
Ensuring Task Dependencies During Workflow
Recovery

Indrakshi Ray, Tai Xin, and Yajie Zhu

Department of Computer Science
Colorado State University�

iray,xin,zhuy � @cs.colostate.edu

Abstract. Workflow management systems (WFMS) coordinate execution of mul-
tiple tasks performed by different entities within an organization. In order to co-
ordinate the execution of the various tasks in a workflow, task dependencies are
specified among them. These task dependencies are enforced during the normal
execution of the workflow. When a system crash occurs some tasks of the work-
flow may be committed, some may be partially executed and others unscheduled.
In such a situation, the recovery mechanism must take appropriate actions to react
to the failure. Although researchers have worked on the problem of workflow re-
covery, most of these work focus on restoring consistency by removing the effects
of partially executed tasks. However, these work fail to address how to ensure task
dependencies during workflow recovery. In this paper, we consider the workflow
recovery problem and propose a recovery scheme that ensures the satisfaction of
dependencies in a workflow and restores consistency as well.

1 Introduction

Workflow management systems (WFMS) are responsible for coordinating the execu-
tion of multiple tasks performed by different entities within an organization. A group of
such tasks that form a logical unit of work constitutes a workflow. To ensure the proper
coordination of these tasks, various kinds of dependencies are specified between the
tasks of a workflow. The scheduler of a workflow is expected to enforce these depen-
dencies during normal execution of a workflow. In addition, we must also ensure that
these dependencies are enforced in the event of a failure. In this paper we focus on how
to ensure dependencies when system crashes or failures occur.

A large body of research exists in the area of workflows [1, 5, 7, 9, 10]. Researchers
[1, 2, 7] have focussed on how to specify workflows, how to ensure the correctness of the
specification, and how to control the execution of tasks in a workflow in order to satisfy
the dependencies. Workflow recovery, however, has received very little attention. Most
of the research [5, 10, 9] in workflow recovery focusses on how to restore a consistent
state after a failure and they do not address the issue of enforcing task dependencies.
In this paper we provide an automated approach to workflow recovery that not only
restores consistency but also ensures the satisfaction of task dependencies.

Before describing our approach, let us illustrate the problem that occurs if task
dependencies are not enforced during recovery. Consider a workflow W k consisting of
two tasks: reserving a room in a resort (tki) and renting a car (tk j). These two tasks



tki and tk j have a dependency between them: if tki begins then tk j should begin. The
scheduler enforces this dependency by starting tk j after tki begins. Suppose tk j gets
completed before tki and a crash occurs before tki completes. Since tk j is completed
and tki is incomplete, the recovery algorithm to restore consistency undoes only tki.
This results in an undesirable situation. Thus, restoring consistency by removing the
effects of partially executed tasks is not enough for workflow recovery: the recovery
algorithms must also take into account the effect of task dependencies.

In this paper we elaborate on the different kinds of task dependencies present in
a workflow and show how these task dependencies impact the recovery process. We
discuss what information is needed and how this information is stored to perform an
effective recovery. Finally, we give a recovery algorithm that restores consistency and
enforces task dependencies.

The rest of the paper is organized as follows. Section 2 discusses some related work
in this area. Section 3 describes our workflow model and enumerates the different kinds
of dependencies. Section 4 identifies the information necessary for workflow recovery.
Section 5 presents our workflow recovery algorithm. Section 6 concludes the paper with
some pointers to future directions.

2 Related Work

Although a lot of research appears in workflow, we focus our attention to those dis-
cussing workflow dependencies and workflow recovery. An approach for specifying
and enforcing task dependencies have been proposed by Attie et al. [2]. Each task is
described by a set of events, such as, start, commit and rollback. Dependencies between
the tasks connect the events of various tasks and specify a temporal order among them.
These dependencies are specified using Computation Tree Logic (CTL). With respect
to recovery, the authors mention what data is needed to recover from failures but do
not provide details. They also do not address how task dependencies can be enforced
during recovery.

Eder and Liebhart [5] classify workflow as document-oriented workflow and process-
oriented workflow, and identify potential different types of failure. This paper proposes
different recovery concepts, such as forward recovery and backward recovery, and enu-
merates how the workflow recovery manager can support these concepts. But no de-
tailed approach for workflow recovery process is provided.

Failure handling and coordinated execution of workflows was also proposed by Ka-
math and Ramamritham [9]. The approach describes how to specify different options
that can be taken in the event of a failure. The workflow designer can then choose
from these options and customize the recovery process to ensure correctness and per-
formance. Thus, a workflow designer needs to have a comprehensive knowledge about
both the business process and the workflow model in order to perform the recovery.

3 Model

We begin by extending the definition of a workflow given in the Workflow Reference
Model [8].



Definition 1
[Workflow] A workflow Wi is a set of tasks � ti1, ti2, ����� , tin � with dependencies specified
among them that achieve some business objective.

Next, we define what a task is. We assume that each task in a workflow is a transac-
tion as per the standard transaction processing model [3].

Definition 2
[Task] A task ti j performs a logical unit of work. It consists of a set of data opera-
tions (read and write) and task primitives (begin, abort and commit). The read and write
operations that task ti j performs on data item x are denoted by ri j � x � and wi j � x � respec-
tively. The begin, abort and commit operations of task ti j are denoted by bi j, ai j and ci j

respectively.

ijcaij

bij

ijcmijab

ijexijun

Fig. 1. States of Task ti j

A task ti j can be in any of the following states: unschedule (uni j), execute (exi j),
commit (cmi j) and abort (abi j). Execution of task primitives causes a task to change its
state. Executing the begin primitive (bi j) causes a task to move from unschedule state
(uni j) to execute state (exi j). Executing commit primitive (ci j) causes the task to move
from execute state (exi j) to commit state (cmi j). Executing abort primitive (ai j) causes
the task to move from execute state (exi j) to abort state (abi j). This is illustrated in
Figure 1.

To properly coordinate the execution of tasks in a workflow, dependencies are spec-
ified between the task primitives of a workflow. Task dependencies are of different
kinds. Some researchers classify the dependencies as control flow dependencies, data
flow dependencies and external dependencies. In this paper, we focus only on control
flow dependencies.

Definition 3
[Control flow Dependency] A control flow dependency specifies how the execution of
primitives of task ti causes the execution of the primitives of task t j.

The common types of control flow dependencies found in workflow are enumerated
below. For a complete list of the different kinds of dependencies, we refer the interested
reader to the work by Chrysanthis [4].



1. Commit Dependency: A transaction t j must commit if ti commits. We can represent
it as ti � c t j.

2. Abort Dependency: A transaction t j must abort if ti aborts. We can represent it as
ti � a t j.

3. Begin Dependency: A transaction t j cannot begin until ti has begun. We can repre-
sent it as ti � b t j.

4. Begin-on-commit Dependency: A transaction t j cannot begin until ti commits. We
can represent it as ti � bc t j.

5. Force Begin-on-commit Dependency: A transaction t j must begin if ti commits. We
can represent it as ti � f bc t j.

6. Force Begin-on-begin Dependency: A transaction t j must begin if ti begins. We can
represent it as ti � f bb t j.

7. Force Begin-on-abort Dependency: A transaction t j must begin if ti aborts. We can
represent it as ti � f ba t j.

8. Exclusion Dependency: A transaction ti must commit if t j aborts, or vice versa. We
can represent it as ti � e t j.

a

e

bc

bc 12t

14t

13t

11t

Fig. 2. Tasks and Dependencies in Example Workflow

Example 1. Consider a workflow W 1 consisting of the following set of tasks � t11, t12,
t13, t14 � where each task is described below.

Task t11 Reserve a ticket on Airlines A
Task t12 Purchasing the Airlines A ticket
Task t13 Canceling the reservation
Task t14 Reserving a room in Resort C

The various kinds of dependencies that exists among the tasks are shown in Figure 2.
There is a begin on commit dependency between t11 and t12 and also between t11 and
t13. This means that neither t12 or t13 can start before t11 has committed. There is an
exclusion dependency between t12 and t13. This means that either t12 can commit or t13

can commit but not both. Finally, there is an abort dependency between t14 and t12. This
means that if t12 aborts then t14 must abort.



4 Information Needed by the Recovery Algorithm

Workflow recovery is much more complex than the recovery in traditional transaction
processing system. Consider Example 1. Suppose a crash occurs while t12 is executing
and after t11 and t14 have committed. The traditional recovery mechanism will consult
the log and undo t12, but it will not have enough information to perform the recovery
such that the dependency t12 � a t14 is satisfied.

The recovery process will need to know the state of the workflow when it crashed
and it will also need to know the actions needed to perform the recovery. In our algo-
rithm, the log records store the information about the state of the workflow. The work-
flow schema stores the information about the actions needed for workflow recovery. We
describe these below.

4.1 Workflow Schema

In any organization there are a finite number of types of workflow. We refer to these
as workflow schemas. A workflow schema defines the type of a workflow. A workflow
schema is specified by (1) the types of inputs and outputs needed by workflows in-
stances satisfying this schema, (2) the specification of the types of tasks, and (3) the
dependencies between these tasks.

Each workflow is actually an instance of a workflow schema. We denote the schema
associated with workflow W i as WSi. We denote the type of task ti j as ty

�
ti j � . Each type

of task is specified by (1) the types of inputs and outputs, if any, needed by tasks of this
type, (2) recovery attributes for this type of tasks, (3) compensation-flow for this type
of tasks, and (4) alternate-execution-flow for this type of tasks.

Each type of task is described by attributes. Those attributes that are needed by the
recovery process are known as the recovery attributes. Recovery attributes can be com-
pensatable, re-executable and alternate executable. Compensatable identifies whether
tasks of this type can be compensated or not. Re-executable indicates whether the tasks
of this type can be re-executed or not. Alternate executable signifies whether tasks of
this type can be substituted by alternate tasks or not.

For any type of task ty
�
ti j � that is compensatable, the compensation-flow includes

the set of types of tasks � ty
�
tik ��� ty � til ��� ��� � � ty � tin � � that can compensate this type ty

�
ti j � ,

the task dependencies between them, and the inputs to the compensation process. For
any type of task ty

�
ti j � that is alternate executable, the alternate flow includes the set

of types of tasks � ty
�
tik ��� ty � til ��� ��� � � ty � tin � � that can substitute this type ty

�
ti j � , the task

dependencies between them, and the inputs to the alternate execution process.
The information about all the workflow schemas is maintained in stable storage.

4.2 Workflow Log Records

In order to recover from a workflow system failure, the state information of a workflow
need to be logged onto some stable storage. We propose that such information be stored
in the system log. Execution of a workflow primitive, a task primitive, or a task oper-
ation results in the insertion of log a record. Moreover, the logs also contain records
associated with checkpointing.



Execution of a begin primitive in a workflow results in the insertion of the following
log record. � START Wi � W Si � where Wi indicates the workflow id and W S i indicates
the schema id that corresponds to the workflow W i. The completion of the workflow is
indicated by a log record � COMPLET E Wi � .

Execution of the primitive begin for task ti j results in the following records being
inserted in the log: � START ti j � where ti j is the task id. Note that the task id includes
information about the workflow id of which the task is a part. Similarly, execution
of the primitives commit or abort result in the following log records for task ti j: �
COMMIT ti j � or � ABORT ti j � . Execution of operations also cause log records to
be inserted. A write operation causes the log record � ti j X � v� w � where X is the data
item written by the workflow and v and w indicate the old value and the new value of
the data item written by task ti j. The inputs to the task and the outputs produced by the
task are also recorded as log records.

Checkpointing Our checkpointing technique, based on the nonquiescent checkpoint-
ing performed on an undo/redo log in the standard transactional model [6], involves the
following steps.

1. Write a log record � START CKPT
�
twi � ty j � ��� � � tzk ��� and flush the log. The tasks

twi, ty j , � ��� , tzk denote all the tasks that have started but not yet committed or aborted
when the checkpointing started.

2. Write to disk all dirty buffers, containing one or more changed data item.
3. Append an � END CKPT � record to the log and flush the log.

5 Recovery Algorithm

We assume that a system crash can take place at any time. A crash may occur after
a workflow is completed or during its execution. When a crash occurs, the task of a
workflow may be in unschedule, commit, abort, or execute state (please refer to Figure
1). If a crash occurs when the task is in the execute state, then we say that the task has
been interrupted.

Our recovery algorithm proceeds in three phases. The first phase is known as the
undo phase. In this phase, the log is scanned backwards to identify tasks that have been
committed, aborted or interrupted. The aborted and interrupted tasks are undone in this
phase by restoring the before image values of updated data items. After an interrupted
task ti j has been undone, we write a � RECOVERY ABORT ti j � log record and flush
this to the disk. The purpose of this log record is to indicate that this task ti j has been
undone, but the dependencies associated with the tasks have not been dealt with.

The second phase is the redo phase. In this phase the the data items updated by
committed tasks are set to the modified values. The third phase is the re-execution and
dependency adjustment phase. In this phase, we start from the very first workflow that
was interrupted. From the schema, we identify all the tasks of the workflow that have
been committed, aborted, interrupted and unscheduled. Starting from the first task that
was interrupted, we try to re-execute this task. If the task can be re-executed, then we do
not have to worry about the dependency implications of this task. Otherwise, we have



to take care of the dependencies of this task. This, in turn, may require some other tasks
to be aborted or re-scheduled. The dependencies of these tasks must now be considered.
We continue this process until all the dependencies have been considered. The tasks to
be scheduled are inserted into a list called toschedule that is submitted to the scheduler.
Finally, we write an � ABORT � log record for all the tasks that were interrupted.

Algorithm 1
Workflow Recovery Algorithm
Input: the log, file containing workflow schemas
Output: a consistent workflow state in which all the task dependencies are enforced

Initialization:
/* lists keeping track of incomplete workflows and tasks in them */
completeWF � � � , incompleteWF � � �
globalCommitted � � � , globalInterrupted � � � , globalAborted � � �
/* lists keeping track of tasks in each workflow */
committed � � � , interrupted � � � , unscheduled � � �
ad justSet � � � , tempAborted � � � , toschedule � � �
/* the endCkptFlag set to false */ endCkptFlag � 0
Phase 1 Undo Phase
begin

do /* Scan backwards until the � START CKPT � */
get last unscanned log record
case the log record is � COMMIT twi �

globalCommitted � globalCommitted
� � twi �

case the log record is � ABORT twi �
globalAborted � globalAborted

� � twi �
case the log record is � RECOVERY ABORT twi �

if twi
��

globalCommitted
�

globalAborted
globalInterrupted � globalInterrupted

� � twi �
case the log record is update record � twi � x � v� w �

if twi
��

globalCommitted
change the value of x to v /* restores before image of x */

if twi
�� globalCommitted

�
globalAborted

globalInterrupted � globalInterrupted
� � twi �

case the log record is � START twi �
if twi

�
globalInterrupted

write a � RECOVERY ABORT twi � record and flush to the disk
case the log record is � COMPLET E Wk �

completeWF � completeWF
� � Wk �

case the log record is � START Wk �
if Wk

��
completeWF

incompleteWF � incompleteWF
� � Wk �

case the log record is � END CKPT �
endCkptFlag � true /* we have found an end ckpt record */



until log record is � START CKPT
� � � � � AND endCkptFlag � true

/* Find the incomplete tasks in the � START CKPT
� � � � � � record

for each task ti j in � START CKPT
� � � � � � record

if ti j
��

globalCommitted
�

globalAborted
globalInterrupted � globalInterrupted

�
ti j

/* Scan backward to undo the aborted and incomplete tasks */
do

case the log record is update record � twi � x � v� w �
if twi

��
globalCommitted

change the value of x to v /* restores before image of x */
case the log record is � START twi �

if twi
�

globalInterrupted
write a � RECOVERY ABORT twi � record and flush to the disk

until all � START tk j � is processed where,
tk j

�� globalCommitted AND tk j
� � START CKPT

� � � � � �
end
Phase 2 Redo Phase
begin

do /* Scan forward from the � START CKPT
� � � � � found in Phase 1

case the log record is update record � twi � x � v� w �
if twi

�
globalCommitted

change the value of x to w /* restores after image of x */
until end of log is reached

end
Phase 3 Re-executing and Dependency Adjusting Phase
begin

for each Workflow w
�

incompleteWF
begin

Get the workflow schema WS w

for each task twx defined in workflow schema WS w

if task twx
�

globalInterrupted
interrupted � interrupted

� � twx �
else if task twx

�
globalCommitted

committed � committed
� � twx �

else if task twx
��

globalAborted
unscheduled � unscheduled

� � twx �
/* Processing the Interupted Task, re-executing phase */
for each twi

�
interrupted /* start from the earliest task that was interrupted */

begin
interrupted � interrupted � � twi �
if twi is re-executable AND all inputs in log
begin

Re-execute twi

committed � committed
� � twi �

end



else /* twi is aborted and dependencies must be checked */
begin

tempAborted � tempAborted
� � twi �

/* Find out all the affected tasks in committed list */
for each task twk

�
committed

if (twi � a twk OR twi � b twk)
for each task tw j in compensation flow of t wk

begin
toschedule � toschedule

� � tw j � /* Compensate task Twk */
ad justSet � ad justSet

� � twk �
end

/* Find out all the affected tasks in interrupted list */
for each task tw j

�
interrupted

if (twi � f ba tw j)
toschedule � toschedule

� � tw j �
if (twi � a tw j OR twi � b tw j OR tw j � c twi)

interrupted � interrupted � � tw j �
ad justSet � ad justSet

� � tw j �
tempAbort � tempAbort

� � tw j �
/* Find out all the tasks that need to be scheduled in unscheduled list */
for each task twm

�
unscheduled

if twi � f ba twm OR twi � ex twm

toschedule � toschedule
� � twm �

if twi is alternate-executable
for each tw j in alternate flow of t wi

toschecule � toschecule
� � tw j �

end
/* Processing the tasks that got affected */
while ad justSet

�
� � �

if twt
�

ad justSet
for each task twr

�
committed

if (twt � a twr OR twt � b twr OR twr � c twt )
for each twx

� compensation-flow(t wr)
toschedule � toschedule

� � twx �
ad justSet � ad justSet

� � twr �
ad justSet � ad justSet � � twt �

end while
Submit toschedule to the scheduler
for each twi

�
tempAborted

write log record � ABORT twi � and flush the log
/* Reset variables for the next workflow */
committed � � � , interrupted � � � , unscheduled � � �
toschedule � � � , tempAborted � � �

end
end



6 Conclusion

In order to coordinate the execution of the various tasks in a workflow, task depen-
dencies are specified among them. System crash or failures might occur during the
execution of a workflow. When a failure occurs, some tasks may have been partially
executed. This results in an inconsistent state. The recovery mechanism is responsible
for restoring consistency by removing the effects of partially executed tasks. The task
dependencies may be violated while consistency is being restored. In this paper, we
study how the task dependencies impact the recovery process and propose an algorithm
that restores consistency and also respects the dependencies.

In future, we plan to give more details about this recovery process. For instance,
we plan to discuss the kinds of checkpointing that are possible in workflow systems,
and how to optimize the recovery process. Finally, we would also like to expand our
work and address issues pertaining to survivability of workflows. This will include how
we can recover from attacks caused by malicious tasks on the workflow, how we can
confine such attacks, and prevent the damage from spreading.

References

1. V. Atluri, W. Huang, and Elisa Bertino. An Execution Model for Multilevel Secure Work-
flows. In Database Securty XI: Status and Prospects, IFIP TC11 WG11.3 Eleventh Interna-
tional Conference on Database Security, August 1997.

2. Paul C. Attie, Munindar P. Singh, Amit P. Sheth, and Marek Rusinkiewicz. Specifying and
enforcing intertask dependencies. In 19th International Conference on Very Large Data
Bases, August 24-27, 1993, Dublin, Ireland, Proceedings, pages 134–145. Morgan Kauf-
mann, 1993.

3. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

4. P. Chrysanthis. ACTA, A framework for modeling and reasoning aout extended transactions.
PhD thesis, University of Massachusetts, Amherst, Amherst, Massachusetts, 1991.

5. J. Eder and W. Liebhart. Workflow Recovery. In Proceeding of Conference on Cooperative
Information Systems, pages 124–134, 1996.

6. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete Book.
Prentice-Hall, 2002.

7. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow management:
From process modeling to workflow automation infrastructure. Distributed and parallel
Databases, 3:119–153, 1995.

8. D. Hollingsworth. Workflow Reference Model. Technical report, Workflow Management
Coalition, Brussels, Belgium, 1994.

9. M. Kamath and K. Ramamritham. Failure Handling and Coordinated Execution of Concur-
rent Workflows. In Proceeding of the Fourteenth International Conference on Data Engi-
neering, February 1998.

10. B. Kiepuszewski, R. Muhlberger, and M. Orlowska. Flowback: Providing backward recovery
for workflow systems. In Proceeding of the ACM SIGMOD International Conference on
Management of Data, pages 555–557, 1998.


