Concurrent and Real-Time Update of Access Control
Policies*

Indrakshi Ray and Tai Xin

Department of Computer Science
Colorado State University
Email: {iray,xin} @cs.colostate.edu

Abstract. Access control policies are security policies that govern access to re-
sources. Real-time update of access control policies, that is, updating policies
while they are in effect and enforcing the changes immediately, is necessary for
many security-critical applications. In this paper, we consider real-time update
of access control policies in a database system. We consider an environment in
which different kinds of transactions execute concurrently some of which are pol-
icy update transactions. Updating policy objects while they are deployed can lead
to potential security problems. We propose two algorithms that not only prevent
such security problems, but also ensure serializable execution of transactions. The
algorithms differ on the degree of concurrency provided.

1 Introduction

An enterprise security policy is subject to adaptive, preventive and corrective mainte-
nance. Since security policies are extremely critical for an enterprise, it is important to
control the manner in which policies are updated. Updating policy in an adhoc manner
may result in inconsistencies and problems with the policy specification; this, in turn,
may create other problems, such as, security breaches, unavailability of resources, etc.
In other words, policy updates should not be through adhoc operations but done through
well-defined transactions that have been previously analyzed.

An important issue that must be kept in mind about policy update transactions is that
some policies may require real-time updates. We use the term real-time update of a pol-
icy to mean that the policy will be changed while it is in effect and this change will be
enforced immediately. An example will help motivate the need for real-time updates of
policies. Suppose the user John, by virtue of some policy P, has the privilege to execute
a long-duration transaction that prints a large volume of sensitive financial information
kept in file I. While John is executing this transaction, an insider threat is suspected
and the policy P is changed such that John no longer has the privilege of executing
this transaction. Since existing access control mechanisms check John’s privileges be-
fore John initiates the transaction and not during the execution of the transaction, the
updated policy P will not be correctly enforced causing financial loss to the company.
In this case, the policy was updated correctly but not enforced immediately resulting in

* This work was done in part while the author was working as a Visiting Faculty at Air Force
Research Laboratory, Rome, NY in Summer 2002.

a security breach. Real-time update of policies is also important for environments that
are responding to international crisis, such as relief or war efforts. Often times in such
scenarios, system resources need reconfiguration or operational modes require change;
this, in turn, necessitates policy updates.

In this paper we consider real-time policy updates in the context of a database sys-
tem. A database consists of a set of objects that are accessed and modified through
transactions. Transactions performing operations on database objects must have the
privilege to execute those operations. Such privileges are specified by access control
policies; access control policies are stored in the form of policy objects. Transactions
executing by virtue of the privileges given by a policy object is said to deploy the policy
object. In addition to being deployed, a policy object can also be accessed and modified
by transactions. We are considering an environment in which different kinds of trans-
actions execute concurrently some of which are policy update transactions. In other
words, a policy may be updated while transactions are executing by virtue of this pol-
icy. We propose two different algorithms that allow for concurrent and real-time updates
of policies. The algorithms differ with respect to the degree of concurrency achieved.

The rest of the paper is organized as follows. Section 2 introduces our model. Sec-
tion 3 describes a simple concurrency control algorithm for policy updates. Section 4
illustrates how the semantics of the policy update operation can be exploited to increase
concurrency. Section 5 highlights the related work. Section 6 concludes our paper with
some pointers to future directions.

2 Our Modd

A database is specified as a collection of objects together with a set of integrity con-
straints on these objects. At any given time, the state of the database is determined by
the values of the objects in the database. A change in the value of a database object
changes the state. Integrity constraints are predicates defined over the state. A database
state is said to be consistent if the values of the objects satisfy the given integrity con-
straints.

A transaction is an operation that transforms the database from one consistent state
to another. To prevent the database from becoming inconsistent, transactions are the
only means by which data objects are accessed and modified. A transaction can be ini-
tiated by a user, a group, or another process. A transaction inherits the access privileges
of the entity initiating it. A transaction can execute an operation on a database object
only if it has the privilege to perform it. Such privileges are specified by access control
policies.

In this paper, we consider only one kind of access control policies: authorization
policies®. An authorization policy specifies what operations an entity can perform on
another entity. We focus our attention to systems that support positive authorization
policies only. This means that the policies only specify what operations an entity is
allowed to perform on another entity. There is no explicit policy that specifies what
operations an entity is not allowed to perform on another entity. The absence of an

1 Henceforth, we use the term policy or access control policy to mean authorization policy.

explicit authorization policy authorizing an entity A to perform some operation O on
another entity B is interpreted as A not being allowed to perform operation O on entity
B.

We consider simple kinds of authorization policies that are specified by subject,
object, and rights. A subject can be a user, a group of users or a process. An object, in
our model, is a data object, a group of data objects, or an object class. A subject can
perform only those operations on the object that are specified in the rights.

Definition 1. A policy is a function that maps a subject and a object to a set of access
rights. We formally denote this as follows: P : S x O — P(R) where P represents the
policy function, S, represents the set of subjects, O represents the set of objects, P(R)
represents the power set of access rights.

In a database, policies are stored in the form of policy objects.

Definition 2. A policy object P; consists of the triple < S;, O;, R; > where S;, O;, R;
denote the subject, the object, and the access rights of the policy respectively. Subject
S; can perform only those operations on the object O; that are specified in R;.

Example 1. Let P =< John, FileF,{r,w,z} > be a policy object. This policy object
gives subject John the privilege to Read, Write, and Execute FileF'.

Before proceeding further, we discuss how to represent the access rights. The moti-
vation for this representation will be clear in Section 4.

Definition 3. Let O; = {o1,02,..., 0, } be the set of all the possible operations that
are specified on Object O;. The set of operations in O; are ordered in the form of a
sequence < o1, 02, ..., 0, >. \We represent an access right on the object O; as an n-
element vector [i1éz...4,]. If 4 = 0 in some access right R;, then R; does not allow
the operation oy, to be performed on the object O;. 4, = 1 signifies that the access right
R; allows operation oy, to be performed on the object O;. The total number of access
rights that can be associated with object O; equals 2”.

Example 2. Let < r,w,x > be the operations allowed on a file F. The access right
R, = [001] signifies that r, w operations are not allowed on the file F' but the operation
z is permitted on File F. The access right R2 = [101] allows r and z operations on the
file F' but does not allow the w operation.

Definition 4. The set of all access rights associated with a object O; having n op-
erations forms a partial order with the ordering relation >,. The ordering relation
is defined as follows: Let R;[i;] denote the 4;-th element of access right R;. Then
Ry >0, Rq. if Rp[ix] = Rqlir] OF Rplix] > Rglix], forallk =1...n.

Definition 5. Given two access rights R, and R, associated with an object O; having
n operations, the least upper bound of R, and R, denoted as lub(R,, R,) is computed
as follows. For k =1... n, we compute the i, -th element of the least upper bound of R,
and R,: lub(Ry, Ry)[ix] = Rplir] V Rq[ix]. The n-bit vector obtained from the above
computation will give us the least upper bound of R, and R,.

Definition 6. Given two access rights R, and R, associated with an object O; having
n operations, the greatest lower bound of R, and R, denoted as glb(R,, R,) is com-
puted as follows. For k£ = 1...n, we compute the 4;-th element of the greatest lower
bound of R, and R,: glb(Rp,Rq)[ix] = Rplix] A Rqlix]. The n-bit vector obtained
from the above computation will give the greatest lower bound of R, and R,.

Since each pair of access rights associated with an object have a unique least up-
per bound and a unique greatest lower bound, the access rights of an object can be
represented as a lattice.

Definition 7. The set of all possible access rights on an object O; can be represented
as a lattice which we term the access rights lattice of object O;. The notation ARL(O;)
denotes the set of all nodes in the access rights lattice of object O;.

[113]

[11]

[00] {000]
@ (b)

Fig. 1. Representing Possible Access Control Rights of Objects

Figure 2(a) shows the possible access rights associated with a file having only two
operations: Read and Write. The most significant bit denotes the Read operation and
the least significant bit denotes the Write operation. The lower bound labeled as Node
00 signifies the absence of Read and Write privilege. The Node 01 signifies that the
subject has Write privilege but does not have Read privileges. The Node 10 signifies
that the subject has Read privilege but no Write privilege. The Node 11 indicates that
the subject has both Read and Write privileges. Figure 2(b) shows the possible access
rights associated with a object having three operations.

Next we define a policy in terms of the access rights lattice.

Definition 8. A policy P; maps a subject S;’s access privilege to a Node 5 in the access
rights lattice of the object O;. Formally, P : S — (ARL(O)).

Definition 9. A policy update is an operation that changes some policy object P; =<
Si, 0i, R; > 10 P] =< S;, 0;, R, > where P/ is obtained by transforming R; to R}. Let
R;, R;’ be mapped to Node j, Node k£ of ARL(O;) respectively. The update of policy
object P; changes the mapping of the subject S;’s access privilege from Node j to Node
k in the access rights lattice of object O;.

Having given some background on the policies, we are now in a position to dis-
cuss policy objects. Recall from Definition 2 that policies are stored in the database in
the form of policy objects. Next we describe the operations associated with the pol-
icy objects. Policy objects, like data objects, can be read and written. However, unlike
ordinary data objects, policy objects can also be deployed.

Definition 10. A policy object P; is said to be deployed if there exists a subject in P;
that is currently accessing an object in P; by virtue of the privileges given by policy
object P;.

Example 3. Suppose the policy object P; allows subject S; to read object Oy. Subject
S; initiates a transaction T that reads Oy. While the transaction T; reads Oy, we say
that the policy object P; is deployed.

The environment we are considering is one in which multiple users will be accessing
and modifying data and policy objects, while the policy objects are deployed. To deal
with this scenario, we need some concurrency control mechanism. The objectives of our
concurrency control mechanism are the following: (1) Allow concurrent access to data
objects and policy objects. (2) Prevent security violations arising due to policy updates.

3 A SimpleAlgorithm for Policy Updates

In our model, each data object is associated with Read and Write operations. A policy
object is associated with three operations: Read, Write and Deploy. We now give some
definitions.

Definition 11. Two operations are said to conflict if both operate on the same data
object and one of them is a Write operation.

Definition 12. A transaction T; is a partial order with ordering relation <; where

1. T; C{rfz],w;[z] | z is a data or policy object } U{d;[z] | z is a policy object
Yufaiei}s

e €Ty if‘fciQTi;

. if tis ¢; or a;, for any other operation p € T;, p; <; t; and

. if ry[z], wi[z] € T, then either r;[z] <; w;[z] or w;[z] <; ri[z].

. ifd; [Z‘], W; [.’L’] € T;, then either d; [$] < wl[z] or wi[x] <; d; [.’IJ]

O b~ Wb

Condition 1 defines the different kinds of operations in the transactions (r;[z], w;[z],
d;[z], ai, ¢; denote Read operation on object z, Write operation on z, Deploy operation
on z, Abort or Commit operation respectively). Condition 2 states that this set contains
an Abort or a Commit operation but not both. Condition 3 states that Abort or Commit
operation must follow every other operation of the transaction. Condition 4 requires that
the partial order <; specify the order of execution of Read and Write operations on a
common data or policy object. Condition 5 requires that the partial order <; specify the
order of execution of Deploy and Write operations on a common policy object.

Each data object O; in our model is associated with two locks: read lock (denoted by
RL(0;)) and write lock (denoted by WL(0;)). The locking rules for data objects are the

Wants
Has |RL |WXL|WSL |DL

RL |Yes|No [No Yes
WXL|No |[No [No |No
WSL|No |No [No |No
DL |Yes|Yes |Signal|Yes

Wants

HasRL|WL [DL
RL |Yes|No |Yes
WL|No |[No |No
DL |Yes|Signal|Yes

Sgsed SyAn;caz: (b) Semantics-Based
rithm J Algorithm

Table 1. Locking Rules for Policy Objects

same as the standard two-phase locking protocol [3]. A policy object P; is associated
with three locks: read lock (denoted by RL(P;)), write lock (denoted by WL(P;)) and
deploy lock (denoted by DL(P;)). The locking rules for the policy objects are given
in Table 1(a). Yes entry in the lock table indicates that the lock request is granted. No
entry indicates that the lock request is denied. Signal entry in the lock table indicates
that the lock request is granted, but only after the transaction currently holding the lock
is aborted and the lock is released.

Definition 13. A transaction is well-formed if it satisfies the following conditions.

1. A transaction before reading or writing a data or policy object must deploy the
policy object that authorizes the transaction to perform the operation.

2. A transaction before deploying, reading, or writing a policy object must acquire
the appropriate lock.

3. Atransaction before reading or writing a data object must acquire the appropriate
lock.

4. Atransaction cannot acquire a lock on a policy or data object if another transaction
has locked the object in a conflicting mode.

5. All locks acquired by the transaction are eventually released.

Definition 14. A well-formed transaction T; is two-phase if all its lock operations pre-
cede any of its unlock operations.

Example 4. Consider a transaction T; that reads object O; (denoted by r;(0;)) and
then writes object Oy, (denoted by w;(Og)). Policies P,, and P,, authorize the subject
initiating transaction T, the privilege to read object O; and the privilege to write ob-
ject Oy, respectively. An example of a well-formed and two-phase execution of T'; con-
sists of the following sequence of operations: < DL;(Pp,), RL;(0;), di(Pr,), r:(0;),
DL;(Py), WL;(Oy), di(Pr), wi(Ox), UL;{(Py,), UL;(Py), UL;(O;), UL;(O) >,
where DL;, RL;, WL;, d;, r;, w;, UL; denote the operations of acquiring deploy lock,
acquiring read lock, acquiring write lock, deploy, read, write, lock release, respectively,
performed by transaction T;.

Definition 15. A transaction is policy-secure if for every operation that a transaction
performs, there exists a policy that authorizes the transaction to perform the operation.

Note that, all transactions may not be policy-secure. For instance, suppose entity A
can execute a long-duration transaction T7; by virtue of policy P,.. While A is executing
T;, P, changes and no longer allows A to execute T;. In such a case, if transaction
T; is allowed to continue after P, has changed, then T; will not be a policy-secure
transaction.

We borrow the definitions of history, and serializable history from Bernstein et al.
[3]. Next we define what we mean by a policy-secure history.

Definition 16. A history is policy-secure if all the transactions in the history are policy-
secure transactions.

The lock based concurrency control approach provides policy-secure and serializ-
able histories.

4 Concurrency Control using the Semantics of Policy Update

The approach presented in Section 3 is overly restrictive. A change of policy may result
in increased access privileges; in such cases terminating valid access will result in poor
performance. This motivates us to classify a policy update operation either as a pol-
icy relaxation or as a policy restriction operation. Policy relaxation causes increase in
subject’s access rights; transactions executing by virtue of a policy need not be aborted
when the policy is being relaxed. On the other hand, a policy restriction does not in-
crease the access rights of the subject. To ensure policy-secure transactions, we must
abort the transactions that are executing by virtue of the policy that is being restricted.
Before going into the details, we first give the definitions of policy relaxation and policy
restriction.

Definition 17. A policy relaxation operation is a policy update that increases the access
rights of the subject. Let the policy object P; =< S;, O;, R; > be changed to P} =<
Si, O;, R; >. Let Let R;, R’ be mapped to the nodes k, j respectively in ARL(O;). A
policy update operation is a policy relaxation operation if lub(k,j) = j.

Example 5. Let the operations allowed on FileF' be < r,w,z >. Suppose the policy
P; =< John, FileF,[001] > is changed to P; =< John, FileF,[101] >. This is an
example of policy relaxation because the access rights of subject John has increased.
Note that lub([001],[101]) = [101]. Thus, this is a policy relaxation.

Definition 18. A policy restriction operation is a policy update operation that is not
a policy relaxation operation. Let the policy object P; =< S;, O;, R; > be changed
to P} =< S;,0;,R; >. Let Let R;, R, be mapped to the nodes k, j respectively in
ARL(0;). A policy update operation is a policy restriction operation if lub(k,7) # j.

Example 6. Let the operations allowed on FileF be < r,w,z >. Suppose the policy
P; =< John, FileF,[001] > is changed to P; =< John, FileF,[110] >. This is an
example of policy restriction because the access rights of subject John has not increased.

Note that, lub([001],[110]) = [111]. Since lub(][001],[110]) # [110], this is an example
of policy restriction.

4.1 Concurrency Control Based on Knowledge of Policy Change

We now give a concurrency control algorithm that uses the knowledge of the kind of
policy change. Distinguishing between policy restriction and relaxation will increase
concurrency. A policy object is now associated with four operations: Read, Deploy,
WriteRelax, WriteRestrict. The Read and Deploy operations are similar to those speci-
fied in Section 3. The Write operations on policy object are classified as WriteRelax or
WriteRestrict. A WriteRelax operation is one in which the policy gets relaxed. All other
write operations on the policy object are treated as WriteRestrict. Since the operations
are different than those discussed in Section 3, we modify the definitions of transaction
and well-formed transaction (Definitions 12 and 13).

Definition 19. A transaction T; is a partial order with ordering relation <; where

Lo

T; C {ri[z],wi[z] | z is a data object } U{d;[z], r;[z], wsi[z], wz;[z] | = is a policy
object }U{a;, ¢;};

e €Ty if‘fciQTi;

. if tis ¢; or a;, for any other operation p € T;, p; <; t; and

. if ri[z], wi[z] € T, then either r;[z] <; w;[z] or w;[z] <; ri[z].

. if di[z], ws;[z] € T;, then either d;[z] <; ws;[z] or ws;[z] <; d;[z].

. if di[z], wz;[z] € Ty, then either d;[z] <; wx;[z] or wx;[z] <; d;[z].

o0, WN

Condition 1 is changed from that in Definition 12 to reflect that the operations al-
lowed on data objects are Read and Write and the operations allowed on policy objects
are Read, Deploy, WriteRelax (denoted by wz), and WriteRestrict (denoted by ws).
Conditions 2,3, and 4 are the same as given in Definition 12. Condition 5 given in
Definition 12 is no longer applicable as there is no simple Write operation on policy
objects; this condition is replaced by two conditions (Conditions 5 and 6 in Definition
19). Condition 5 specifies that if there is a Deploy operation on a policy object and a
WriteRestrict operation on the same object, then the ordering relation <; must specify
the order of the operations. Condition 6 specifies a similar condition for Deploy and
WriteRelax operation.

Now we give the details of the locking rules. The locking rules for data objects are
as given in Section 3. Corresponding to the four operations on the policy object, we
have four kinds of locks associated with policy objects: read locks (RL), deploy locks
(DL), relax locks (WXL) and restrict locks (WSL). The locking rules are given in the
table 1(b).

Definition 20. A transaction is well-formed if it satisfies the following conditions.

1. Atransaction before reading or writing a data object must deploy the policy object
that authorizes the transaction to perform the operation.

2. Atransaction before reading, write relaxing or write restricting a policy object must
deploy the policy object that authorizes the transaction to perform the operation.

3. Atransaction before reading or writing a data object must acquire the appropriate
lock.

4. Atransaction before deploying, reading, write relaxing, or write restricting a policy
object must acquire the appropriate lock.

5. Atransaction cannot acquire a lock on a policy or data object if another transaction
has locked the object in a conflicting mode.
6. All locks acquired by the transaction are eventually released.

To ensure serializable and policy-secure histories, we require each transaction to be
well-formed (Def. 20) and two-phase (Def. 14).

5 Redated Work

Although a lot of work appears in the area of security policies [6], policy updates have
received relatively little attention. Some work has been done in identifying interesting
adaptive policies and formalization of these policies [7,13]. A separate work [12] il-
lustrates the feasibility of implementing adaptive security policies. The above works
pertain to multilevel security policies encountered in military environments; the focus
is in protecting confidentiality of data and preventing covert channels. We consider a
more general problem and our results will be useful to both the commercial and military
sector.

Automated management of security policies for large scale enterprise has been pro-
posed by Damianou [5]. This work uses the PONDER specification language to specify
policies. The simplest kinds of access control policies in PONDER are specified using
a subject-domain, object-domain and access-list. The subject-domain specifies the set
of subjects that can perform the operations specified in the access-list on the objects
in the object-domain. This work allows new subjects to be added or existing subjects
to be removed from the subject-domain. The object-domain can also be changed in a
similar manner. But this work does not allow the policy specification itself to change.
An example will help illustrate this point. Suppose we have a policy in PONDER that is
implementing Role-Based Access Control: subject-domain = Manager, object-domain
= Jusr/local, access-list = read, write. This policy allows all Managers to read/write all
the files stored in the directory /usr/local. Now the toolkit will allow adding/removing
users from the domain Manager, adding/deleting files in the domain /usr/local. How-
ever, it will not allow the policy specification to be changed. For example, the subject-
domain cannot be changed to Supervisors. Our work, focuses on the problem of updat-
ing the policy specification itself and complements the above mentioned work.

Concurrency control in database systems is a well researched topic. Some of the
important pioneering works have been described by Bernstein et al. [3]. Thomasian [14]
provides a more recent survey of concurrency control methods and their performance.
The use of semantics for increasing concurrency has also been proposed by various
researchers [1, 2, 8-11].

6 Conclusion and Future Work

Real-time updates of policy is an important problem for both the commercial and the
military sector. In this paper we focus on real-time update of access control policies in
a database system. We propose two algorithms for real-time update of access control

policies. The algorithms generate serializable and policy-secure histories and provide
different degrees of concurrency.

A lot of work still remains to be done. In this work we assume there exists exactly
one policy by virtue of which any subject has access privilege to some object. In a real-
world scenario multiple policies may be specified over the same subject and object.
The net effect of these multiple policies depend on the semantics of the application.
Changing the policies in such situations is non-trivial. In future we plan to extend our
approach to handle more complex kinds of authorization policies, such as, support for
negative authorization policies, incorporating conditions in authorization policies, sup-
port for specifying priorities in policies. Specifically, we plan to investigate how policies
specified in the PONDER specification language [4] can be updated.

References

1. P. Ammann, S. Jajodia, and 1. Ray. Applying Formal Methods to Semantic-Based Decompo-
sition of Transactions. ACM Transactions on Database Systems, 22(2):215-254, June 1997.

2. B.R. Badrinath and K. Ramamritham. Semantics-based concurrency control: Beyond com-
mutativity. ACM Transactions on Database Systems, 17(1):163-199, March 1992.

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

4. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification Lan-
guage. In Proceedings of the Policy Workshop, Bristol, U.K., January 2001.

5. N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M. Sloman. Tools for Domain-based
Policy Management of Distributed Systems. In Proceedings of the IEEE/IFIP Network Op-
erations and Management Symposium, Florence, Italy, April 2002.

6. N. C. Damianou. A Policy Framework for Management of Distributed Systems. PhD the-
sis, Imperial College of Science, Technology and Medicine, University of London, London,
U.K., 2002.

7. J. Thomas Haigh et al. Assured Service Concepts and Models: Security in Distributed
Systems. Technical Report RL-TR-92-9, Rome Laboratory, Air Force Material Command,
Rome, NY, January 1992,

8. H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed
database. ACM Transactions on Database Systems, 8(2):186-213, June 1983.

9. M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data types. Journal
of Computer and System Sciences, 43(1):25-61, August 1991.

10. H.F. Korth and G. Speegle. Formal aspects of concurrency control in long-ouration transac-
tion systems using the NT/PV model. ACM Transactions on Database Systems, 19(3):492—
535, September 1994.

11. Nancy A. Lynch. Multilevel atomicity—A new correctness criterion for database concur-
rency control. ACM Transactions on Database Systems, 8(4):484-502, December 1983.

12. E. A. Schneider, W. Kalsow, L. TeWinkel, and M. Carney. Experimentation with Adaptive
Security Policies. Technical Report RL-TR-96-82, Rome Laboratory, Air Force Material
Command, Rome, NY, June 1996.

13. E. A. Schneider, D. G. Weber, and T. de Groot. Temporal Properties of Distributed Systems.
Technical Report RADC-TR-89-376, Rome Air Development Center, Rome, NY, September
1989.

14. A. Thomasian. Concurrency Control: Methods, Performance and Analysis. ACM Computing
Surveys, 30(1):70-119, 1998.

