
Using UML to Model Relational Database Operations

Eunjee Song Shuxin Yin Indrakshi Ray
Computer Science Department

Colorado State University
Fort Collins, CO 80523, USA

Email:
�
song, yin, iray � @cs.colostate.edu

Abstract
The Unified Modeling Language (UML) is being used as the de-facto standard in the soft-

ware industry. With the adoption of UML 2.0, the new enhancements allow this version to
describe many of the elements found in today’s software technology as well as Model Driven
Architecture and Service-Oriented Architecture. Although OMG has released several UML
Profiles to tailor the language to specific areas, relational database modeling is not fully ad-
dressed in these profiles. Many existing software applications involve complex application
layer implemented in object-oriented programming languages and at the same time use rela-
tional database systems as the back-end data store. Modeling the whole system in a consistent
manner will help developers and end users better understand the application. In this work we
show how to model relational database operations using UML. Atomic database operations
are modeled based on our framework and are used as building blocks to model more complex
database operations.

1 Introduction

As software applications become more and more complicated, it is essential to capture the re-
quirements, model the system design in different phases, and communicate frequently among end
users, business analysts and developers. Object-oriented technology such as Java and .NET plays
an important role in software development. A lot of these applications are designed to process
huge amount of information which is saved in database system. Although object-oriented database
management system (OODBMS) is gaining market share, relational database management system
(RDBMS) remains the dominant database technology. Most database vendors add object-oriented
features into existing RDBMS products instead of totally abandoning RDBMS. Many software pro-
fessionals have to continue to design or maintain this kind of hybrid system with application layer
implemented using object-oriented languages and database layer implemented using RDBMS. How
to model the whole system in a consistent manner is still a challenge because there is no universal
modeling standard for both object-oriented languages and RDBMS.

1



Relational database systems play an important role in enterprise software applications. Many
vendors add their own extensions to ANSI SQL such as Oracle PL/SQL and Microsoft Transact
SQL. Data warehouse is widely used in many large and medium-sized enterprises. Business infor-
mation and data are processed and manipulated at database level before being used by applications.
These database operations implemented in packages, stored procedures, triggers and functions can
be very complex. Modeling these operations improves understandability, reusability and mainte-
nance of the database system. It is also a way to document the dynamic aspect of database system.
Entity-Relation (ER) modeling only captures the static schema and can not model dynamic opera-
tions. Current UML modeling standard does not fully address this problem as well.

Most software projects involve end users, business analysts, application development team and
database team; modeling the whole system using one standard will make communication among
team members much easier. Collaboration and cooperation has always been a key aspect of overall
system success. The UML gives us the ability to model, in a single language, the business, applica-
tion, database, and architecture of the system. By having one single language, everybody involved
can communicate their thoughts, ideas, and requirements [13].

UML Data Modeling Profile [1, 9] was proposed by Rational Software from IBM. The use of
Data Modeling Profile has resulted in using UML in database design [13]. UML can be used to
model relational database schema and it is more expressive than ER modeling. Yet the current
UML database modeling techniques mainly focus on static schema modeling. Dynamic database
operations are modeled in an ad hoc manner.

Our previous work [21] identified the weakness of UML Data Modeling Profile, that is, lack of
abilities to model operations. We proposed a framework on how to model operations at database
level so that we could have a more comprehensive understanding of the whole system. We showed
how to model atomic operations in SQL Data Manipulation Language (DML) based on relational
algebra and set theory. However, we modeled the operations at a very high-level of abstraction. In
this paper, we model operations at a much lower-level. This will give the application developers a
better idea about the semantics of the operations. We also describe many different types of query
operations since these operations are complex and are most frequently used.

SQL is a declarative language; it allows us to express what we want instead of specifying how
to do it [10]. In contrast, procedural languages use statements to tell the computer exactly what to
do in a step-wise fashion. SQL is more flexible than procedural languages since it hides internal
implementation details. We are not trying to model the internal execution details such as parsing
SQL statement, validating the statement, optimizing the statement, generating an execution plan and
executing the execution plan. All these details should not be exposed to application developers. On
the other hand, modeling database operations at SQL statement level makes it easier for end users
who are unfamiliar with SQL key words to understand the database operations.

The remainder of this paper is organized as follows. We briefly describe ER and UML modeling

2



in Section 2. In Section 3 we discuss related work including UML Data Modeling Profile. We
propose a framework of atomic database operation modeling in Section 4. We describe how to
model complex database operations using the proposed framework in Section 5. Finally we present
our conclusions in Section 6.

2 Overview of ER Modeling and UML

The Entity-Relationship (ER) model was originally proposed in 1976 [5] as a way to unify the
network and relational database views. Essentially the ER model is a conceptual data model that
views the real world as entities and relationships. The basic constructs in ER model are the entities,
attributes and relationships, all of which may be presented in an ER diagram. The ER model has
been adopted as the meta-model for the ANSI Standard in Information Resource Directory System
(IRDS).

The ER model focuses on conceptual and logical design phase of database but cannot capture
dynamic behavior of database systems. This limitation does not prevent ER Model from being
a good modeling tool since most database systems are data centric and operations are moved to
business logic and application level. Later extensions to ER Model added the capability to capture
more information, such as aggregation and inheritance [4, 17].

The Unified Modeling Language (UML) [19] is a general-purpose visual modeling language
that is used to specify, visualize, analyze, and document the artifacts of a software system [16].
It captures decisions and understanding about systems that must be constructed. It is used to un-
derstand, design, browse, configure, maintain, and control information about systems. UML2.0
represents the biggest change that has happened yet to the UML. Within UML, there have been
significant changes to the UML meta-model that defines the concepts of the language [8].

The UML 2.0 defines two major kinds of diagram types: structure diagrams and behavior dia-
grams [16]. The static structure of a system is expressed using various kinds of diagrams, such as
class diagram, component diagram, composite structure diagram, deployment diagram, object dia-
gram and package diagram. The dynamic behavior of a system is expressed using activity diagram,
communication diagram, interaction overview diagram, state machine diagram, sequence diagram,
timing diagram and use case diagram. In fact, the UML class and its structure correspond closely
to the entity type and its structure in ER diagrams. In many cases, class diagrams strongly resemble
ER diagrams. Differences emerge mainly in the modeling of operations and relationships. All fea-
tures in ER diagram can be represented in the UML class diagram. The UML class diagram is more
expressive than ER diagram for example a stereo-typed class can be used to represent a particular
type of class, an OCL notation can be used to express pre and post conditions.

UML 2.0 supports the initiative for a model-driven architecture by providing the stable technical
infrastructure that allows for additional automation of the software development process [7]. OMG’s

3



Model Driven Architecture provides an open, vendor neutral approach to the challenge of business
and technology [18]. Based on OMG’s established standards, the MDA separates business and
application logic from underlying platform. Platform Independent Model (PIM) is transformed into
Platform Specific Model (PSM) using certain transformation rules. MDA is built on top of UML
and modeling is the foundation for model transformation.

3 Related Work

There has been much research in the UML data modeling [2, 3, 11, 12, 14, 15]. Using various
transformation techniques an ER diagram can be converted into an equivalent UML class diagram.
However, almost all of the previous research focuses on static schema; none of them deals with
dynamic operations at database layer. Premerlani [14] discusses the reverse engineering of RDBMS
into OMT model. His approach emphasizes on the analysis of candidate keys, rather than primary
keys. However, the reverse engineering process requires much user interactions. Ramanathan [15]
presents an object-centered approach for doing the schema mapping. The procedure maps a 3NF
relational schema into an object-oriented schema without the explicit use of inclusion dependencies
and provides a greater scope for automation. Behm [3] proposes a two-phase transformation pro-
cess, i.e., schema transformation followed by data migration. During the data migration process,
instances of class are created, and then attributes are assigned based on a set of rules. The data map-
ping process can be implemented without much user intervention. Researchers [3, 11, 12, 13, 14, 15]
have also proposed techniques using which a UML class diagram can be transformed into an equiv-
alent ER diagram. Other researchers have worked on techniques that convert an ER diagram to a
class diagram.

The power of the UML is not limited to object oriented software development. The UML
is being applied to many other areas of software development, such as data modeling, enhancing
practitioners’ ability to communicate their needs and assessments to the rest of the team [9]. UML
Data Modeling Profile [1, 9] was proposed to apply UML to relational database modeling.

The UML can be used to describe the complete development of relational and object relational
databases from business requirements through the physical data model [1]. UML for Data Modeling
Profile is implemented by Rational Rose Data Modeler; it includes descriptions and examples for
each concept including database, schema, table, key, index, relationship, column, constraint, trigger
and stored procedures. We will list some frequently used features of Rational Data Modeler as
follows [1]:

� The stereotype ��� Database ��� , when used as a UML component, represents a database.

� A package using the ��� Schema ��� stereotype in a UML model represents a database schema.

� A class with the ��� Table ��� stereotype represents a relational table in a schema of a database.

4



� A primary key uses a PK tag in front of the column as shown, and the PK stereotyped opera-
tion is the primary key constraint.

� An FK tag represents the foreign key. It generates the foreign key constraint, which is repre-
sented by a stereotype FK on an operation.

� The Index stereotype on an operation represents a key constraint for an index.

� An identifying relationship is a relationship between two tables in which the child table must
coexist with the parent table. The identifying relationship is represented with a stereotype of
��� Identifying ��� .

� A non-identifying association represents a relationship between two independent tables. The
non-identifying relationship is created with a stereotype of ��� Non-identifying ��� .

� Columns are represented as attributes. Computed columns are defined by an expression.

� All constraints are defined as stereotyped operations and primary key is a special kind of
constraint.

� The Trigger stereotype on an operation represents the trigger on the table.

� The Unique stereotype represents the uniqueness constraint.

� Stored procedure can be represented as a stereotyped operation using ��� SP ��� . Multiple
stored procedures are contained inside a stereotyped template ��� SP Container ��� . The
signature of a stored procedure can be shown besides stored procedure name.

� Activity diagram and state machine diagram can be used to model stored procedure at a
high level; however, no corresponding relationship is defined between tables, SQL DML and
actions in activity diagram. Tables are not directly related to states in state machine diagram.

� A view is defined in the UML as a class with the stereotype of ��� View ��� .

The UML Data Profile allows application software development and data modeling with one
unified language. Figure 1 is an example of UML data model, taken from our previous work [21],
generated using Rational Rose. A simplified Air Toxics Data Archive system is used as the underly-
ing database. A typical air quality monitoring program involves at least monitoring sites, pollutants,
sampling time and concentration values.

There are three tables in this diagram: Pollutant, Site and Concentration. They are represented
using stereotyped class. In this example, there are two stored procedures. The first stored proce-
dure ReportByPollutant uses PollutantID as an input parameter; this procedure will return a result

5



set which contains all concentration information for this particular pollutant. Another stored pro-
cedure ReportBySite takes a SiteID parameter; it will return a result set which contains all con-
centration information at the specified site. These two stored procedures are contained in ��� SP
Container ��� template as two stereotyped operations. Although we can use activity diagram and
state machine diagram to model stored procedures, these two diagrams are used at requirement
analysis and logical design level. There is no standard technique to model low-level DML such as
SELECT, DELETE, UPDATE and INSERT. In many systems, the stored procedures can be very
complex. Major RDBMS vendors define their own extension to SQL standard and add many lan-
guage constructs to represent sequential, conditional and iterative operations. Many RDBMS also
allow user-defined functions to simplify commonly used operations. Modeling both stored proce-
dures and functions in a standard way will offer great benefits to application developers, database
developers and business analysts. Note that, the UML Data Profile describes the relational database.
It models the database implementation; it is at a different level of abstraction than the ER diagram.

Address:varchar(50)
SiteName:varchar(50)

1

PK_Pollutant()

PollutantID:INT

CASNumber:varchar(50)
PollutantName:varchar(50)

<<PK>>

<<FK>>
<<FK>>

*

ConcentrationValue:FLOAT
ObservationDate:DATETIME

<<PK>> PK_Concentration()

SiteID:INT

SP_1
<<SP Container>>

<<SP>> ReportBySite(SiteID:INT)
<<SP>> ReportByPollutant(PollutantID:INT)

PK PK

PK

Site

ConcentrationPollutant

1

Longitude:FLOAT
Latitude:FLOAT

<<PK>> PK_Site()

Concentration2()
Concentration3()

ConcentrationID:INT

PollutantID:INT
SiteID:INT

*

Figure 1: UML data model generated by Rational Rose

Using Rational Rose, we can only model stored procedures using activity diagram and state
machine diagram in an ad hoc fashion. No standard techniques are available as to how to model dy-
namic operations encapsulated in stored procedures and functions at implementation level. Actions
and states are represented in plain English which will create ambiguity and confusion to different
people.

4 Atomic DML Operations Modeling

In this section, before showing our modeling of the relational database operations we would like
to adapt the diagram, obtained from Rational Rose and used in our earlier work [21], to explain
our ideas with UML 2.0 compliance. In UML, four predefined basic types are supported: Boolean,
Integer, Real, and String. Therefore, Integer and String are used instead of INT and varchar. Two

6



new data types DateTime and Float are also added to the UML class diagram. We added three other
classes Projection, QueryResult, and JoinResult. The stereotype ��� temporary ��� indicates that
these classes are of temporary nature - the objects of these classes get destroyed when the DML
statement has completed execution. We added a new class TableHandler that has references to
classes representing three database tables. Figure 2 shows the details. In the following subsections,
we will show how the relational database operations are modeled as operations in the TableHandler

class.

PK_Pollutant()

PollutantID:Integer

CASNumber:String
PollutantName:String

<<PK>>

11

<<FK>>
<<FK>>

*

ConcentrationValue:Float
ObservationDate:DateTime

<<PK>> PK_Concentration()
Concentration2()
Concentration3()

ConcentrationID:Integer

PollutantID:Integer
SiteID:Integer

*

*

1

SP_1
<<SP Container>>

<<SP>> ReportBySite(SiteID:Integer)
<<SP>> ReportByPollutant(PollutantID:Integer)

...
select(table:String,expr:Expression)
delete(table:String,expr:Expression)

expr:Expression)
update(table:String,attrVal:Set(AttrVal),

JoinResult
<<temporary>>

{ordered}
pollutantRef

siteRef

{ordered}

TableHandler

insert(table:String,attrVal:Set(AttrVal)) 1

{ordered}

concentrationRef

*

PK PK

ConcentrationPollutant

1

PK

Site

*

Longitude:Float
Latitude:Float

<<PK>> PK_Site()

SiteID:Integer

Address:String
SiteName:String

Projection
<<temporary>>

QueryResult
<<temporary>>

Float
<<datatype>>

DateTime
<<datatype>> Table

Figure 2: Air toxics data archive UML data model

4.1 Relational Databases

Relational databases are based on the relational model [6]. The relational model has a strong math-
ematical foundation and it is based on set theory. Each relational table in a database is considered as
a set and each row corresponds to an element of the set. The eight relational operations performed
on the tables are union, difference, intersection, product, projection, selection, join and division.
The Structured Query Language (SQL) is the most widely used language for relational databases.
SQL is broadly categorized into Data Definition Language (DDL) and Data Manipulation Language
(DML). DDL is used for specifying and manipulating the structure of the database and DML is used
for performing operations on the database itself. In this paper, we focus on the SQL DML constructs
only.

7



4.2 SQL Data Manipulation Language

Database operations can be in the form of packages, stored procedures, functions, or other vendor
defined language constructs. However, our modeling technique will not depend upon the format
of these operations. Essentially all database operations are implemented using atomic SQL data
manipulation language constructs such as INSERT, UPDATE, DELETE, and SELECT. In this sec-
tion, we will model standard SQL DML constructs and use them as building blocks to model more
complex operations in the next section.

We all know that there is no object in RDBMS and operations are separated from tables; while
in object-oriented programming, an object encapsulates both data and operations. In our model
we can think of a row as an anonymous object of a class as defined by the table. There are four
predefined operations upon this object which are INSERT, UPDATE, DELETE and SELECT.

4.3 Insert Operation Modeling

Insert statement is the simplest operation in DML. Here is an example:

INSERT INTO Pollutant (PollutantID, PollutantName, CASNumber)

VALUES (1, ’Ethylbenzene’, 100414)

An insert operation can be modeled using many different diagrams, such as sequence diagram,
communication diagram, activity diagram, interaction overview diagram and state machine diagram.
We show a generic form of the sequence diagram in Figure 3. This represents a sequence diagram
frame that can be instantiated for each insert operation. Recall that we have a class TableHandler
that coordinates all operations involving database tables. This class consists of a single object that
is shown as :TableHandler in Figure 3. The insert operation takes as input two parameters: table
which represents the name of a relational table and attrVal which is a set of attribute-value pairs. The
:TableHandler selects a table reference (that is, either pollutantRef, concentrationRef, or siteRef)
from the set of all tables and forwards it to the insert operation. Using this operation, :TableHandler

creates an anonymous object :Table that corresponds to a row of the table refered by the selected
table reference (that is, either Pollutant, Concentration or Site). The insert operation does not return
anything. UML 2.0 adds a useful touch to sequence diagram. We can now frame a sequence
diagram by surrounding it with a border and adding a compartment in the upper left corner. The
compartment contains information that identifies the diagram [20]. Each framed sequence diagram
can be referred by other sequence diagrams. UML 2.0 also adds another new core construct, known
as combined fragment, which expresses control structures such as choice, loop, etc. We encapsulate
the whole statement into a named framed part called Insert. For each specific example, this generic
diagram can be instantiated according to the name of table given as the first parameter. For our
example SQL statement, pollutantRef, a table reference to the Pollutant table, is given as an input to

8



the insert sequence diagram so that it may insert a new row to the Pollutant table as shown in Figure
4. Figure 5 shows how the :TableHandler gets a table reference from the table name and invokes
an insert operation to the appropriate table. The box labeled Insert represents the details shown in
Figure 4.

create(attrVal:Set(AttrVal))

sd_insert(tableRef:Set(Table),
attrVal:Set(AttrVal))

:TableHandler

sd_Insert

:Table

Figure 3: Insert operation sequence diagram frame

sd Insert

(CASNumber, 10414)})
(PollutantName, "Ethylbenzene"), 
create({(PollutantID, 1),

(CASNumber, 100414)})
{(PollutantID, 1), (PollutantName, "Ethylbenzene"), 
sd_insert(pollutantRef:Set(Pollutant),

:TableHandler

:Pollutant

Figure 4: Insert operation sequence diagram for the example

sd_insert(tableRef,{(PollutantID,1),
(PollutantName,"Ehtylbenzene"),
(CASNumber,"1000414")})

(CASNumber,"1000414")})
(PollutantName,"Ehtylbenzene"),
insert(Pollutant,{(PollutantID,1),

tableRef:=findRef("Pollutant")

Insert
ref

:TableHandler

Figure 5: Insert operation sequence diagram for the example

1:tableRef:=findRef("Pollutant")(PollutantName,"Ethylbenzene"),
insert("Pollutant",{(PollutantID,1),

(CASNumber,1000414)})

(CASNumber,1000414)})
2:create({(PollutantID,1),(PollutantName,"Ethylbenzene"),

:TableHandler

:Pollutant

Figure 6: Insert operation communication diagram

9



The communication diagram shown in Figure 6 illustrates how our example insert operation can
be represented in the form of a communication diagram. This shows that the insert operation con-
sists of a single step that creates an anonymous object in the Pollutant table. The insert operation can
be represented using state machine diagram and activity diagram as well. However, these pictorial
representations are not very useful because a state machine diagram is good for describing behavior
of objects over time in terms of state transitions triggered by events and an activity diagram is used
for describing the flow of control and (optionally) data.

4.4 Update Operation Modeling

The update operation can be simple like the insert operation or it can be more complex. The simple
UPDATE does not have a WHERE clause and it changes one or more attributes of all rows belonging
to the table. Since this is a special case of the more complex UPDATE, we do not specify it using
UML diagrams. An example of a simple UPDATE is given below.

UPDATE Pollutant SET CASNumber = 0

The complex form of UPDATE includes the WHERE clause. In such case, an update operation
can be decomposed into the following steps: 1) Selection: find the rows to be updated based on
specific conditions first; 2) Set: update the old value with the new value in all these rows. An
example of a more complex update operation appears below.

UPDATE Pollutant SET CASNumber = 103333

WHERE PollutantID = 2

10



ref

[get next item]

loop

Select

(a) A sequence diagram frame for UPDATE operation

selResult[i]:Table

set(attrVal:Set(AttrVal))

sd Update

selResult := select(tableRef,expr):Set(Table)

ref
Update

(b) A sequence diagram for example UPDATE statement

:TableHandler
update("Pollutant",

{(CASNumber,103333)},
PollutantID = 2)

sd_update(tableRef,

tableRef:=findRef("Pollutant")

{(CASNumber,103333)},
PollutantID = 2)

:TableHandler

sd_update(tableRef:Set(Table),
attrVal:Set(AttrVal),
expr:Expression)

Figure 7: Update operation sequence diagram

Figure 7 describes UPDATE using sequence diagrams. In the above example, we use a framed
part update to represent the update statement as a whole and use select to implement the selection
part of the statement. The details of how SELECT is implemented will be discussed later. Figure
7(a) represents a generic diagram of the update operation. The update operation takes in three pa-
rameters, namely, tableRef which is the reference to the table that must be updated, attrVal which
is the set of attribute-value pairs (describing the attributes that must be updated and their modified
values), and expr which is an expression needed to select the rows that needs updates. The :Table-

Handler on receiving this operation executes a select operation on it. The select operation returns
selResult which is a set of rows of tableRef satisfying the condition stated in expr. For each row re-
turned by selResult, indicated by selResult[i], the attributes listed in attrVal must be modified to the
corresponding values. Figure 7(b) shows that the :TableHandler selects the table tableRef according
to the table name passed as the first parameter and invokes the update operation on the Pollutant

table.
The communication diagram for our specific example UPDATE is shown in Figure 8. The

communication diagram shows the three steps involved in the update operation. The first step,
labeled with 1, involves selecting the table Pollutant referenced in the update operation. The next
step involves finding the rows in the selected table that satisfy the expression PollutantId = 2. The
last step is applied to several rows that were selected in the previous step. This is indicated by the

11



label 3 � shown in the figure. This step involves updating the CASNumber to the new value 103333.

1: tableRef:=findRef("Pollutant")

update("Pollutant",{(CASNumber,103333)},
PollutantID = 2)

selResult[i]:Pollutant

3*[for all i]: set({(CASNumber,103333)})

2: selResult:= sd_select(tableRef,PollutantID =2):Set(Pollutant)

:TableHandler

Figure 8: Update operation communication diagram

4.5 Delete Operation Modeling

Delete operation is similar to update operation except that the rows are removed from the table
instead of being updated. A typical DELETE statement is listed below and its sequence diagram
and communication diagram are shown in Figure 9 and Figure 10. Note that the sequence diagram
is very similar to that of the update operation except that there is an X marked at the end of the
lifeline which indicates that the selected row is being destroyed.

DELETE FROM Pollutant WHERE PollutantID = 11

12



ref

:TableHandler

Select

delete()
[get next item]

expr:Expression)

sd Delete

sd_delete(tableRef:Set(Table),

selResult[i]:Table

 PollutantID = 2)
delete("Pollutant", 

(a) A sequence diagram frame for DELETE operation

selResult:= select(tableRef:Set(Table),
expr:Expression):Set(Table)

tableRef:=findRef("Pollutant")

sd_delete(tableRef, PollutantID = 2)

(b) A sequence diagram for the example DELETE statement

ref
Delete

loop

:TableHandler

Figure 9: Delete operation sequence diagram

1: tableRef:= findRef("Pollutant")
2: selResult:= sd_select(tableRef,PollutantID =2):Set(Pollutant)

selResult[i]:Pollutant

delete("Pollutant",PollutantID = 2)

3*[for all i]: delete()

:TableHandler

Figure 10: Delete operation communication diagram

4.6 Select Operation Modeling

Select operation is the most important operation in a database system and it can often be extremely
complex. However, it does not change the database.

In the following we describe some of the most commonly used SELECT statements. We start
with a simple select that retrieves all the attributes of a table. We call this the SelectSimple operation.
This is shown in Figure 11(a). It takes in two parameters: tableRef which is the reference to the
table that must be selected and expr which is an expression defined on the attributes of the table.
The :TableHandler selects table tableRef. For each row of tableRef, indicated by tableRef[i], it gets

13



the values of all the attributes indicated by t and checks whether expr is satisfied. If so, a temporary
table is created indicated by the stereotype ��� temporary ��� , and a new row called selResult[j] is
inserted into this table. All rows of this table indicated by selResult is returned as the result of this
query.

A slightly more complex select operation is the one that does not retrieve all but only some of
the attributes of a table. We call this one SelectProjSimple. This one is shown in Figure 11(b).
This one processes the results returned by the SelectSimple. For each row returned by SelectSimple,
indicated by selResult, we need to select the relevant attrs, and a new object proj[i] is created and
stored in a temporary table. All the rows of this temporary table, denoted by proj, is returned as a
result of this operation.

PollutantID = 2):Set(Projection)
sd_selectProjSimple(tableRef,

PollutantID = 2):Set(Projection)

tableRef:=findRef("Pollutant")

selectProjSimple("Pollutant",

loop
<<temporary>>
proj[i]:Projection

createProjection 
(selResult[i],attrs) [for each selResult[i]]

return projreturn selResult

:QueryResult

<<temporary>>
selResult[j]

(a) A sequence diagram frame for a SELECT operation which retrieves
all attributes

(tableRef,expr)

sd_selectProjSimple(tableRef:Set(Table),

sd SelectSimple

sd_selectSimple(tableRef: Set(Table),
expr: Expression): Set(Table)

t:= get():Table

opt

loop

create(t)

[CheckExpr(t,expr) = true]

[for each tableRef[i]]

sd SelectProjSimple

sd_selectSimple
selResult:=:Set(Projection)

expr:Expression, attrs:AttributeList)

Pollutant[i]:Pollutant

(b) A sequence diagram frame for a SELECT operation which retrieves

"SELECT * FROM Pollutant WHERE PollutantID = 2"
(c) A sequence diagram that represents a simple SELECT statement 

"SELECT PollutantName FROM Pollutant WHERE PollutantID = 2"
(d) A sequence diagram that represents a simple SELECT statement 

:TableHandler

ref
SelectSimple

a list of attributes

:TableHandler :TableHandlertableRef[i]:Table

ref
SelectSimple

tableRef[i]:Table

ref
SelectSimple

Pollutant[i]:Pollutant

PollutantID = 2):Set(QueryResult)
sd_selectSimple(tableRef,

PollutantID = 2):Set(QueryResult)

tableRef:=findRef("Pollutant")

selectSimple("Pollutant", :TableHandler

Figure 11: Simple select operation sequence diagram

Figure 11(c) shows the sequence diagram for the example SelectSimple operation stated below.

SELECT * FROM Pollutant

WHERE PollutantID = 2

Similarly, Figure 11(d) shows the sequence diagram and Figure 12 shows the communication
diagram for the following SelectProjSimple example.

14



SELECT PollutantName

FROM Pollutant

WHERE PollutantID = 2

Note that SelectSimple and SelectProjSimple queries involve a single table and the WHERE
clause is a boolean expression over the attributes of this single table. Later on, we show how to
overcome this shortcoming.

createProjection(p[i],PollutantName)

1: tableRef:= findRef("Pollutant")
PollutantName):Set(Projection)

:Set(Pollutant)
2: selResult:= sd_selectSimple(tableRef,PollutantID =2)

3*[for each i]:

selectProjSimple("Pollutant",PollutantID=2,

proj[i]:Projection
<<projection>>

:TableHandler

Figure 12: Select statement communication diagram

A query can itself include one or more subqueries. Any number of subqueries can be nested in
a statement. An example of a query having a nested query is given below.

SELECT * FROM Concentration C

WHERE C.PollutantID IN

(SELECT PollutantID FROM Pollutant P

WHERE P.PollutantName LIKE ’A%’)

The nested queries are described in Figure 13. In the sequence diagram frames, we use tableRef and
expr to denote the table and the where clause referenced in the query, respectively. We use tableRef2,
expr2, and attr2 to denote the table, where clause, and attributes referenced in the subquery. Figure
13(a) shows nested subqueries corresponding to the SELECT operation that selects all attributes
from a table. We call this specification Select. The optional aspect of the subquery is depicted using
the alt label. When there are no subqueries (corresponding to the top half of the alt), the result of
SelectSimple is returned. Otherwise, the execution corresponds to the bottom half of the alt box.
First, the subquery is executed. The subquery typically selects the attributes attr2 of table tableRef2

for rows which satisfy expr2. Since expr2 can be complex involving other nested queries, the
subquery is processed by SelectProj. The subquery returns the expression proj. A new expression
is created involving the result returned by the subquery and the original expression. This is denoted
in the figure as newexpr:=SelectExpr(proj,expr). This newexpr then becomes an input to the query.
The query is handled by SelectSimple which returns all the attributes of the rows satisfying newexpr
in tableRef. Figure 13(b) shows the sequence diagram frame of a query that selects some attributes

15



from a table and has a subquery. Figures 13(c) and 13(d) show specific examples of SELECT having
nested queries.

ref
SelectSimple

:TableHandler :TableHandler

return selResult

return selResult

alt

return proj

proj:=sd_selectProjSimple(tableRef,newexpr,

:Set(Projection)

[subqueries]

return proj

:Expression
newexpr:=selectExpr(expr,proj2)

ref
SelectProjSimple

ref
SelectProjSelectProj

sd Select

[no subqueries]

selResult:=sd_selectSimple(tableRef,expr)

alt

selResult:=sd_selectSimple(tableRef,newexpr)

:Set(Projection)
proj:=sd_selectProj(tableRef2,expr2,attrs2)

[subqueries]

:Expression
newexpr:=selectExpr(expr,proj)

ref
SelectSimple

ref

ref

attrs:AttributeList)

SelectProj
ref

tableRef:=findRef("Concentration") tableRef:=findRef("Concentration")

ref

expr: C.PollutantID IN (SELECT PollutantID FROM
Pollutant P WHERE P.PollutantName LIKE ’A%’)

expr:Expression)

attrs2: PollutantID
expr2: P.PollutantName LIKE ’A%’
tableRef2:findRef("Pollutant")

attrs2: PollutantID
expr2: P.PollutantName LIKE ’A%’
tableRef2:findRef("Pollutant")
attrs: PollutantID

Pollutant P WHERE P.PollutantName LIKE ’A%’)
expr: C.PollutantID IN (SELECT PollutantID FROM

expr:Expression,sd_selectProj(tableRef,

SelectProjSimple

:Set(Projection)
expr:Expression,attrs:AttributeList)
sd_selectProj(tableRef:Set(Table),

sd SelectProj

proj:=sd_selectProjSimple(tableRef,expr,attrs)
:Set(Projection)

[no subqueries]

proj2:=sd_selectProj(tableRef2,expr2,attrs2)

attrs):Set(Projection)

:Set(QueryResult)

:Set(QueryResult)

sd_select(tableRef:Set(Table),
expr:Expression)
:Set(QueryResult)

(a) A sequence diagram frame for SELECT operation
that selects all attributes and has subquery 

(b) A sequence diagram frame for SELECT operation
that selects some attributes and has subquery 

sd_select(tableRef,

:TableHandler :TableHandler

Select

attrs:AttributeList)
:Set(Projection)

selectProj("Concentration",
expr:Expression,select("Concentration",

expr:Expression)
:Set(QueryResult)

PollutantID FROM Pollutant P WHERE P.PollutantName LIKE ’A%’)"

(c) A sequence diagram that represents a SELECT statement with a subquery:
"SELECT * FROM Concentration C WHERE C.PollutantID IN (SELECT

(SELECT PollutantID FROM Pollutant P WHERE P.PollutantName LIKE ’A%’)"

(d) A sequence diagram that represents a SELECT statement with a subquery:
"SELECT PollutantID FROM Concentration C WHERE C.PollutantID IN

Figure 13: Subquery operation sequence diagram

16



ref

sd_selectProj(joinResult, true,selResult:=

expr:Expression): Set(QueryResult)
tableRef2:Set(Table2),attrs2:AttributeList,

sd_selectInnerJoin
(tableRef1:Set(Table1),attrs1:AttributeList,

Table2.attrs2 FROM Table1, Table2 WHERE expr")
(a) A sequence diagram frame for an (INNER) JOIN operation: "SELECT Table1,attrs1,

sd SelectInnerJoin

attrs1,attrs2):Set(QueryResult)

return selResult

InnerJoin

selectInnerJoin("Pollutant",attrs1
"Concentration",attrs2,expr)

SelectProj

expr):Set(JoinResult)
(tableRef1,tableRef2,joinResult:=sd_innerJoin

:TableHandler

tableRef2,attrs2,expr)
sd_selectInnerJoin(tableRef1,attr1,

tableRef2:=findRef("Concentration")

SelectInnerJoin
ref

tableRef1:=findRef("Pollutant")

:Set(QueryResult)

:JoinResult
joined[k]

<<temporary>>

return joined

createJoinedObject(t1,t2)

[CheckExpr(t1,t2,expr) = true]

t1:=get():Table1

t2:=get():Table2
[for each tableRef2[j]]

[for each tableRef1[i]]

:TableHandler
sd InnerJoin

ref

attrs1: P.PollutantName

WHERE C.PollutantID = P.PollutantIDFROM Concentration C, Pollutant P
SELECT P.PollutantName, C.ObsevationDate, C.SiteID, C.ConcentrationValue

(b) A sequence diagram that represents a SELECT statement with INNER JOIN: 

expr:Expression): Set(JoinResult)
tableRef2:Set(Table2),

sd_innerJoin
(tableRef1:Set(Table1),

tableRef2[i]:Table2

opt

loop

loop

tableRef1[i]:Table1

:TableHandler

expr: C.PollutantID = P.PollutantID
attrs2: C.ObservationDate;C.SiteID;C.ConcentrationValue

Figure 14: Sequence diagram for SELECT statement containing JOIN operation

17



Another complexity in SELECT statements arises when they have JOIN operations. Below we
give an example of such a statement.

SELECT P.PollutantName, C.ObservationDate,

C.SiteID, C.ConcentrationValue

FROM Concentration C, Pollutant P

WHERE C.PollutantID = P.PollutantID

The sequence diagram for the inner join operation is described in Figure 14(a). The SELECT
statement containing a JOIN operation is processed in two steps as shown in the top part of Figure
14(a). First, an inner join operation is performed on the two tables, denoted by tableRef1 and
tableRef2, using the expression expr. The result, denoted as joinResult, is the input to the SelectProj
operation. This operation selects attrs1 and attrs2 from joinResult and returns it to the user. The
details of the inner join operation are given in the bottom part of Figure 14(a). The inner join
operation is submitted to the :TableHandler. The :TableHandler selects tableRef1 and tableRef2

from the set of all tables. For each row of tableRef1, denoted by tableRef1[i], all the attributes
are fetched. Similarly, for each row in tableRef2, denoted by tableRef2[j], all the attributes are
fetched. The attributes are matched according to the conditions expr. If the conditions are satisfied,
a temporary object called joined[k] is created. The process is repeated for all rows in tableRef1 and
tableRef2 which is indicated by the loop boxes shown in the figure. An example inner join statement
is shown in Figure 14. The outer join operations can also be modeled in a similar manner.

Related to the join operation is the cartesian product. Here is an example statement describing
cartesian product.

SELECT P.PollutantName, S.SiteName

FROM Pollutant P, Site S

The detailed sequence diagram is given in Figure 15. The top part of Figure 15(a) is similar to
that of the inner join. The main difference is in how the cartesian product is implemented which
is shown in the bottom part of Figure 15(a). Here again, each row in tableRef1 and each row in
tableRef2 are joined together to create a temporary object. However, unlike the join operation, the
rows are always merged and no expression is checked before merging them.

18



ref

CrossJoin
ref

sd_selectProj(joinResult, true,selResult:=

tableRef2:Set(Table2),attrs2:AttributeList)

sd_selectCrossJoin

"SELECT Table1.attrs1, Table2.attrs2 FROM Table1, Table2"

sd SelectCrossJoin

attrs1,attrs2):Set(QueryResult)

return selResult

sd CrossJoin

SelectProj

:Set(JoinResult)
(tableRef1,tableRef2)joinResult:=sd_crossJoin

SelectCrossJoin
ref

:Set(QueryResult)tableRef2,attrs2):
sd_selectCrossJoin(tableRef1,attrs1,

tableRef2:=findRef("Concentration")

tableRef1:=findRef("Pollutant")

:Set(QueryResult)
"Concentration",attrs2)

selectCrossJoin("Pollutant",attrs1,

(tableRef1:Set(Table1),attrs1:AttributeList,

:TableHandler

(a) A sequence diagram frame for a CROSS JOIN operation (Cartesian Product): 

createJoinedObject(t1,t2)

: Set(QueryResult)

return joined

t1:=get():Table1

t2:=get():Table2
[for each tableRef2[j]]

[for each tableRef1[i]]

:TableHandler

attrs2: C.ObservationDate;C.SiteID;C.ConcentrationValue
attrs1: P.PollutantName

:JoinResult
joined[k]

<<temporary>>

tableRef2[i]:Table2

loop

loop

: Set(JoinResult)
tableRef2:Set(Table2))

sd_crossJoin
(tableRef1:Set(Table1),

tableRef1[i]:Table1

:TableHandler

(b) A sequence diagram that represents a SELECT statement with CROSS JOIN: 

FROM Concentration C, Pollutant P
SELECT P.PollutantName, C.ObsevationDate, C.SiteID, C.ConcentrationValue

Figure 15: Product operation sequence diagram

19



Union operator can combine two union-compatible queries. Its semantic meaning is the same
that in relational theory. We can model union operation as shown in Figure 16. The first step
involves performing a select on tableRef1 that is indicated by a SelectProj operation. The result
that is returned is denoted by selResult1. The second step involves performing a select on tableRef2

using the SelectProj operation. This select operation returns selResult2. Each row returned in
selResult2, denoted by selResult2[i], is inserted into selResult1 using the insert operation. The
resulting selResult1 is returned to the user.

SELECT PollutantID FROM Pollutant

WHERE PollutantName LIKE ’A%’

UNION

SELECT PollutantID FROM Pollutant

WHERE PollutantName LIKE ’B%’

20



sd_selectProj(tableRef1,
expr1,attrs):Set(QueryResult)

ref

(a) A sequence diagram frame for a UNION operation: "SELECT attrs FROM Table1
 WHERE expr1 UNION SELECT attrs FROM Table2 WHERE expr2"

expr2,attrs):Set(QueryResult)

: Set(QueryResult)
attrs:AttributeList)
expr2:Expression,
tableRef2:Set(Table2),
expr1:Expression,

(tableRef1:Set(Table1),sd_selectUnion

sd SelectUnion

tableRef2:=findRef("Concentration")

tableRef1:=findRef("Pollutant")

:TableHandler

selResult1:=

return selResult1

[for each selResult2[i]]

selResult1[i]:QueryResult

Insert
ref

sd_insert(selResult1,attrVal):Set(QueryResult)

attrVal:=getAttrValues():AttrVal

SelectProj

SelectProj
ref

selResult2:=
sd_selectProj(tableRef2,

attrs: PollutantID
expr2: PollutantName LIKE ’B%’
expr1: PollutantName LIKE ’A%’

:Set(QueryResult)
expr1,tableRef2,
expr2,attrs)

sd_selectUnion(tableRef1,

SelectUnion
ref

:TableHandler

loop

selResult2[i]:QueryResult

:Set(QueryResult)
expr1,"Concentration",
expr2,attrs)

selectUnion("Pollutant",

(b) A sequence diagram that represents a UNION statement:

LIKE ’A%’ UNION SELECT PollutantID FROM Pollutant
WHERE PollutantName LIKE ’B%’"

SELECT PollutantID FROM Pollutant WHERE PollutantName

Figure 16: Union operation sequence diagram

The difference operation can be represented in various ways. Here is an example.

SELECT P.PollutantName

FROM Pollutant P

WHERE NOT EXISTS

(SELECT *

21



FROM Concentration C

WHERE P.PollutantID = C.PollutantID)

The semantic meaning of this query is to find all pollutant names which are not listed in Concen-
tration table. This query essentially represents a “Difference” operation and its sequence diagram is
shown in Figure 17. This query makes use of nested queries. Consequently, we use our previously
defined constructs to model this operation.

WHERE P.PollutantID = C.PollutantID)
expr: NOT EXISTS (SELECT * FROM Concentration C

"SELECT P.PollutantName FROM Pollutant P WHERE NOT EXISTS

attrs2: *
expr2: P.PollutantID = C.PollutantID
attrs: P.PollutantName

(SELECT * FROM Concentration C WHERE P.PollutantID = C.PollutantID"

A sequence diagram that represents a SELECT statement with a subquery:

expr:Expression,
selectProj("Pollutant",

SelectProj
ref:Set(Projection)

attrs:AttributeList)

:TableHandler

Figure 17: Difference operation sequence diagram

5 Relational Database Operation Modeling

Most database products define functions, packages, and stored procedures to isolate portions of
operations, hide implementation details and improve performance. These operations can be very
complex and should be modeled the same as application level operations. No single diagram can
model every aspect of a system. We can use a use case to represent an operation at requirement
analysis level and use activity diagram, sequence diagram, communication diagram and state ma-
chine diagram at design and implementation level. On the other hand, we don’t have to use all
diagrams as long as we can clearly model the target system. Essentially, no matter how complex
a database operation might be, it is composed of basic DML statement and SQL extension such as
Transact-SQL or PL/SQL. We can use OO modeling techniques to model these language constructs.
The use case template for an operation can be specified as shown in Table 1.

In this section, we will use a stored procedure as an example to demonstrate the techniques to
model relatively complex database operations. Here is a system stored procedure dt setpropertybyid
used in SQL Server 7.0. It is implemented in Transact-SQL. Transact-SQL allows one to perform
a series of database operations such as inserting, updatating, and/or deleting darabase records with
conditions or iterations as needed. It is quite similar to a procedural programming language.

22



Operation Name Give the name of the operation
Owner Give the owner of the operation
Operation Type Stored procedure, function, package, etc.
Involved Tables List all tables used in this operation
Overview A brief description of the operation
Precondition Describe the precondition of the operation in OCL format,

SQL expression or English statements.
Post Condition Describe the post condition of this operation
Input Parameters List all input parameters including name and data type
Output Parameters List all output parameters including name and data type
Return Value Give the return type

Table 1: Use case template for operations

CREATE PROCEDURE dbo.dt_setpropertybyid

@id int,

@property varchar(64),

@value varchar(255),

@lvalue image

as

set nocount on

if exists (SELECT * FROM dbo.dtproperties

WHERE objectid=@id AND property=@property)

begin

UPDATE dbo.dtproperties

SET value=@value, lvalue=@lvalue, version=version+1

WHERE objectid=@id AND property=@property

end

else

begin

INSERT dbo.dtproperties (property, objectid,

value, lvalue)

VALUES (@property, @id, @value, @lvalue)

end

The above stored procedure can be modeled using use case as shown in Table 2. The use case
template might vary slightly depending upon the specific RDBMS products.

We can use activity diagram, sequence diagram and other diagrams to model this stored proce-
dure at requirement, analysis, design and implementation level. By combining all these diagrams
together, we will have a much better understanding of complex database operations.

23



Operation Name dt setpropertybyid
Owner dbo
Operation type Stored procedure
Involved Tables dtproperties
Overview If the property already exists, reset the value; otherwise add property.
Precondition dtproperties table has been created
Post Condition A new record is added into dtproperties table

if the property already exists; otherwise, reset the property.
Input Parameters @id int, @property varchar(64), @value varchar(255), @lvalue image
Output Parameters None
Return Value None

Table 2: Use case of dt setpropertybyid

[property doesn’t exist]

[property exists]

Check property

Insert propertyUpdate property, version ++

Figure 18: Stored procedure activity diagram

One advantage using activity diagram is that we can show some actions that are not directly
associated with any tables, such as declaring a variable. However, activity diagram normally does
not show detailed execution order. Sequence diagram and communication diagram can be used in
this case. In fact, some CASE tools such as Rational Rose provide the functionality to attach activ-
ity diagram and state machine diagram to stored procedures. But forward and reverse engineering
capability has not been implemented yet. Figure 19 shows the sequence diagram at implementa-
tion level. We use Select, Update and Insert statement as building blocks and place them inside
predefined framed part such as alt to represent conditional execution.

24



alt

:dtPropertyHandler
dt_setPropertyByID
(dtPropertyRef:Set(dtproperties),
in_id:Integer, in_property:String,
in_value:String, in_lvalue:Image)

queryResult:=sd_select(dtPropertyRef,
objectid = in_id and property = in_property)
:Set(dtproperties)

[queryResult is empty]

[queryResult is not empty]

Insert

ref
Update

ref

sd_insert(dtPropertyRef, 
property;objectid;value;lvalue,
in_property;in_id;in_value;in_lvalue)

sd dt_SetPropertyByID

in_value;in_lvalue;version+1, expr)
sd_update(dtPropertyRef, value;lvalue;version,

Select
ref

Figure 19: Stored procedure sequence diagram

6 Conclusion

UML is being used as the de-facto standard in the software industry. Although OMG has released
several UML Profiles for specific areas, relational database modeling is not adequately addressed
in these profiles. Many existing software applications use relational database systems as back-end
store. In this paper, we further expand the framework that can be used to model database-related
operations using a set of UML diagrams. We believe that this approach will provide end-users
and developers with a unified view of the whole system and bring the power of UML to database
domain. In future, we plan to specify more complex database operations in details. Finally, we
plan to develop tools that will help reverse engineer a complex database application into UML.
Reverse engineering will not only help understand complex legacy database applications but will
also facilitate integration of such applications.

References

[1] The UML and Data Modeling, White Paper. Technical report, Rational Software, 2003.

[2] Scott Ambler. Agile Database Techniques. John Wiley and Sons, Indianapolis, Indiana, USA,
October 2003.

[3] Anreas Behm, Andreas Behm, Andreas Geppert, and Klaus R. Dittrich. On migration of
relational schemas and data to object-oriented database systems. In Proceedings of the 5th In-

25



ternational Conference on Re-techologies for Information Systems, pages 13–33, Klagenfurt,
Austria, December 1997.

[4] Tomas A. Bruce. Designing Quality Databases with IDEF1X Information Models. Dorset
House Publishing Company Incorporated, New York, USA, October 1992.

[5] Peter Chen. The entity-relationship model- toward a unified view of data. ACM Transactions

on Database Systems, 1(1):9–36, March 1976.

[6] Edgar F. Codd. A relational model of data for large shared data banks. Communications of
ACM, 13(6):377–387, June 1970.

[7] Hans-Erik Erikson, Magnus Penker, Brian Lyons, and David Fado. UML 2 Toolkit. Wiley
Publishing, Inc, Indianapolis, Indiana, USA, 2004.

[8] Martin Fowler. UML Distilled, Third Edition: A Brief Guide to the Standard Modeling Lan-

guage. Addison-Wesley, Boston, MA, USA, September 2003.

[9] Davor Gornik. White Paper on the UML Data Modeling Profile. Technical report, Rational
Software, May 2002.

[10] Martin Gruber. Understanding SQL. SYBEX Inc, Alameda, California, USA, 1990.

[11] Terry Halpin and Anthony Bloesch. Data modeling in UML and ORM: a comparison. Journal
of Database Management, 10(4):4–13, October-December 1999.

[12] Robert J. Muller. Database Design for Smarties: Using UML for Data Modeling. Organ
Kaufmann Publishers, Inc., San Francisco, California, USA, 1999.

[13] Eric J. Naiburg and Robert A. Maksimchuk. UML for database design. Addison-Wesley,
Boston, MA, USA, 2001.

[14] William J. Premerlani and Michael R. Blaha. An approach for reverse engineering of relational
databases. Communications of the ACM, 37(5):42–49, May 1994.

[15] Shekar Ramanathan and Julia Hodges. Reverse engineering relational schemas to object-
oriented schemas. Technical Report MSU-960701, Mississippi State University, 1996.

[16] James Rumbaugh, Ivar Jasobson, and Grady Booch. The Unified Modeling Language Refer-

ence Manual, 2nd ed. Addison-Wesley., Reading, MA, USA, 2005.

[17] Toby J. Teorey, Dongqing Yang, and James P. Fry. A logical design methodology for relational
database using the extended entity-relationship model. Computing Survey, Vol. 18, Issue 2,
June 1986, pp. 197-222., 18(2):197–222, June 1986.

26



[18] The Object Management Group. Model Driven Architecture. Technical report,
http://www.omg.org/mda.

[19] The Object Management Group. Unified Modeling Language Specification. Technical report,
http://www.omg.org.

[20] The Object Management Group. UML 2.0: Superstructure Specification. Version 2.0, OMG,
formal/05-07-04, August 2005.

[21] Shuxin Yin and Indrakshi Ray. Relational database operations modeling with UML. In Pro-
ceedings of the IEEE 19th International Conference on Advanced Information Networking and

Applications, Taipei, Taiwan, March 2005.

27


