organizers to generate appropriate training sets for ROL-
LENT. It has several parameter related to the learning algo-
rithms, for instance, the type of entanglements to use (we
used only outer entanglements), the different predicates that
can appear as queries in decision trees or the number of
minimal cases considered by TILDE to generate a leaf.
The value of these parameters has been selected empirically.
That is, we have trained ROLLENT (entanglements and de-
cision trees) several times and evaluated its performance in
a set of problems of the expected size for the test phase.

Reasoning about costs ROLLENT is a system designed to
discover information about the domain and problem struc-
ture in terms of predicate logic (ROLLER part) or in terms of
exclusivity relations between predicates and operators (en-
tanglements part). The learning techniques used in ROL-
LENT do not learn knowledge related to action costs. Thus,
the first solution found by ROLLENT may present poor qual-
ity in domains where the best policy depends on the cost
structure of problems (e.g., a graph with ramdom arc costs
for the navigation in a city). Since the quality of solutions is
the main metric for the competition, we have adopted simple
strategy to optimize the quality of the first solution found.
Instead of stopping in the first solution, ROLLENT search al-
gorithm continues searching until the time bound, trying to
improve the best solution found so far. The search prunes
any branch that exceeds the current best cost found.

References

Balduccini, M. 2011. Learning and using domain-specific
heuristics in ASP solvers. Al Communications 24(2):147—
164.

Blockeel, H., and De Raedt, L. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1-2):285-297.

Chrpa, L., and McCluskey, T. L. 2012. On exploiting struc-

tures of classical planning problems: Generalizing entangle-
ments. In Proceedings of ECAI, 240-245.

de la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational deci-
sion trees. Journal of Artificial Intelligence Research (JAIR)
(40):767-813.

Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In Multiple classifier systems, LBCS-1857, 1-15.

Garcia-Durdn, R.; Ferndndez, F.; and Borrajo, D. 2007.
Inductive logic programming. chapter Combining Macro-
operators with Control Knowledge, 229-243.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253-302.

McCluskey, T. L. 1987. Combining weak learning heuristics
in general problem solvers. In Proceedings of the 10th In-
ternational Joint Conference on Artificial Intelligence, 331—
333.

Petrovic, S., and Epstein, S. L. 2008. Random subsets sup-
port learning a mixture of heuristics. International Journal
on Artificial Intelligence Tools 17(03):501-520.

