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Abstract

Data dissemination in wireless environments is often accomplished by on-demand broadcasting. The time
critical nature of the data requests plays an important role in scheduling these broadcasts. Most research
in on-demand broadcast scheduling has focused on the timely servicing of requests so as to minimize the
number of missed deadlines. However, there exists many environments where the utility of the received
data is an equally important criterion as its timeliness. Missing the deadline may reduce the utility of the
data but does not necessarily make it zero. In this work, we address the problem of scheduling real time
data broadcasts with such soft deadlines. We investigate search based optimization techniques to develop
broadcast schedulers that make explicit attempts to maximize the utility of data requests as well as service as
many requests as possible within an acceptable time limit. Our analysis shows that heuristic driven methods
for such problems can be improved by hybridizing them with local search algorithms. We further investigate
the option of employing a dynamic optimization technique to facilitate utility gain, thereby eliminating the
requirement of a heuristic in the process. An evolution strategy based stochastic hill-climber is investigated
in this context.
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1. Introduction

Wireless computing involves a network of
portable computing devices thoroughly embedded
in our day-to-day work and personal life. The de-
vices interact with each other and with other com-
puting nodes by exchanging rapid and continuous
streams of data. To facilitate almost impercepti-
ble human-computer interaction, data access times
in such environments must be maintained within a
specified quality-of-service (QoS) level. Challenges
in doing so arise from the fact that wireless band-
width is typically a limited resource, and thus it
is not always possible to meet the quality require-
ments of every device. This constraint not only
makes wireless data access a challenging problem,
but also identifies “optimal resource allocation” as
one of the major research problems in this domain.
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A wireless environment encompasses both peer-
to-peer and client-server modes of data dissemina-
tion. For example, a typical pervasive health care
system may involve multiple sensor nodes dissem-
inating data on the monitored vital signs of a pa-
tient to a personal digital assistant carried by the
attending health care personnel. Data communi-
cation follows a peer-to-peer architecture in such a
setting. On the other hand, a wireless environment
designed to serve queries on flight information in
an airport is based on a client-server mode of com-
munication. Flight information usually reside in a
database server from where data is disseminated
based on the incoming queries. For an environment
like an airport, it is appropriate to assume that the
database will be queried more frequently for cer-
tain types of data. Similar situations can be imag-
ined in a stock trading center, a pervasive traffic
management system, or a pervasive supermarket.
Such scenarios open up possibilities of adopting a
broadcast based architecture to distribute data in
a way that multiple queries for the same data item
get served by a single broadcast. The focus of this
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paper is directed towards a combinatorial problem
that arises in this approach.

1.1. An Example

Quality of service (QoS) is an important facet in
wireless data access. Consider the following exam-
ple application - a traffic management system for a
big city. The city government implements a traf-
fic pricing policy for all vehicles on all roads based
on factors such as the distance traveled, the type
of road traveled on, the time of day, vehicle cat-
egory and customer type (for example, special fee
paying, traveling salesman, paramedic on-call, etc.)
The system gathers real time traffic data via thou-
sands of sensors, such as traffic cameras, magneto-
resistive traffic sensors and radars spread through-
out the city. To help drivers optimize their travel
costs, the traffic management system provides vari-
ous routing services to drivers to avoid roadblocks,
construction delays, congestion, accidents etc1.

A driver requests and gets routing services using
smart GPS equipped devices as follows. A device
periodically uploads the vehicle’s current location
(based on GPS information), intended destination,
time willing to spend for traveling to destination,
a prioritized list of routing restrictions (for exam-
ple, waypoints that the driver would like to visit
if possible, rest stops, scenic byways, etc.), vehicle
category and customer type, and current speed. In
response, the server replies with a set of route infor-
mation. Each route information contains, among
other things, information about road segments to
travel on this route and traffic patterns on these
road segments. The GPS equipped device uses this
information and uses other parameters set by the
driver to compute a good route to take. Note that
since the response to many drivers will no doubt
contain overlapping route segments and traffic in-
formation, it makes sense broadcasting this data.

The requests arrive at the server with various
priority levels and soft deadlines. For example, a
higher fee paying customer gets a higher priority
than a lesser fee paying customer. A VIP’s convoy
may get a still higher priority. Emergency respon-
ders get the highest priority. A routing request that
comes associated with a set of routing restrictions,
for example, a list of waypoints that the driver

1Note that such an application is not very far-fetched.
The Dutch government is in the process of introducing a sim-
ilar electronic traffic management system and pricing model.
See [1].

would like to visit en route, automatically gets as-
sociated with a set of soft deadlines based on the
speed of the driver. The requests from different
drivers may also get re-prioritized at the server so
as to meet a broader goal of reducing congestion
and enabling smoother traffic flows.

In this example, the different data that the server
needs to serve is associated with different utility val-
ues. Owing to the dynamic nature of the utility of
responses to queries, the time criticality factor can-
not be ignored altogether when disseminating data.
The server would like to satisfy as many queries in a
timely manner as possible. However, some queries
may be delayed beyond their specified deadlines (for
example, the query from the VIP’s convoy). The
users, who hardly realize the broader goals of the
traffic management system and various bottlenecks
in the information infrastructure, would like to have
their requests served at the earliest; however, it is
reasonable to assume that delayed data still pro-
vide some utility even if received after a specified
deadline. For example, a delayed route information
may prevent a driver from visiting a particular way-
point en route or may require the driver to use the
next gas station. Nonetheless, it may still allow the
driver to choose a good route to the destination.
An assumption of reduced data utility in the face
of missed deadline enables data broadcasts to be
tailored in such a way that total utility associated
with a broadcast is maximized. This helps maintain
a certain QoS level in the underlying infrastructure.

Note that the specific problem we are trying to
address is by no means restricted only to the ex-
ample application outlined above. Similar scenar-
ios are witnessed in environments such as stock ex-
changes. Here stock brokers on the floor seek and
receive periodic market data on wireless hand-held
devices and notebooks and analyze them to deter-
mine which stocks are rewarding. They also buy
and sell stocks using such devices. Popularity of
stocks changes throughout the day, and it is im-
portant to analyze such trends along multiple di-
mensions in order to buy and sell stocks. Thus,
although queries from brokers are implicitly associ-
ated with deadlines, these can be considered soft.
The overall goal of the stock exchange still remains
to satisfy as many requests as possible in a timely
manner. To wrap up the scope of the problem do-
main we would like to point out that in order to
make useful decisions, the stock broker may make
a request for a group of data from the stock ex-
change (for example, stock prices of three different
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oil companies). A typical constraint on such a re-
quest is that all these data items must be received
(not necessarily in any particular order) before the
stock broker can perform the relevant local anal-
ysis of the market trends. Such a request can be
considered as a transactional request (or simply a
transaction). For scheduling in such cases, addi-
tional constraints must be placed for ensuring the
validity of data received.

1.2. Contributions

Wireless broadcast mechanisms have been exten-
sively investigated earlier. However, very few of
the proposed approaches give attention to the effec-
tive utility involved in the timely servicing of a re-
quest. Time criticality has been earlier addressed in
a number of contexts with the assumption of a hard
deadline [2, 3, 4]. Broadcast scheduling in these
works mostly focus on the timely servicing of a re-
quest to minimize the number of missed deadlines.
When the assumption of a soft deadline is appro-
priate, a broadcast schedule should not only try to
serve as many requests as possible, but also make
a “best effort” in serving them with higher utility
values. Often, heuristics are employed in a dy-
namic setting to determine these schedules. How-
ever, their designs do not involve the QoS criteria
explicitly. Heuristic based methods make local de-
cisions w.r.t. a request or a broadcast, and often
fail to capture the sought global QoS requirement.
Much of this is due to the fact that real time de-
cision making cannot span beyond an acceptable
time limit, thereby restricting the usage of “full
length” optimization techniques to the domain. It
does become imperative to design hybrid strategies
that can combine the fast real time performance of
heuristics and the better solution qualities obtained
from search based optimization.

Our contributions in this paper are summarized
in the following points.

1. We explore data broadcasting as a combinato-
rial problem defined with an objective of utility
maximization. This utility driven optimization
of broadcasts adds more value to a wireless sys-
tem since the energy cycles used by the devices
while retrieving a data item will presumably
not be wasteful.

2. We provide an extensive analysis of the search
space involved in the problem and report the
performance of multiple heuristics on a set of
statistically generated synthetic requests. We

argue that traditional heuristics usually gener-
ate solutions in a sub-optimal part of this space
with respect to a given global utility measure-
ment.

3. We empirically demonstrate that “local search”
can be used in real-time to boost the perfor-
mance of naive heuristics such as EDF, with
performance levels often at par with other
elaborate heuristics. In addition, we pro-
pose an evolution strategy based light-weight
stochastic hill-climber that explicitly searches
the space of schedules to maximize utility.
Results demonstrate that, in certain problem
types, this explicit search strategy can gener-
ate higher objective values than a traditional
heuristic based approach.

4. We perform the analysis indicated in the above
points in the context of two problem types,
namely at the data item level and at the trans-
action level. In the former type, requests in-
volve a single data item, while multiple un-
ordered data items are involved in a request
of the latter type. Besides the local search
and evolution strategy based approaches, we
present the performance of heuristics such
as EDF, HUF, RxW, SIN-α, NPRDS and
ASETS* on one or more of these problem
types. Transaction level scheduling induces an
exponentially large search space and has been
observed to demonstrate very different dynam-
ics than a data item level problem.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the related work in this domain.
The broadcast model and the scheduling problem
are discussed in Section 3. The explored solution
methods are described in Section 4. Section 5 dis-
cusses the scheduling problem at the transaction
level. The experimental setup followed by results
and discussions are summarized in Section 6 and
Section 7, respectively. Finally, Section 8 concludes
the paper.

2. Related Work

Data broadcasting has been extensively studied
in the context of wireless communication systems.
Su and Tassiulas [5] study the problem in the con-
text of access latency and formulate a determinis-
tic dynamic optimization problem, the solution to
which provides a minimum access latency schedule.
Acharya and Muthukrishnan propose the stretch
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metric [6] to account for differences in service times
arising in the case of variable sized data items.
They propose the MAX heuristic to optimize the
worst case stretch of individual requests. Aksoy
and Franklin’s RxW heuristic [7] is an attempt to
combine the benefits of the MRF and FCFS heuris-
tics, each known to give preference to popular and
long standing data items, respectively. Hameed and
Vaidya adapt a packet fair queuing algorithm to
this domain [8]. Lee et al. provide a survey of these
techniques [9] and their applicability in the area of
pervasive data access.

The above mentioned algorithms ignore the time
criticality factor while serving data requests. Early
work on time constrained data requests is presented
by Xuan et al. [10]. Jiang and Vaidya address the
issue by considering broadcast environments where
clients do not wait indefinitely to get their requests
served [2]. Lam et al. look at the time criticality
factor from the perspective of temporal data va-
lidity [11]. Fernandez and Ramamritham propose
a hybrid broadcasting approach to minimize the
overall number of deadlines missed [12]. Tempo-
ral constraints on data are revisited by Wu and Lee
with the added complexity of request deadlines [13].
Their RDDS algorithm assigns a priority level to
each requested data item and broadcasts the item
with the highest priority. Xu et al. propose the
SIN -α algorithm to minimize the request drop rate
[4]. However, their approach does not take variable
data sizes into consideration. This motivates Lee et
al. to propose the PRDS algorithm that takes into
account the urgency, data size and access frequen-
cies of various data items [3].

Theoretical analysis on the hardness of the prob-
lem has led to a number of conclusions in the recent
few years. In particular, Chang et al. show that
the offline problem of minimizing the maximum re-
sponse time is NP-complete [14]. In the real-time
case, the authors show that no deterministic algo-
rithm can be better than 2-competitive. Similarly,
broadcast scheduling with the objective of minimiz-
ing the total response time, or with deadlines, has
also been proved to be NP-complete.

Several shortcomings of using a strict deadline
based system are discussed by Ravindran et al. [15]
in the context of real-time scheduling and resource
management. Jensen et al. point out that real-time
systems are usually associated with a value based
model which can be expressed as a function of time
[16]. They introduce the idea of time-utility func-
tions to capture the semantics of soft time con-

straints that are particularly useful in specifying
utility as a function of completion time. An at-
tempt to understand the benefit of utility values
in hard deadline scheduling algorithms is under-
taken by Buttazzo et al. [17]. Wu et al. study a
task scheduling problem where utility is considered
a function of the start time of the task [18]. Utility
based scheduling in data broadcasting is addressed
by Dewri et al. in the context of pervasive envi-
ronments [19]. However, the focus of the work is
limited to requests for single data items only. The
work presented here provides extensions in the form
of formulations catering to the scheduling problem
when requests are made at the transaction level.

While the notion of a transaction have been ex-
plored in the database community, its treatment in
the form of a collection of data items is rare in the
broadcasting domain. Chehadeh et al. take into
consideration object graphs to cluster related ob-
jects close to one another in the broadcast channel
[20]. Hurson et al. propose an extension for multi-
ple broadcast channels [21]. Huang et al. show that
several cases of the problem of broadcasting related
data is NP-hard and propose a genetic algorithm
to address the problem [22]. Guirguis et al. pro-
pose the ASETS* algorithm to schedule workflows
that is conceptually equivalent to scheduling mul-
tiple data items with an ordering constraint [23].
This work caters to a different category of appli-
cations where such precedence constraints are not
always available.

Multiple issues related to data broadcasting, such
as hard deadlines, request drop rate, data item size,
and access frequencies, have been addressed in this
collection of works. We also consider variable data
sizes and their access frequencies in the simulation
study, but do not measure the performance of an
algorithm using the request drop rate. Instead, a
time-utility function is used for this purpose.

3. Broadcast Scheduling

Wireless data broadcasting is an efficient ap-
proach to address data requests, particularly when
similar requests are received from a large user com-
munity. Broadcasting in such cases alleviate the
requirement for repeated communication between
the server and the different clients interested in the
same data item. Push-based architectures broad-
cast commonly accessed data at regular intervals.
Contrary to this, on-demand architectures allow
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Figure 1: Typical on-demand broadcast architecture in a wireless environment.

the clients to send their requests to the server. How-
ever, access to the data item is facilitated through
a broadcast which, for more frequently requested
data, serves multiple clients at a time.

Data access in wireless environments can be mod-
eled with an on-demand broadcast architecture
where particular emphasis has to be paid to the
time criticality and utility of a served request. The
time criticality factor emphasizes that the requested
data is expected within a specified time window;
failure to do so would result in an utility loss. A
broadcast schedule in such environments has to
cater to the added requirement of maintaining a
high utility value for a majority of the requests.

3.1. Broadcast Model

Fig. 1 shows a typical on-demand data broad-
cast architecture in a wireless environment. Differ-
ent client devices use an uplink channel to a data
provider to request various data items served by the
provider. The data items are assumed to reside lo-
cally with the data provider. Each request Qj takes
the form of a tuple 〈Dj , Rj , Pj〉, where Rj is the re-
sponse time within which the requesting client ex-
pects the data item Dj and asserts a priority level
Pj on the request. Although expected response
times and priorities can be explicitly specified by
the client, it is not a strict restriction. For exam-
ple, the broadcast server can assign priorities and
response time requirements to the scheduler based
on the current status (say a geographic location) of
the client making the request. Note that a single

request involves only one data item. A client re-
quiring multiple data items sends multiple requests
for each data item separately. Requests from the
same client can be served in any order. The data
provider reads the requests from a queue and in-
vokes a scheduler to determine the order in which
the requests are to be served. It is important to note
that new requests arrive frequently into the queue
which makes the task of the scheduler rather dy-
namic in nature. The scheduler needs to re-examine
the previously generated schedule to accommodate
the time critical requirements of any new request.
Data dissemination is carried out through a single
channel data access point. Clients listen to this
channel and consider a request to be served as soon
as the broadcast for the corresponding item begins.

The underlying scheduler is invoked every time
a new request is received. At each invocation, the
scheduler first determines the requests that are be-
ing currently served and removes them from the
request queue. The data items required to serve
the remaining requests are then determined and a
schedule is generated to serve them. The scheduler
tries to make a “best effort” at generating a sched-
ule that respects the response time requirements of
the requesting devices.

3.2. Utility Metric

Real-time systems are typically known to uti-
lize the abstraction of hard deadlines to specify
time constraints during resource management. As
pointed out in [15], such abstractions result in vari-
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ous drawbacks while making a scheduling decision.
The most prominent of all is the domino effect dur-
ing overload conditions [24] where a hard deadline
based scheduler would start favoring jobs that are
near to missing their deadlines. Depending on the
completion time of such favored jobs, a situation
can arise where the scheduler is no longer (or for
a majority) able to schedule jobs that satisfy their
deadlines. Further, hard deadlines are usually bi-
nary in nature – they are either met or not met.
This prohibits any distinction to be made on the
quality of schedules that differ primarily on the
amount of delay introduced in meeting the time
constraints. Note that such distinctions are im-
portant for a scheduler incorporating some form of
search to find better schedules. Hard deadlines also
fail to capture any non-linear time constraint where
the utility of completing a job is related to the time
of completion, as has been pointed out earlier in the
motivating example.

Utility functions overcome these problems by
adapting their behavior in times of overload sce-
narios. In underload conditions, utility functions
drive schedules towards urgency satisfaction (meet-
ing deadlines) as the highest utility is typically as-
sociated with the time instances within the dead-
line. When an overload occurs (deadlines are diffi-
cult to meet), a summed utility value satisfying an
optimality criteria offers a schedule that favors jobs
that are more important to be completed over those
which are more urgent, in that they can generate
higher utility. In fact, strict deadline based schedul-
ing incorporates a very restricted formulation of an
utility function.

The utility of a data item broadcast is measured
from the response time and priority level of the re-
quests served by it. The response time rj of a re-
quest Qj arriving at time tj,arr and served at time
tj,ser is given by (tj,ser − tj,arr). As in [16], we as-
sume that the utility of a data item received by a
client decreases exponentially if not received within
the expected response time (Fig. 2). For a given re-
quest Qj , the utility generated by serving it within
a response time rj is given as,

uj =

{

Pj , rj ≤ Rj

Pje−αj(rj−Rj) , rj > Rj

(1)

The utility of broadcasting a data item d is then
given as,

Ud =
∑

j|d serves Qj

uj (2)

P

R 2R

j

j j
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Figure 2: Utility of serving a request.

For a given schedule S that broadcasts the data
items D1, D2, . . . , Dk in order, the utility of the
schedule is given as,

US =
Dk
∑

d=D1

Ud (3)

In this work, we assume that the utility of a data
item for a client decays by half for every factor of
increase in response time, i.e. αj = ln 0.5/Rj .

3.3. Problem Statement

A data source D is a set of N data items,
{D1, D2, . . . , DN}, with respective sizes d1, d2, . . . ,
dN . A request queue at any instance is a dynamic
queue Q with entries Qj of the form 〈Dj , Rj , Pj〉,
where Dj ∈ D, and Rj , Pj ≥ 0. At an instance
tcurr, let Q1, Q2, . . . , QM be the entries in Q. A
schedule S at an instance is a total ordering of the
elements of the set

⋃

j=1,...,M
{Dj}.

In the context of the broadcast scheduling prob-
lem, the request queue Q corresponds to the queue
left after all requests currently being served are re-
moved. Note that two different entries Qj and Qk

in Q may be interested in the same data item. How-
ever, it is important to realize that the current in-
stance of the scheduler only needs to schedule a sin-
gle broadcast for the data item. The arrival time
of all requests in Q is at most equal to the current
time, tcurr, and the scheduled broadcast time t for
the data item in Q will be tcurr at the earliest. A
schedule is thus a total ordering of the unique ele-
ments in all data items requested.

The time instance at which a particular data item
from the schedule starts to be broadcast depends on
the bandwidth of the broadcast channel. A broad-
cast channel of bandwidth b can transmit b data
units per time unit. If tready is the ready time of the
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channel (maximum of tcurr and the end time of cur-
rent broadcast), then for the schedule D1 < D2 <
. . . < Dk, the data item Di starts to be broadcast
at time instance tDi

= tready +
∑i−1

j=1(dj/b). All re-
quests in Q for the data item Di is then assumed to
be served, i.e. tj,ser for such requests is set to tDi

.
We explicitly mention this computation to point out
that the utility metric involves the access time, and
not the tuning time, of a request. The access time
is the time elapsed from the moment a client issues
a request to the moment when it starts to receive
the requested data item. The tuning time is the
time the client has to actively scan the broadcast
channel to receive the data item.

While Eq. (3) can be used to measure the in-
stantaneous utility of a schedule, it is not suitable
in determining the performance level of a solution
method in a dynamic setting. We thus use the util-
ity generated from the queries already served as the
yardstick to compare performance. In other words,
the performance of a solution methodology at an in-
stance where queries Q1, . . . , QK are already served
is measured by

∑K
j=1 uj . In effect, we are interested

in the global utility generated by the method. The
aforementioned QoS criteria could be a specification
in terms of this global utility. The objective behind
the design of a solution methodology is to maximize
this global utility measured at any instance.

4. Solution Methodology

An implicit constraint in real time data broad-
casting is the time factor involved in making a
scheduling decision. Data requests usually arrive
more frequently than they can be served, which
in turn leads to the generation of a long request
queue. Any scheduling method must be fast enough
to generate a good schedule without adding much
to the access time of requests. Latencies induced
between broadcasts because of the scheduling time
is also a detrimental factor to resource utilization.
Heuristics are often used as fast decision makers,
but may result in degraded solution quality. Hy-
brid approaches in this context can provide a suit-
able trade-off between solution quality and decision
time.

Operating systems employ a range of heuristics
for various resource scheduling tasks. However,
these scheduling tasks have some inherent differ-
ences with data broadcast scheduling. For instance,
schedulers used for CPU scheduling assume that a
scheduled entity will have exclusive access to the

processor. This assumption is not valid in data
broadcasting since a scheduled data item can very
well serve multiple requests. Most schedulers also
do not incorporate time-criticality constraints in
their design. Algorithms such as C-SCAN ensures
that all I/O requests are eventually served, but does
not consider the priority of a request. The operat-
ing system has to be policy driven to enforce the
priority requirements.

4.1. Heuristics

For the purpose of this study, we use two tradi-
tional heuristics – Earliest Deadline First (EDF)
and Highest Utility First (HUF) – which takes into
account the time critical nature of a data request.
Further, we experiment with three state-of-the-art
heuristics proposed for deadline based scheduling.

4.1.1. EDF and HUF
EDF starts by first scheduling the data item

that corresponds to a request with the minimum
tcurr−(tarr+Rj). All requests in Q that get served
by this broadcast are removed (all requests for the
scheduled data item) and the process is repeated on
the remaining requests. For multiple channels, the
heuristic can be combined with best local earliness
to map the data item to a channel that becomes
ready at the earliest. EDF gives preference to data
items that have long been awaited by some request,
thereby having some level of impact on the utility
that can be generated by the requests. However, it
does not take into account the actual utility gener-
ated. HUF alleviates this problem by first consid-
ering the data item that can generate the highest
amount of utility. The strategy adopted by HUF
may seem like a good approach particularly when
the overall utility is the performance metric. How-
ever, HUF generated schedules may not be flexi-
ble enough in a dynamic environment. For exam-
ple, if the most requested data item in the current
request queue generates the highest utility, HUF
would schedule the item as the next broadcast. If
this data item requires a high broadcast time, not
only will the subsequent broadcasts in the schedule
suffer in utility, but new requests will also have to
wait for a long time before getting served.

4.1.2. RxW
The RxW heuristic [7] schedules data items in de-

creasing order of their R×W values, where R is the
number of pending requests for a data item and W
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is the time for which the oldest pending request for
the data item has been waiting. Such a broadcast
mechanism gives preference to data items which are
either frequently requested or has not been broad-
cast in a long time (with at least one request waiting
for it). This approach aims at balancing popularity
and accumulation of requests for unpopular items.
Hence, although the heuristic does not have any im-
plicit factor that considers the deadline of requests,
deadlines can be met by not keeping a request too
long in the request queue.

4.1.3. SIN-α

The SIN-α (Slack time Inverse Number of pend-
ing requests) heuristic [4] uses the following two ar-
guments.

• Given two items with the same number of pend-
ing requests, the one with a closer deadline
should be broadcast first to reduce request drop
rate;

• Given two items with the same deadline, the
one with more pending requests should be
broadcast first to reduce request drop rate.

Based on these two arguments, the sin.α value for
a data item (requested for by at least one client) is
given as

sin.α =
slack

numα
=

1stDeadline− clock

numα

where slack represents the urgency factor, given as
the duration from the current time (clock) to the
absolute deadline of the most urgent outstanding
request (1stDeadline) for the data item, and num
(≥ 1) represents the productivity factor, given as
the number of pending requests for the data item.
With sin.α values assigned to the data items, the
schedule is created in increasing order of the sin.α
values. The α value in our experiments is set at 2
based on overall performance assessment presented
in the original work. We shall henceforth refer to
this heuristic as SIN2.

4.1.4. NPRDS

Apart from the two arguments provided for SIN-
α, the PRDS (Preemptive Request count, Deadline,
Size) heuristic [3] incorporates a third factor based
on data sizes.

• Given two data items with the same deadline
and number of pending requests, the one with
a smaller data size should be broadcast first.

We modify PRDS into a non-preemptive version
and call it NPRDS. The heuristic works by first as-
signing a priority value to each data item (with at
least one request for it), given as R

dln×s
, where R is

the number of pending requests for the data item,
dln is the earliest feasible absolute deadline (the
broadcast of the item can serve the request before
its deadline) of outstanding requests for the data
item, and s is the size of the item. The NPRDS
schedule is generated in decreasing order of the pri-
ority values. The heuristic aims at providing a fair
treatment to different data sizes, access frequency
of data items and the deadline of requests.

4.2. Heuristics with Local Search

As mentioned earlier, one goal of this work is
to understand the performance of heuristics when
coupled with local search techniques. We therefore
introduce some amount of local search to improve
the schedules generated by the heuristics. The no-
tion of local search in this context involves changing
the generated schedules by a small amount and ac-
cept it as the new schedule if an improvement in
the utility of the schedule is obtained. The pro-
cess is repeated for a pre-specified number of iter-
ations. Such a “hill-climbing” approach is expected
to improve the utility of the schedule generated by
a heuristic. We employ the 2-exchange operator
to search a neighborhood of the current schedule.
The operator randomly selects two data items and
swaps their positions in the schedule (Fig. 3). The
notations EDF/LS and HUF/LS denote EDF and
HUF coupled with local search, respectively. Intu-
itively, these hybrid approaches should provide suf-
ficient improvements over the heuristic schedules,
w.r.t. the performance metric, as the local search
would enable the evaluation of the overall sched-
ule utility, often ignored when using the heuristics
alone.

Old Schedule : a b c d e f g h i j

Swap Pts : * *

New Schedule : a e c d b f g h i j

Figure 3: 2-exchange operator example.
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4.3. (2 + 1)-ES

Evolution Strategies (ES) [25, 26] are a class of
stochastic search methods based on computational
models of adaptation and evolution. They are typ-
ically expressed by the µ and λ parameters signi-
fying the parent and the child population, respec-
tively. Whereas the algorithmic formulation of evo-
lution strategies remains the same as that of a ge-
netic algorithm [27], two basic forms have been de-
fined for them. In the (µ + λ)-ES, µ best of the
combined parent and offspring generations are re-
tained using truncation selection. In the (µ, λ)-ES
variant, the µ best of the λ offspring replace the
parents. These definitions are analogous to that
of the steady-state and generational variants of ge-
netic algorithms. The steady-state variant of ge-
netic algorithms explicitly maintains the best so-
lution found so far, while the generational variant
blindly replaces the current population with the off-
spring population generated.

For our experimentation, we employ the (µ+ λ)-
ES variant with µ = 2 and λ = 1. This simple form
of the ES is chosen to keep the dynamic schedul-
ing time within an acceptable limit without sacri-
ficing on the solution quality. Also, a (2 + 1)-ES
can be seen as a type of greedy stochastic local
search. It is stochastic because there is no fixed
neighborhood and therefore the neighborhood does
not define a fixed set of local optima. Otherwise,
the method is very much a local search technique
– sample the neighborhood and move to the best
point. The pseudo code for the algorithm is given
below.

Step 1: Generate two initial solutions x and y and
evaluate them.

Step 2: Recombine x and y to generate an off-
spring.

Step 3: Mutate the offspring with probability p.

Step 4: Evaluate the offspring.

Step 5: Replace x and y by the two best solutions
from x, y and the offspring.

Step 6: Goto Step 2 until termination criteria is
met.

4.3.1. Solution encoding and evaluation
For the data broadcasting problem mentioned in

the previous section, a typical schedule can be rep-
resented by a permutation of the unique data item

numbers in Q. Thus, for n unique data items, the
search spans over a space of n! points. The eval-
uation of a solution involves finding the utility of
the represented schedule as given by Eq. (3). The
higher the utility, the better is the solution.

4.3.2. Syswerda’s recombination operator
Recombination operators for permutation prob-

lems differ from usual crossover operators in their
ability to maintain the uniqueness of entries in
the offspring produced. For a schedule encoded
as a permutation, it is desired that recombina-
tion of two schedules does not result in an invalid
schedule. A number of permutation based opera-
tors have been proposed in this context [28]. We
employ Syswerda’s recombination operator in this
study. The operator is particularly useful in con-
texts where maintaining the relative ordering be-
tween entries is more critical than their adjacency.

x : a b c d e f g h i j

y : c f a j h d i g b e

Key Pos. : * * * *

Offspring: a j c d e f g h i b

Figure 4: Syswerda’s recombination operator.

The operator randomly selects several key posi-
tions and the order of appearance of the elements
in these positions are imposed from one solution to
the other. In Fig. 4, the entries at the four key
positions from y, {a, j, i, b}, are rearranged in x to
match the order of occurrence in y. The offspring
is x with the rearranged entries.

4.3.3. Mutation using insertion
An elementary mutation operator defines a cer-

tain neighborhood around a solution which in turn
dictates the number of states which can be reached
from the parent state in one step [25]. Insertion
based mutation selects two random positions in a
sequence and the element at the first chosen posi-
tion is migrated to appear after the element in the
second chosen position (Fig. 5).

Parent : a b c d e f g h i j

Mutate Pts: * *

Offspring : a c d e b f g h i j

Figure 5: Mutation using the insertion operator.
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4.3.4. Initialization and termination

The initial solutions determine the starting
points in the permutation space where the search
begins. Thus, a good solution produced by EDF or
HUF could be a choice for the purpose. However,
we do not want to add the complexity of determin-
ing an EDF or HUF schedule to the search process,
and hence randomly generate the initial solutions
x and y. The ES algorithm is terminated after a
fixed number of iterations. If schedules generated
by other heuristics are taken as initial solutions, the
termination criteria could as well be specified as the
point where a particular level of improvement has
been obtained over the starting schedules. It is im-
portant that an alternative is also suggested since
improvement based termination may never get re-
alized.

5. Transaction Scheduling

The aforementioned problem assumes that re-
quests are made at the data item level. A client
interested in multiple data items would make in-
dependent requests for the individual items. As an
extension of this problem, we next consider the case
of transaction level requests. As mentioned in Sec-
tion 1, a transaction level request differs from a
data item level request in the sense that a request
involves more than one data item. The order of
retrieval of the data items is not important, but
processing at the client end cannot start until all
data items are received.

The formulation of this next problem is similar
to the one suggested in Section 3.3, with differences
appearing in the definition of a query Qj . An en-
try Qj in the request queue now takes the form
〈Dj , Rj , Pj〉, where Dj = {Dj1 , . . . , Djn} ⊆ D and
Rj , Pj ≥ 0. The request is considered to be served
at tj,served, which is the time instance when the last
remaining data item in Dj is broadcast. The utility
generated by serving the request then follows from
Eq. (1). Note that, with this formulation, schedul-
ing at the transaction level is not a simple extension
of the problem of scheduling an aggregation of mul-
tiple requests from the same client. The following
factors highlight the differences in data item and
transaction level scheduling.

1. Multiple data item level requests made from
the same client can have different deadlines as-
sociated with different data items. However,

the deadline specified in a transaction level re-
quest is specific to the transaction and not the
individual data items required to complete it.

2. Each request made at the data item level would
accrue some utility, irrespective of whether it
came from the same client or not. The notion
of dependency between the data items (to com-
plete a transaction) is not embedded in the re-
quests. A request at the transaction level spec-
ifies this dependency by collecting the required
data items into a set and making a request for
the entire set. Utility is accrued in this case
only when all items in the set are served.

3. When requests are made independently, the
scheduler is not required to maintain low lev-
els of latency between broadcasts of data items
requested by the same client. However, at the
transaction level, the schedules generated must
take the latency into consideration since the
utility will keep reducing until all requested
data items are retrieved by the client.

5.1. Heuristics

The two traditional heuristics for data item level
scheduling – EDF and HUF – are slightly modified
to perform transaction level scheduling. The EDF
heuristic for transaction level scheduling, denoted
by T-EDF, sequentially schedules all data items in
a request by giving preference to the request hav-
ing the earliest deadline. The HUF heuristic for
transaction level scheduling, denoted by T-HUF,
sequentially schedules all data items in a request
with preference to the one which can generate the
highest amount of utility. The modifications enable
the heuristics to make scheduling decisions based on
the deadline, or utility, of serving a request, rather
than the data items contained in it.

One might argue that T-EDF and T-HUF can
be represented by EDF and HUF, respectively by
considering each request to be for a single data
item whose size is given by the total size of the
data items requested. This is a viable representa-
tion since T-EDF and T-HUF do not take the data
items contained in a request into account. How-
ever, note that the schedule generated is always at
the data item level. Hence, there is room to ex-
ploit any existing overlaps in the data items of two
different requests. For example, consider the re-
quests A for data items {D1, D2, D3, D4} and B
for data items {D2, D4}, with every data item hav-
ing the same size. Representing A as a request for
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a data item DA (whose size is the sum of the sizes
of D1, D2, D3 and D4) and B as a request for a
data item DB loses the fact that the data items
in B are a subset of those in A. Further, exploit-
ing the existence of such subsets is also not trivial.
This is specifically true for T-EDF which makes
decisions based solely on the deadline. If A has
an earlier deadline than B then the schedule gen-
erated will be D1 < D2 < D3 < D4; otherwise
D2 < D4 < D1 < D3. Observe that, in the former
case, both requests A and B will be served at the
same time instance (the instance when D4 starts
broadcasting), while in the latter case, B will get
served earlier. Hence, irrespective of the deadlines,
the latter schedule is always equal to or better than
the former. It is possible that even T-HUF fails to
exploit the relationship. If serving A first generates
higher utility than serving B first, T-HUF would
generate the former schedule, thereby pushing the
finish time of B further in the time line. It misses
the observation that by serving B first it can still
maintain the same utility for A. The situation is
further complicated when the data items have vary-
ing sizes. Given such observations, augmenting the
heuristics with local search would allow for an in-
teresting exploration at the data item level. Recall
that the local search would attempt to improve on
the heuristic generated schedule by swapping data
items at different positions. The corresponding lo-
cal search variants for T-EDF and T-HUF are de-
noted by T-EDF/LS and T-HUF/LS, respectively.

5.2. (2 + 1)-ES

The (2 + 1)-ES does not make a distinction be-
tween data item level and transaction level requests.
It always operates at the data item level irrespec-
tive of how the request was made. Similar to the
data item level case, the (2+1)-ES here first deter-
mines the set of data items to be scheduled in order
to serve all requests in the queue –

⋃

Dj . It then
generates a schedule with these items to maximize
the utility. Since requests are served only when
all requested data items are received by a client,
random initial solutions are likely to disperse de-
pendent data items (belonging to the same trans-
action). Hence, we modified the initialization strat-
egy to direct the search from a favorable region in
the search space. The modification creates the ini-
tial solutions by choosing random requests from the
queue and sequentially laying out the data items
contained in the requests on the schedule. For ex-
ample, if D1 = {D1, D2, D3} and D2 = {D3, D2}

are two transactions on the request queue, and
transaction 1 is randomly chosen under this process,
then data items D1, D2 and D3 will be consecutive
on the initial schedule. The process generates a fa-
vorable arrangement of the data items for some of
the requests. The remaining functionality of the ES
is maintained as described in Section 4.3.

5.3. ASETS*

In addition to T-EDF and T-HUF, we ex-
periment with another heuristic called ASETS*
for transaction level schedules. ASETS* is a
parameter-free adaptive policy that attempts to
combine the benefits of EDF and the SRPT (Short-
est Remaining Processing Time) heuristics by adap-
tively choosing the right algorithm depending on
the load in the system [23]. The algorithm is based
on the argument that EDF is often useful in min-
imizing the tardiness (amount of delay after the
deadline) of deadline based requests in a lightly
loaded system, while SRPT proves to be a better
choice under high loads. Under ASETS*, two sep-
arate lists are maintained, one with requests that
can still make their deadlines (and ordered by their
deadlines) and another with those that have already
missed their deadlines (ordered by their remaining
processing time). The heuristic then chooses the
top request from one of the two lists, based on the
total negative impact on the total tardiness of the
system. Note that the idea of web transactions used
in the original work is fundamentally different from
that of a transaction in this work. Nonetheless,
adaptive switching between EDF and SRPT can be
potentially useful when transactions have low/high
overlaps in the data items they request.

6. Experimental Setup

The data sets used in our experiments are gen-
erated using various popular distributions that are
known to capture the dynamics of a public data
access system. The different parameters of the ex-
periment are tabulated in Table 1 and discussed be-
low. We generate two different data sets with these
parameter settings, one involving data item level
requests and another involving transaction level re-
quests. Experiments are run independently on the
two data sets using the corresponding heuristics and
the (2 + 1)-ES.

Each data set contains 10, 000 requests generated
using a Poisson distribution with an arrival rate of
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Table 1: Experiment parameters.

Parameter Value Comment

N 300 Number of data items
dmin 5KB Minimum data item size
dmax 1000KB Maximum data item size
b 120 KB/s Broadcast channel bandwidth
m 60s/180s Request response time mean

for data item/transaction level requests
σ 20s/40s Request response time standard deviation

for data item/transaction level requests
r 5 Request arrival rate
rT 5 Transaction size Poisson distribution rate
s 0.8 Zipf’s law characterizing exponent
P Low(1), Medium(2), High(4) Priority levels
p 0.5 Mutation probability

Gen 1000 Number of iterations for local search and ES

r requests per second. Each request consists of an
arrival time, data item number (or set of data item
numbers for transaction level requests), an expected
response time, and a priority level. For transaction
level requests, the number of data items contained
in a transaction is drawn from another Poisson dis-
tribution with rate rT items per transaction.

We would like to point here that the number of
data items (N) to be handled by a scheduler need
not be very big for a particular service. Each broad-
cast station would typically be responsible for cater-
ing requests involving a sub-domain of the entire
setup, in which case its data domain would also be
comparatively smaller. The data items requested
are assumed to follow the commonly used Zipf -like
distribution [29] with the characterizing exponent
of 0.8. Under this assumption, the first data item
becomes the most requested item, while the last one
is the least requested. Broadcast schedules can be
heavily affected by the size of the most requested
data item. Hence, we consider two different assign-
ments of sizes adopted from earlier works [3, 8]. The
INC distribution makes the most requested data
item the smallest in size, while the DEC distribu-
tion makes it the largest in size.

INC : di = dmin +
(i− 1)(dmax − dmin + 1)

N

DEC : di = dmax −
(i− 1)(dmax − dmin + 1)

N

Expected response times are assigned from a nor-
mal distribution with mean m and standard devi-
ation σ. The particular settings of these parame-

ters in our data item level experiment results in ex-
pected response times to be generated in the range
of [0, 120]s with a probability of 0.997. For trans-
action level requests, the mean and standard devi-
ation are changed so that the interval changes to
[60, 300]s. Any value generated outside the range
of the intervals is changed to the lower bound of
the corresponding interval.

We use three different priority levels for the re-
quests – low, medium, and high. Numeric values are
assigned to these levels such that the significance of
a level is twice that of the previous one. Since the
total utility is related to the priority of the requests,
we make assignments from these levels in such a way
that the maximum utility obtainable by serving re-
quests from each priority level is probabilistically
equal. To do so, we use a roulette-wheel selection
[27] mechanism which effectively sets the probabil-
ity of selecting a priority level as: P (Low) = 4

7 ,
P (Medium) = 2

7 , and P (High) = 1
7 . This en-

sures that no priority value is over-represented in
terms of its ability to contribute to the total utility
obtainable. This characteristic is required so that
heuristics like HUF cannot ignore low priority re-
quests in an attempt to maximize the total utility.

Workloads on the scheduler can be varied by ei-
ther changing the request arrival rate, or the chan-
nel bandwidth. We use the latter approach and
specify the bandwidth used wherever different from
the default.

The local search for EDF/LS, HUF/LS, T-
EDF/LS and T-HUF/LS are run for Gen number
of iterations. For (2 + 1)-ES, the same number of
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Table 2: Percentage of maximum total utility obtained by the solution methods on data item level scheduling.

EDF EDF/LS HUF HUF/LS RxW SIN2 NPRDS (2+1)-ES

INC 83.52 88.21 96.32 97.88 73.71 73.87 77.01 97.26
DEC 20.72 40.24 42.13 55.51 42.04 42.46 42.87 69.07

iterations is chosen as the termination criteria. The
number of iterations has been fixed by experimenta-
tion such that the wall-clock scheduling time is not
more than 0.01s on a 2.4 GHz Pentium 4 machine
with 512 MB memory and running Fedora Core 7.
This is critical so that the runtime of the iterative
algorithms do not impose high latencies in the de-
cision making process. However, the non-iterative
heuristics have a much lower runtime – in the or-
der of 2 - 5 milliseconds. The performance of each
method is measured at the time instance when all
the requests get served. In other words, the perfor-
mance of each method is given by the sum of the
utilities generated by serving each request in the
data set.

7. Results and Discussion

We first present the overall performance results
obtained for the different solution methodologies on
the data item level data set. Although, the data
item level scheduling problem can be viewed as a
special case of the transaction level scheduling, we
observed that a method’s performance can be quite
different in these two problem classes.

7.1. Data Item Level Scheduling

Table 2 shows the performance in terms of the
percentage of maximum total utility returned by us-
ing each of the methods. The maximum total utility
is obtained when every request is served within its
expected response time, in which case it attains an
utility equal to its priority level. Thus, summing
up the priorities of all requests gives the maximum
total utility that can be obtained.

For the INC data size distribution, HUF,
HUF/LS and ES have similar performance. Al-
though, EDF and EDF/LS have a slightly lower
performance, both methods do reasonably well. A
major difference is observed in the amount of im-
provement gained in EDF by using local search, as
compared to that of HUF. The other three heuris-
tics demonstrate a comparatively lower achieve-
ment in total utility.

7.1.1. EDF vs. HUF

Differences arising in the performance of EDF
and HUF can be explained using Fig. 6. The top
row in the figure shows the utility obtained by serv-
ing a request. Clearly, the accumulation of points
is mostly concentrated in the [0, 0.5] range for EDF
(left). For HUF (right), three distinct bands show
up near the points 4, 2, and 1 on the y-axis. A
high concentration of points in these regions indi-
cate that a good fraction of the requests are served
within their response time requirements. Moreover,
even if the response time requirement could not be
met, HUF manages to serve them with a good util-
ity value. The figure confirms this point since the
band near 0 utility in HUF is not as dense as in
EDF.

The bottom row in Fig. 6 plots the utility of the
requests served during a particular broadcast. We
notice the presence of vertical bands in EDF (left)
which shows that a good number of requests get
served by a single broadcast. This is also validated
by the fact that EDF does almost half the number
of broadcasts as done by HUF (right). For an in-
tuitive understanding of this observation, consider
the instance when a broadcast is ongoing. Multi-
ple new requests come in and accumulate in the
queue until the current broadcast ends. Most of
these requests would be for data items that are
more frequently requested. When EDF generates a
schedule for the outstanding requests, it gives pref-
erence to the request that is closest to the deadline,
or has crossed the deadline by the largest amount.
Since the queue will mostly be populated with re-
quests for frequently requested items, chances are
high that EDF selects one of such requests. Thus,
when a broadcast for such an item occurs, it serves
all of the corresponding requests. This explana-
tion is invalid for HUF since preference is first given
to a data item that can generate the most utility.
Since the data item with highest utility may not be
the most requested one, more broadcasts may be
needed for HUF.

Further, when the request queue gets long, EDF’s
preference to requests waiting for a long time to be
served essentially results in almost no utility from
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Figure 6: Utility derived by using EDF and HUF with INC data size distribution. Top: Utility obtained from each of the
request for EDF (left) and HUF (right). Bottom: Utility of requests served during a broadcast for EDF (left) and HUF (right).

serving that request. If we extend this observa-
tion into the scheduling decisions taken over a long
time, EDF will repeatedly schedule older and older
requests. If the queue size continues to grow, this
essentially results in EDF failing to generate any
substantial utility after a certain point of time, as
seen in Fig. 6 (bottom).

7.1.2. Impact of local search
Local search improves the EDF and HUF results

for the DEC distribution up to almost between 75%
and 100%. Recall that the DEC distribution as-
signs the maximum size to the most requested data
item. If a schedule is not carefully built in this situ-
ation, there could be heavy losses in utility because
other requests are waiting while the most requested
data item is being broadcast. It is important that
the scheduler does not incorporate the broadcast
of heavy data items too frequently into its sched-
ule and instead find a suitable trade-off with the
induced utility loss. Unfortunately EDF and HUF
generated schedules fail to maintain this sought bal-
ance. To illustrate what happens when local search
is added, we refer to Fig. 7.

To generate Fig. 7, we enabled the local search
mechanism when the 3000th scheduling instance
with EDF is reached. At this point, the request
queue contained requests for 127 unique data items.
The local search mechanism uses the 2-exchange
operator to generate a new schedule. To begin
with, the 2-exchange operator is applied to the EDF
schedule to generate a new one. If the utility im-
proves by more than 20 units, the new schedule
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Figure 7: Improvements obtained by doing 50000 iterations
of the 2-exchange operator for the EDF schedule generated
during the 3000th scheduling instance. The DEC data size
distribution is used here. A newly obtained solution is con-
sidered better only if it exceeds the utility of the current
solution by at least 20 units.

is considered for any further 2-exchange operation.
The process is repeated for 50000 iterations. The
plot shows the factor of improvement obtained from
the EDF schedule at each iteration of the local
search. The solid line joins the points where a gen-
erated schedule had an utility improvement of 20
units, or more, over the current one.

The horizontal bands in the figure illustrate the
fact that the schedule space is mostly flat in struc-
ture. For a given schedule, most of its neighbor-
ing schedules (obtained by the 2-exchange opera-

14



% success rate

E
m
p
i
r
i
c
a
l
 
C
D
F

0.13

0.97

0.92

0.07

HUFEDF

Figure 8: Empirical cumulative density function of the %
success rates of performing 100 independent iterations of the
2-exchange operation in each scheduling instance with EDF
(left) and HUF (right). A success means the operation re-
sulted in a better schedule.

tor) have, more or less, equal amounts of utility as-
sociated with them. An interesting observation is
that the schedule utility improves to a factor of 2.5
within the first 1000 iterations of the local search
(inset Fig. 7), after which the progress slows down.
This implies that as the schedules become better
and better, the local search mechanism finds it dif-
ficult to generate a still better schedule (observe
the long horizontal band stretching from around the
15000 to the 50000 iteration).

Since the results indicate that EDF and HUF
both gain substantial improvement with local
search, it can be inferred that their schedules have
much room for improvement when the utility mea-
surement is the metric of choice. This is evidenced
in Fig. 8. To generate the plots, the space near
an EDF (HUF) generated schedule is sampled 100
times. Each sample is obtained by applying the 2-
exchange operator to the heuristic generated sched-
ule. A success is noted if there is an increase in util-
ity of the schedule. With the success rate (number
of success/number of samples) obtained in all the
scheduling instances for the 10000 requests, an em-
pirical cumulative density function is constructed.
A point (x, y) in the plot evaluates to saying that
in y fraction of the scheduling instances, a better
schedule is obtained 0 to x times out of the 100
independent samples taken. For EDF, about 84%
(97% − 13%) of the schedules have been improved
40 to 60 times. This high success rate for a majority
of the schedules generated indicate that EDF is not
a good heuristic to consider in the context of utility.
HUF displays a similar increase in utility, but with

Table 3: (2+1)-ES generated total raw utility value shown as
mean/standard deviation from 30 runs. The maximum total
utility that can be generated is: 17230 and 16961 units in the
data item level and transaction level data sets, respectively.

Data Item Transaction

INC 16761.07/51.54 12657.14/83.62
DEC 11728.61/167.35 6910.68/113.81

a relatively lower success rate. HUF schedules gen-
erate higher utilities than EDF schedules and hence
the success rate is low.

The observations till this point help us make the
following conclusions. The nature of the search
space tells us that significant improvements can be
obtained by using local search on heuristic sched-
ules, specially when the schedule utilities are sub-
stantially lower than what can be achieved. We
observe that EDF and HUF in fact generate sched-
ules that are not difficult to improve with a single
swap of the data item positions. Therefore, com-
bining local search to both the heuristics enable us
to at least “climb up” the easily reachable points in
the search space.

7.1.3. HUF/LS vs. (2 + 1)-ES
Our justification as to why local search with an

operator like 2-exchange fails after a certain point
is based on the fact that these operators are lim-
ited by the number of points they can sample – the
neighborhood. As schedules become better, much
variation in them is required to obtain further im-
provement. Mutation based operators are designed
to limit this variation while recombination can sam-
ple the search space more diversely [30, 31]. This
is the primary motivation behind using a recombi-
native ES to get improved schedules. In addition,
our initial experiments showed that a higher muta-
tion rate (0.5 used here) is useful in better sampling
a flat search space, specially when working with a
restricted population size. Table 3 lists few disper-
sion measures to statistically validate the results
from the ES. Standard deviation measures derived
from 30 independent runs of the algorithm are less
than 1% in all the scenarios.

To analyze the performance differences in
HUF/LS and ES, we make the problem difficult by
reducing the bandwidth to 80 KB/s. The DEC
data size distribution is used and the broadcast fre-
quencies for the 300 data items are noted. Fig. 9
(top) shows the frequency distribution. A clear dis-
tinction is observed in the frequencies for average
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Figure 9: Top: Broadcast frequency of the N data items for
ES (left) and HUF/LS (right). Bottom: Fraction of max-
imum utility obtained from the different broadcasts for ES
(left) and HUF/LS (right). The DEC distribution is used
with a 80 KB/s bandwidth.

sized data items. Recall that HUF first schedules
the data item with the highest utility. However,
it fails to take into account the impact of broad-
casting that item on the utility that can be gener-
ated from the remaining requests. Since a majority
of the requests are for the larger data items, it is
highly likely that such items get scheduled more
frequently. As a result, most of the bandwidth is
used up transmitting heavy data items. The im-
pact of this is not felt on small data items as they
are not requested often. However, for average data
items that do have a substantial presence in the re-
quests, utility can suffer. The difference between
the HUF/LS schedule and ES schedule appears at
this point.

HUF schedules broadcast average sized items too
infrequently, which implies that most requests for
them wait for a long time before getting served. ES
schedules have a comparatively higher frequency of
broadcast for such data items, thereby maintaining
a trade-off between the utility loss from not servic-
ing frequently requested items faster and the utility
gain from servicing average data items in a uniform
manner. As can be seen from Fig. 9 (bottom), the
pitfalls of the absence of this balance in HUF/LS

is observed after a majority of the broadcasts has
been done. HUF/LS schedules do perform better in
maintaining a good fraction of the maximum utility
during the initial broadcasts (notice that majority
of the points are above the 0.2 limit on the y-axis
prior to the 600th broadcast). Much of the differ-
ence in performance arises because of the utility
losses resulting after that. In contrast to that, ES
schedules consistently balance losses and gains to
perform well almost till the end of the last broad-
cast.

7.1.4. Other heuristics
The remaining three heuristics, namely RxW,

SIN2 and NPRDS, employ elaborate strategies to
control the size of the request queue. However,
these strategies seem to have a minimal impact, if
not adverse, on the performance of the heuristics.
All of these heuristics achieve a comparatively lower
utility level on the INC distribution, which appears
to be a relatively easier problem for the other meth-
ods. Nonetheless, considering factors such as num-
ber of pending requests and data item size plays
a vital role when most data items to be broadcast
are comparatively larger in size. The three heuris-
tics account for these features and achieve equal
levels of utility as achieved by HUF or EDF/LS.
There exists correlation between how fast the re-
quest queue can be cleared and the utility achieved
in the process. Unlike EDF, these heuristics have
a strategic bias towards broadcasts that can clear
a larger number of requests from the queue. Lo-
cal search remains a viable supplement to further
improve the schedules.

7.2. Transaction Level Scheduling

Table 4 shows the performance of the solution
methods on the transaction level scheduling prob-
lem in terms of the percentage of maximum utility
attained. Similar to the data item level scheduling,
the problem is not difficult to solve for the INC
type data size distribution. Hybrid methods involv-
ing the use of local search appear to be particularly
effective. The problem is comparatively difficult to
solve with the DEC type distribution. Nonethe-
less, local search provides substantial improvement
on the quality of the heuristic generated schedules
in this case as well.

7.2.1. Performance on INC
The INC type distribution assigns the smallest

size to the most requested data item. With this
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Table 4: Percentage of maximum total utility obtained by the solution methods for transaction level scheduling.

T-EDF T-EDF/LS T-HUF T-HUF/LS ASETS* (2+1)-ES

INC 66.69 87.78 70.92 87.68 80.09 74.18
DEC 33.47 54.82 27.14 50.88 14.95 40.77

1 2 4 1 2 4

1 2 4 1 2 4
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Figure 10: Whisker plots of response time for earliest
deadline and highest utility heuristics on transaction level
scheduling with the INC distribution. T-EDF fails to dis-
tinguish between requests of different priority levels. T-HUF
makes the distinction on the average but response times are
often high. Local search suitably modifies the schedules in
both cases.

distribution, most requests have smaller data items
in the requested set. Typical bandwidth values, as
used in these experiments, thus allow multiple (and
different) requests to be served in a relatively short
span of time. Most difficulties in scheduling arise
when sporadic broadcasts of bigger data items are
made and the request queue grows in this duration.

Fig. 10 shows whisker plots of the response times
for the earliest deadline and the highest utility
heuristics, along with their local search variants,
when applied on the data set with the INC dis-
tribution. The response time of a request is the
difference in time between its arrival and the broad-
cast of the last remaining data item in the requested
set. Note that, despite the high variance in response
time, T-HUF manages a higher utility than T-EDF.
The only visible factor better in T-HUF is the me-
dian value of these response times. We thus focus
our attention to this statistic. Using the median
response time as the metric, we see that T-EDF
maintains similar values across requests of different
priorities. It fails to identify that high priority re-

quests can generate more utility and hence the data
items in such requests should receive some level of
preference over low priority requests. The observa-
tion is not surprising since T-EDF’s efforts are re-
stricted to the deadline requirement only. In effect,
there is no distinction between two requests with
the same amount of time remaining to their dead-
lines, but with different priorities. T-HUF makes
the distinction clear and further differentiates be-
tween such requests with the added advantage of
being able to identify broadcasts that might serve
multiple low priority requests instead of just a sin-
gle high priority request.

Although T-EDF and T-HUF’s differences come
from the ability to distinguish between priority lev-
els of requests, it does not seem to be the only factor
affecting the utility. Local search on these methods
result in substantial improvement. As described
in the hypothetical example in Section 5.1, both
T-EDF and T-HUF do not take into account the
effect of intermingling data items on the schedule
utility. By swapping data items across the sched-
ule, local search effectuates better exploitation of
the fact that commonly requested data items are
present in a significant fraction of the requests in
the queue.

7.2.2. Performance on DEC

A major difference between data item level
scheduling and transaction level scheduling is in the
number of data items that has to be broadcast to
serve the requests in the data set. With an aver-
age transaction size of 5 data items in each request,
transaction level scheduling has to make 5 different
broadcasts before a single request is served. Thus,
heuristics in this problem must be able to exploit
any overlaps between requests to be effective in util-
ity. The problem is further complicated with the
DEC type distribution. All requests in this case
will contain at least one or more big data items as
a result of the Zipf distribution. If broadcast of
such items (taking a long time to broadcast) serves
a very small fraction of the requests, then utility
will most likely suffer in the long run. Further, av-
erage or smaller sized data items will be requested
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Figure 11: Broadcast frequency of the N data items for transaction level scheduling in the DEC distribution. Distribution of
average and below-average sized data items reaches a uniform trend for high utility solution methods.

with a less frequency, often by requests separated
far apart in the time line. Once again, utility will
suffer if a heuristic waits for a long time to accu-
mulate requests for such data items with the objec-
tive of serving multiple such requests with a single
broadcast. Thus, a heuristic must be able to bal-
ance these two aspects of broadcasting when work-
ing on transaction level scheduling with the DEC
distribution.

Fig. 11 shows the broadcast frequency of the dif-
ferent data items on this problem. The frequency
distribution is very dissimilar than in the case of
data item level scheduling. T-EDF, which performs
better than T-HUF here, manages to maintain an
almost uniform distribution. In fact, if the first
20% of the bigger data items are not considered, all
methods show a similar trend. The uniform distri-
bution is an extreme form of the balance we seek
as indicated above. T-HUF encounters a problem
when seeking this balance and results in a marginal
drop in performance as compared to T-EDF. In
transaction level scheduling, requests which over-
lap significantly with parts of other requests are the
ones that can generate the highest utility. The over-
lap mostly occurs in the frequently requested data
items. T-HUF schedules such requests first without
taking into account that delaying a broadcast for a
commonly requested item can actually help accu-
mulate more requests interested in the same data
item. Unless a new request has better overlap fea-
tures than the ones already existing in the queue,
the T-HUF schedule undergoes very small changes
and virtually remains consistent, for a certain pe-
riod of time. What disrupts the consistency is the
accumulation of enough new requests to change the
overlap features altogether. However, multiple data
items (often the bigger ones) have already been
broadcast by this time and T-HUF is needed to

schedule another broadcast for them. In the case
of T-EDF, this effect is overpowered to some ex-
tent by the deadline requirement. As and when a
new request with a smaller deadline, and preferably
with a lesser overlap with the existing requests ar-
rive, T-EDF immediately gives preference to it. As
a result, broadcast times of data items in the ex-
isting schedule is delayed, which helps serve more
requests now. The frequency of broadcast of com-
monly requested data items in T-EDF and T-HUF
corroborates our justification.

Performance improvements in these heuristics
when aided by local search is mostly attributable
to the higher frequency of broadcasts for average
and smaller sized data items. Recall that a re-
quest is served only when all data items of inter-
est are received by it, irrespective of the order of
retrieval. Consider a request interested in the data
items D1, D2, and D3, with D1 being a commonly
requested item under the DEC distribution. Next,
consider the two schedules – D1 < D2 < D3 and
D3 < D2 < D1. In both cases, the client making
the request completes retrieval of the data items at
the same time instance. However, the latter sched-
ule has the advantage of delaying the broadcast of
D1, which in effect improves the chances of it serv-
ing newly accumulated requests as well. Exploiting
such strategies is not possible by T-EDF and T-
HUF unless aided by an exchange operator of the
kind present in the local search variant. The side ef-
fect of this is that infrequently requested data items
will be more often broadcast. This is clearly visible
in T-EDF/LS and T-HUF/LS.

7.2.3. Dynamics of local search
The ability to exploit the overlap features of re-

quests makes local search a promising aid to the
heuristic generated schedules in both data item
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Figure 12: Improvements obtained by local search in T-
EDF/LS during the 5000th scheduling instance. Improve-
ments are minor when the T-EDF schedule is already “good"
(INC distribution). Utility shows an increasing trend at the
end of the 1000th iteration of the local search for the DEC
distribution.

level and transaction level scheduling. Recall from
Fig. 7 that the local search is most effective when
schedules can be easily improved by adopting a
hill-climbing approach. The search space becomes
more and more flat as better schedules are discov-
ered. Often, reaching this flat region is not difficult
in data item level scheduling, both for the INC
and DEC distribution. However, the dynamics are
somewhat different in transaction level scheduling.

Fig. 12 shows the improvement gained over a T-
EDF generated schedule during the 5000th schedul-
ing instance in T-EDF/LS. The plot depicts the
progress of local search in its search for a better
schedule. The T-EDF generated schedule is closer
to a flat region for the INC distribution than for
the DEC distribution. Hence, improvements are
often slow in the INC distribution. However, ob-
serve that for the DEC distribution, at the end
of the 1000th iteration of local search, the improve-
ments are still showing an increasing trend. This in-
dicates that, given more number of iterations, local
search can continue to easily improve the schedules
before hitting the flat regions. Given the diverse
number of factors determining the utility of sched-
ules in the DEC distribution, it is not surprising
to see that T-EDF generated schedules are far from
being optimal. Besides, a hill-climbing strategy like
local search can effectively exploit the dynamics of
the search space to adjust these schedules to bring

them closer to the optimal. The only hindrance
we face in doing so is the right adjustment of the
number of iterations without imposing a bottleneck
in the running time of the scheduler. We provide
some suggestions on how this can be done in a later
subsection.

7.2.4. Performance of (2 + 1)-ES
Our primary motivation behind using (2+ 1)-ES

in data item level scheduling is to enable a diverse
sampling of the search space when a schedule’s util-
ity no longer shows quick improvements. However,
for transaction level scheduling, other factors start
to dominate the performance of this method.

Transaction level scheduling leads to an explo-
sion in the size of the search space. For data item
level scheduling, a request queue of size n with re-
quests for distinct items has a schedule search space
of size n!, whereas in transaction level scheduling
with k items per transaction, the search space can
become as big as (kn)!. A bigger search space not
only requires more exploration, but can also inject
a higher possibility of prematurely converging to a
local optima. Fig. 13 depicts the exploration with
local search and the (2+1)-ES. In order to generate
the plots, we ran T-EDF until the 5000th request
arrives. A schedule for the requests in the queue
at this point is then generated by using T-EDF/LS
and (2 + 1)-ES ran for 5000 iterations each. This
guarantees that both methods are operating on the
same queue (same search space) and for sufficient
number of iterations. Utility improvements by the
ES starts stagnating after the 2000th iteration, sug-
gesting convergence towards a local optima. Local
search, on the other hand, has a better rate of im-
provement before starting to stagnate. This is vis-
ible for both INC and DEC distributions.

The premature convergence in (2 + 1)-ES is
mostly due to the loss in genetic diversity of the
solutions. As more and more recombination takes
place, the two parents involved in the method starts
becoming more and more similar, and finally are
unable to generate a diverse offspring. This phe-
nomenon is what typically identifies the conver-
gence of the method. However, given the bigger
search space and the small population (two) in-
volved in exploring it, the phenomenon results in
the method getting trapped in the local optima
present across the space. It is suggestive from the
broadcast frequency of different data items (Fig.
11) that, on the overall, the method failed to bal-
ance the broadcast of different sized data items for
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Figure 13: Improvements obtained by local search and ES in the schedule generated by T-EDF during the 5000th scheduling
instance. For transaction level scheduling, local search performs better in avoiding local optima compared to (2 + 1)-ES.

the DEC distribution. Changing the µ and λ pa-
rameters, as well as the mutation probability of
the method usually helps resolve such premature
convergence. However, one should keep the real
time runtime constraints into consideration while
experimenting with the parameters. Local search,
on the other hand, does not face such a problem.
Ideally, given enough number of iterations, a hill-
climbing approach can be made resilient against
getting trapped in a local optimum using random
restarts.

7.2.5. Performance of ASETS*

The ability to adaptively choose between EDF
and SRPT appears to have a positive impact on the
total utility achievable by a heuristic. The strategy
works considerably well on the INC data size dis-
tribution, with global utility levels surpassing that
of a naive heuristic like T-EDF or T-HUF. However,
the same strategy has a much negative impact when
the data size distribution is reversed. In this case,
ASETS* fails to generate almost any utility in the
broadcast data. Note that ASETS* does not distin-
guish between the different data items that form a
transaction, but only considers the time required to
broadcast all the remaining items in a transaction.
This disables the algorithm from identifying exist-
ing overlaps between transactions. Exploiting these
overlaps becomes crucial in a broadcast scenario
where most items will occupy the broadcast band-
width for a relatively longer extent of time. This
result further corroborates the claim that schedul-
ing for multiple data items is not a simple extension
of the data item level counterpart.

7.3. Scheduling Time

The number of generations allowed to local
search, or ES, can affect the quality of solutions
obtained and the time required to make scheduling
decisions. In our experiments, this value is set so
that an average request queue can be handled in a
small amount of time. However, the average queue
size will greatly vary from problem to problem, of-
ten depending on the total number of data items
served by the data source. In such situations, it
may seem difficult to determine what a good value
for the number of iterations should be. Further, in
a dynamic environment, the average queue length
itself may be a varying quantity. Nonetheless, one
should keep in mind that scheduling decisions need
not always be made instantaneously. The broadcast
time of data items vary considerably from one to the
other. The broadcast scheduled immediately next
cannot start until the current one finishes. This
latency can be used by a scheduler to continue its
search for better solutions, specially with iterative
methods like a local search or an ES.

8. Conclusions

In this paper, we address the problem of time
critical data access in wireless environments where
the time criticality can be associated with a QoS
requirement. To this end, we formulate an util-
ity metric to evaluate the performance of differ-
ent scheduling methods. The earliest deadline first
(EDF) and highest utility first (HUF) heuristics
are used in two problem domains – data item level
scheduling and transaction level scheduling. In the
data item level domain, our initial observation on
their performance conforms to the speculation that
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HUF performs better since it takes into consider-
ation the utility of requests while making schedul-
ing decisions. Also, strategies adopted in elaborate
heuristics such as RxW, SIN-α and NPRDS have a
positive impact on certain classes of problem only.
Further analysis of the nature of the scheduling
problem shows that local search can be a promising
supplement to a heuristic.

The observations drawn from this understand-
ing of the behavior of local search aided heuristics
enable us to propose an evolution strategy based
search technique that provides more variance to a
simple local search. The utility induced by such a
technique surpasses that of both EDF and HUF,
and their local search variants. This result also
shows that search based optimization techniques
are a viable option in real time broadcast scheduling
problems.

The transaction level domain appear to be a rel-
atively harder problem to solve. Balancing the
broadcast frequency of data items is important here
and we observe that T-EDF performs better in do-
ing so as compared to T-HUF. Local search still
remains a promising candidate to boost the perfor-
mance of these heuristics. For certain data size dis-
tributions, local search improvements can continue
if allowed to run outside the runtime restrictions
set in our experiments. Better strategies to trigger
the scheduler is thus required. Transaction level
scheduling also has different search space dynam-
ics, often with an explosive size and the presence
of local optima. The evolution strategy method is
affected by this, often leading to lower utility sched-
ules than local search. Further experimentation is
required in this direction to see how the parameters
of the ES can be changed to avoid susceptibility to-
wards such situations.

From a utility standpoint, we need to explore the
option of designing heuristics that pay special at-
tention to factors like broadcast frequency and loss-
gain trade-off during scheduling decisions. The va-
lidity of a broadcast is to be taken into account
when requests involve multiple data items which
may undergo regular updates. Timely delivery of a
data item then has to consider a validity deadline as
well. Application usage characteristics can also be
incorporated while making utility based scheduling
decisions. This is particularly useful since different
applications may have different time criticality re-
quirements on the data, which in turn implies dif-
ferent time-utility functions. The overall QoS in
the system will then depend on how the broadcast

schedule incorporates knowledge about the different
utility functions.
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