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ABSTRACT
Privacy models such as k-anonymity and `-diversity typi-
cally offer an aggregate or scalar notion of the privacy prop-
erty that holds collectively on the entire anonymized data
set. However, they fail to give an accurate measure of pri-
vacy with respect to the individual tuples. For example,
two anonymizations achieving the same value of k in the
k-anonymity model will be considered equally good with re-
spect to privacy protection. However, it is quite possible
that for one of the anonymizations a majority of the individ-
ual tuples have lesser probabilities of privacy breaches than
their counterparts in the other anonymization. We therefore
reject the notion that all anonymizations satisfying a par-
ticular privacy property, such as k-anonymity, are equally
good. The scalar or aggregate value used in privacy models
is often biased towards a fraction of the data set, resulting
in higher privacy for some individuals and minimalistic for
others. Consequently, to better compare anonymization al-
gorithms, there is a need to formalize and measure this bias.
Towards this end, we advocate the use of vector-based meth-
ods for representing privacy and other measurable properties
of an anonymization. We represent the measure of a given
property for an anonymized data set using a property vector.
Anonymizations are then compared using quality index func-
tions that quantify the effectiveness of the property vectors.
A formal analysis with respect to their scope and limitations
is provided. Finally, we present preference based techniques
when comparisons are to be made across multiple properties
induced by anonymizations.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—security, integrity, and protection
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1. INTRODUCTION
Microdata disclosure control involves transforming the ac-

tual data into a form unrecognizable in terms of the exact
values by using generalization and suppression techniques
[16]. Generalization of data is performed by grouping to-
gether data attribute values into a more general one. An
example of this is replacing a specific age by an age range.
Data suppression on the other hand removes entire tuples
making them no longer existent in the data set.

Table 1: Hypothetical microdata.

T1 :

Zip Code Age Marital Status

1 13053 28 CF-Spouse

2 13268 41 Separated

3 13268 39 Never Married

4 13053 26 CF-Spouse

5 13253 50 Divorced

6 13253 55 Spouse Absent

7 13250 49 Divorced

8 13052 31 Spouse Present

9 13269 42 Separated

10 13250 47 Separated

An unavoidable consequence of performing such anonym-
ization is a loss in the quality of the data set. Researchers
have therefore looked at different methods to obtain an op-
timal anonymization that results in a minimal loss of infor-
mation [1, 2, 3, 11, 14, 18, 20, 22]. A typical disclosure
control algorithm searches over the space of anonymizations
satisfying a particular privacy model, seeking the one with
highest utility. An implicit assumption in such optimization
attempts is that all anonymizations satisfying a particular
privacy property fare equally well in preserving the privacy
of individuals. For example, in the k-anonymity model where
the measure of privacy is given by the size of the minimum
equivalence class in the anonymized data set, two anonym-
izations of the same data set achieving the same value of
k will be considered equally good with respect to privacy
protection. Comparative studies based on such an assump-
tion ignores the fact that an anonymization can introduce
unwanted bias towards a certain fraction of the individuals
represented in the data set. This bias, which we term the



Table 2: Two 3-anonymous generalizations of T1. Real values of marital status are shown in italics. Left table
is denoted as T3a and right table as T3b.

Zip Code Age Marital Status

1 1305* (25,35] Married (CF-Spouse)
4 1305* (25,35] Married (CF-Spouse)
8 1305* (25,35] Married (Spouse Present)

2 1326* (35,45] Not Married (Separated)
3 1326* (35,45] Not Married (Never Married)
9 1326* (35,45] Not Married (Separated)

5 1325* (45,55] Not Married (Divorced)
6 1325* (45,55] Not Married (Spouse Absent)
7 1325* (45,55] Not Married (Divorced)
10 1325* (45,55] Not Married (Separated)

Zip Code Age Marital Status

1 130** (15,35] Married (CF-Spouse)
4 130** (15,35] Married (CF-Spouse)
8 130** (15,35] Married (Spouse Present)

2 132** (35,55] Not Married (Separated)
3 132** (35,55] Not Married (Never Married)
5 132** (35,55] Not Married (Divorced)
6 132** (35,55] Not Married (Spouse Absent)
7 132** (35,55] Not Married (Divorced)
9 132** (35,55] Not Married (Separated)
10 132** (35,55] Not Married (Separated)

anonymization bias, stems from the fact that current privacy
models offer only a collective representation of the level of
privacy, resulting in higher privacy for some individuals and
minimalistic for others. Under such a scenario, the results
of comparing the effectiveness of various anonymizations can
be misleading.

Let us consider the data set T1 shown in Table 1. The
data set contains 10 tuples with 3 attributes in each – Zip
Code, Age and Marital Status. Table 2 shows two possible
3-anonymous (T3a and T3b) generalizations of T1. The level
of privacy inferred from T3a and T3b is based on 3-anonymity
which is essentially the minimum size of an equivalence class.
The notion of privacy assumed here is in a minimalistic
sense, meaning that every tuple has at most a 1

3
probability

of privacy breach. Thus, both T3a and T3b are considered to
have the same level of privacy. However, we argue that T3b

should rightfully be evaluated as providing better privacy.
This is because tuples {2, 3, 5, 6, 7, 9, 10} in T3b has 1

7
prob-

ability of breach, lower than their counterparts in T3a. In
general, with models like k-anonymity and others based on
equivalence class sizes, such subtle information is likely to be
lost. This is because these privacy measurements are based
on certain aggregate property of the anonymization, namely
the minimum equivalence class size in this case. What differ-
entiates T3a and T3b is the data utility factor which in some
sense is orthogonal to the privacy requirement. From a data
utility perspective T3a is perhaps better since the attributes
Zip Code and Age are less generalized in T3a than in T3b.
Thus, either of T3a or T3b can be preferable depending on a
higher utility or a better privacy requirement.

In this work, we focus on identifying ways of comparing
anonymizations when such bias is known to exist. We reject
a categorical statement such as “4-anonymity is better than
3-anonymity,” but seek alternative ways of comparing anon-
ymizations. Towards this end, we introduce a vector-based
representation of privacy to address the problem of bias that
is induced by the scalar representation. Each property, such
as privacy or utility, is associated with a property vector,
where each element gives a measure of the property for an
individual anonymized tuple. Such a representation would
signify, for example, the privacy level present for every in-
dividual in the data set under a particular privacy model.
This will not only allow one to capture the anonymization
bias introduced by existing privacy models, but also enable
one to perform comparisons between various anonymizati-
ons based on the difference in distribution of the privacy

levels.
We propose the notion of quality index functions that can

be used to evaluate the effectiveness of an anonymization
and then formally analyze the characteristics of such func-
tions. An m-ary quality index function assigns a real number
to a combination of m property vectors. This quantitative
estimate is useful in measuring the quality of the property
vector. If the quality index value for one instance of a prop-
erty vector produced by an anonymization is better than
another instance produced by a different anonymization, we
will say that the first anonymization is preferred over the
second. Unary quality index functions are limited in their
ability in performing comparisons and can measure only the
aggregate properties of the anonymizations. Towards this
end, we explore other methods of comparison that allows
one to quantify the differences in the values of the property
measured across the tuples instead of a minimalistic esti-
mate. We also present various preference based techniques
when comparisons are to be made across multiple properties.

The remainder of the paper is organized as follows. The
idea of anonymization bias is elaborated upon in Section 2.
Section 3 defines the concepts pertinent to the remaining
discussion. Section 4 explores the limitations of performing
a comparative study using strict comparisons. The require-
ment for other methods of comparison follows from this in
Section 5. A number of comparators are suggested in this
section. Section 6 reviews some of the existing works in dis-
closure control. Finally, Section 7 concludes the paper with
a discussion on future extensions.

2. ANONYMIZATION BIAS
Let us revisit the data in Table 1. Table 3 shows a 4-

anonymous generalization of the table. We note that further
discrepancy beyond those discussed in Section 1 is evident
when we start looking at the anonymizations from an user’s
perspective. Typically, a 4-anonymous generalization is con-
sidered to provide higher privacy than a 3-anonymous one.
Again, this idea is based on a minimalistic notion of privacy,
keeping in mind the entire data set and a certain property
satisfied by the tuples in it. However, it is worth noting
that attacks on the anonymized data sets could be targeted
towards a particular subset of the individuals represented
in the data set. In such a situation, a user needs to be
concerned about her own level of privacy, rather than that
maintained collectively. For example, if user 8 is to choose
between the anonymizations T3b and T4 , the choice would



Table 3: A 4-anonymous generalization of T1.

T4 :

Zip Code Age Marital Status

1 13*** (20,40] *
3 13*** (20,40] *
4 13*** (20,40] *
8 13*** (20,40] *

2 13*** (40,60] *
5 13*** (40,60] *
6 13*** (40,60] *
7 13*** (40,60] *
9 13*** (40,60] *
10 13*** (40,60] *

be the latter which conforms to our understanding that 4-
anonymity is better. However, if user 3 is in question then
the 3-anonymous generalization T3b is in fact better than T4.
Fig. 1 plots the size of the equivalence class for each tuple
in the three different generalizations. The plot tells us that
different anonymizations can in fact be better for different
individuals. This in some way disrupts our understanding
of “better” and “poor” privacy.
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Figure 1: The size of equivalence class to which a
tuple in T1 belongs to for different anonymizations.
Two different anonymizations with the same collec-
tive privacy level can have different privacy levels
for individual tuples.

These fundamental problems are often ignored while per-
forming comparative studies. The notion of privacy assumed
in most studies is limited to some overall measure, which can
result in anonymizations being biased towards some fraction
of the data set. Although removing this bias can be a diffi-
cult task, no attempt is known to have been made to mea-
sure it, less provide privacy measures keeping the bias in
consideration. Comparative studies typically assume that if
parameters are set similarly in a privacy model, for example
k in k-anonymity, then the resulting level of privacy would
also be similar. Thereafter, most of the focus during opti-
mization is directed towards obtaining higher utility. With
the anonymization bias in picture, the very assumption in
the first step of an optimization procedure does not hold
any longer. Our work in this paper is not targeted towards
defining a new privacy model that overcomes this bias, but

to find ways of comparing anonymizations when the bias is
known to exist.

Note that the appearance of bias is not limited to k-
anonymity alone. When individual measures of privacy are
not considered, such bias can appear in any privacy model.
The bias can be present even in a personalized privacy set-
ting, such as in the model presented by Xiao and Tao [21].
Personalized privacy in such a model is achieved by con-
straining the probability of privacy breach for an individual,
depending on personal preferences of a breach, to an upper
bound. Nonetheless, the individual probabilities need not be
same for all tuples, thereby biasing a generalization scheme
in more favor towards some tuples than others.

It is imperative to ask if an anonymization can be strictly
better than another. It is known that privacy and utility are
two conflicting facets of an anonymization, indicating that
an anonymization better in one aspect (privacy or utility) is
likely to suffer on the other. However, even if utility is not
considered as a criteria for obtaining a better generalization,
how easy is it to establish that one anonymization is better
than another? The answer could be subjective depending on
how one defines a “better” anonymization. We shall explore
the limitations and alternatives to establish the superiority
of an anonymization for various definitions in this context.

3. PRELIMINARIES
Let Φ1,Φ2, . . . ,Φa represent the domains of a attributes.

A data set of size N defined over these attributes is a collec-
tion ofN tuples of the form (φ1, φ2, . . . , φa) ∈ Φ1×Φ2×. . .×
Φa. An anonymization of a data set is achieved by perform-
ing generalization/suppression of the tuples, resulting in an
anonymized data set unidentifiable from the original one.
Since suppression of tuples can be represented as a special
case of generalization, we adhere to the term “generaliza-
tion” to mean both. Further, although tuples suppressed
during an anonymization are usually eliminated, we assume
that they still exist in the anonymized data set in an overly
generalized form. This enables us to say that both the orig-
inal data set and the anonymized one are of the same size.
An anonymized data set is then subjected to a variety of
property measurements. A property here refers to a scalar
quantity signifying a privacy, utility or any other measurable
feature of a tuple in the anonymized data set. This gives us
a vector of values representing the property value for every
tuple of the anonymized data set.

Definition 1. (Property Vector) A property vector D
for a data set of sizeN is anN -dimensional vector (d1, d2, . . .
, dN ) with di ∈ R; 1 ≤ i ≤ N specifying a measure of a
property for the ith tuple of the data set.

A property signifies the grounds under which a compari-
son is made between two anonymizations. Consider that we
are performing k-anonymization on a data set. A generaliza-
tion scheme to do so results in multiple equivalence classes,
the desired property being that all such equivalence classes
are of size at least k. If we pick our privacy property to be
the “size of the equivalence class to which a tuple belongs”,
then each tuple will have an associated integer. This results
in a property vector s = (s1, s2, . . . , sN ) for a data set of
size N . For example, the equivalence class property vector
induced in T3a is (3, 3, 3, 3, 4, 4, 4, 3, 3, 4). Another example
of a property could be the contribution made by a tuple to



the total information loss. If measurements on the diver-
sity of sensitive attributes in an equivalence class is desired,
then the property can be the number of times the sensitive
attribute value of a tuple appears in its equivalence class.
Considering “Marital Status” as a sensitive attribute, such a
property vector for T3a will be (2, 2, 1, 2, 2, 1, 2, 1, 2, 1).

Ideally, any number of properties can be studied on a
given anonymization. An anonymization is only a represen-
tation of the generalization scheme, inducing different prop-
erty vectors for different properties. For example, one may
be interested in analyzing an anonymization w.r.t. both k-
anonymity and `-diversity. In such a case, the property vec-
tors to consider are the ones generated by the properties -
size of equivalence class of a tuple and count of the sensi-
tive attribute value of a tuple in its equivalence class. For
an anonymization, a property vector due to the first prop-
erty relates to k-anonymity, while that from the latter one
relates to `-diversity. We thus use the notion of r-property
anonymization to indicate that the set of properties decided
upon for a comparison process is restricted to a pre-specified
set of r properties. The objective of a comparison is to de-
cide if one anonymization is better than another w.r.t. the
specified properties.

Definition 2. (r–Property Anonymization) Let ∆ be
the set of all data sets of size N . Let Υ be the set of all
elements υ ∈ 2RN such that |υ| = r. A r–property anonym-
ization G is a function G : ∆ → Υ which induces a set of r
N -dimensional property vectors G(δ) on a data set δ ∈ ∆.

Note that an r-property anonymization does not mean
that there are restrictions on how an anonymization is done.
It only indicates that, for a given anonymization, r different
property vectors are chosen to proceed with the compari-
son. The idea is to project an anonymized data set into
a set of N -dimensional vectors with regard to r properties,
and then compare the resulting vectors for different anonym-
ization schemes. For example, the aforementioned example
of analyzing the size of equivalence class and the number of
sensitive attribute values of a tuple in its equivalence class
will be referred to as 2–property anonymization.

Comparisons between anonymizations is done by defin-
ing a comparator, denoted by B. A comparator is an or-
dering operation defined on sets of property vectors. An
example is the dominance-based comparator � – under a
1-property anonymization, say Υ1 = {(d1

1, . . . , d
1
N )} and

Υ2 = {(d2
1, . . . , d

2
N )}, then Υ1 � Υ2 iff ∀1 ≤ i ≤ N , d1

i ≥ d2
i .

In other words, comparators are user-defined ways of evalu-
ating the superiority of a property vector. An anonymizat-
ion is better than another only w.r.t. the comparator used in
comparing the induced set of property vectors. Therefore,
given a comparator B, the relation G1 B G2 ⇐⇒ Υ1 B Υ2

is implicitly assumed to be true. Note that the definition of
a comparator need not always be explicitly made in terms of
the values in a property vector. For example, a comparator
may be defined just to check if more values in one property
vector is higher than the corresponding values in another
vector. Hence, we use quality index functions on property
vectors to quantitatively measure the competence of a set of
property vectors.

Definition 3. (m-ary Quality Index) Let Π be the set
of all property vectors w.r.t a particular property. An m-ary
quality index P is a function P : Πm → R which assigns a

combination of m property vectors D1, . . . ,Dm a real value
P (D1, . . . ,Dm).

Since comparisons are usually performed by applying an
anonymization on the same data set, we shall restrict Π to be
the set of all property vectors of the same size, i.e. the size N
of the data set. Based on the same reasoning, a quality index
may also use the original data set while mapping property
vectors to real numbers.

A commonly used method of performing comparisons is
through unary quality index functions (1-ary). Unary qual-
ity indices are functions applied independently on anonymi-
zations. They measure one or more feature (privacy/utility)
of an anonymization, and the quantitative value is consid-
ered representative of the measured feature of the anony-
mization. For example, k-anonymity is an unary quality
index on the equivalence class size property vector, given
as Pk−anon(s) = min

si

(s) (= 3 for T3a). Another possi-

ble quality index could be the average size of the equiv-
alence class maintained in the anonymized data set, i.e.
Ps−avg(s) =

P
si/N (= 3×3+3×3+4×4/10=3.4 for T3a).

Other models like `-diversity and t-closeness results in other
property vectors depending on the property being measured,
for example `-diversity uses a count of the number of times
the sensitive attribute value of a tuple is represented in an
equivalence class. With this property, we shall have a unary
quality index ` = P`−div((2, 2, 1, 2, 2, 1, 2, 1, 2, 1)) value of
1 for T3a (considering “Marital Status” as the sensitive at-
tribute). Once again, the ` or t values for an anonymization
is a quality measurement on the property vectors, the min-
imum values in these models. Certain forms of utility mea-
surements can also be captured from property vectors. A
loss measurement, such as the general loss metric [7], com-
putes a normalized loss quantity for every tuple of the data
set. For such metrics, a property vector specifies the loss
resulting from each tuple in the data set. Thereafter, the
quality index is some form of aggregation of the individual
losses.

Note that unary indices only allow the measurement of
an aggregate property of an anonymization. This limits any
kind of comparison against the bias that may be present
across anonymizations. More specifically, comparisons are
not possible across the property values maintained by a tu-
ple in two different anonymizations. This problem is elim-
inated by binary indices (2-ary) since both anonymizations
are now available to allow comparison of individual com-
ponents of the induced property vectors. A binary qual-
ity index has two anonymizations as input and the real-
valued output signifies a relative measure of one anonym-
ization’s effectiveness over another. For example, a binary
quality index such as Pbinary(s, t) = |{si|si > ti}| counts the
number of entries in the property vector s that has higher
property values than the corresponding entries in t. Note
that s and t in this case are property vectors measuring the
same property in two different anonymizations. For the size
of equivalence class property in T3a, with property vector
s = (3, 3, 3, 3, 4, 4, 4, 3, 3, 4), and T3b, with property vector
t = (3, 7, 7, 3, 7, 7, 7, 3, 7, 7), we have Pbinary(s, t) = 0 and
Pbinary(t, s) = 7. These index values indicate that if an 1-
property anonymization is analyzed w.r.t. the size of equiv-
alence class property, then anonymization T3b inducing the
property vector t is preferable over T3a.

Quality estimation based on index functions stresses on



Table 4: Strict comparators based on dominance relationships.
Comparator (B) D1 B D2 Υ1 B Υ2 G1 B G2

Weak dominance (�) ∀i; d1
i ≥ d2

i ∀Di ∈ Υ1,D′i ∈ Υ2;Di � D′i G1 is not worse than G2

Strong dominance (�)
∀i; d1

i ≥ d2
i

∧∃j; d1
j > d2

j

∀Di ∈ Υ1,D′i ∈ Υ2;Di � D′i
∧∃Dj ∈ Υ1,D′j ∈ Υ2;Dj � D′j

G1 is better than G2

Non-dominance (‖) ∃i, j; d1
i < d2

i ∧ d1
j > d2

j
∃Di ∈ Υ1,D′i ∈ Υ2;Di � D′i
∧∃Dj ∈ Υ1,D′j ∈ Υ2;D′j � Dj

G1 and G2 are incomparable

User defined (I-better) D1 is I-better than D2 Υ1 is I-better than Υ2 G1 is I-better than G2

the fact that a particular anonymization can be interpreted
with respect to many different privacy properties and util-
ity measurements. The superiority of one anonymization to
another is thus dependent on what privacy properties are
taken into consideration while performing the comparison.
If quality indices are used to establish this superiority, then
our concern is how many of them are needed to do so.

4. STRICT COMPARISONS
Most algorithms in disclosure control are designed to ob-

tain anonymizations that can maximize the utility of the
anonymized data while satisfying a pre-specified privacy prop-
erty. An anonymization is considered to be better than an-
other if it provides higher utility within the constraints of
the privacy requirement. Privacy, as given by a model, and
utility are two properties induced by an anonymization. A
disclosure control algorithm scans through the space of an-
onymizations satisfying a privacy property to find the one
with maximum utility. Performance of one algorithm is said
to be better than another if it is able to find an anonymiza-
tion with higher utility.

This form of comparison suffers from the fact that the
privacy level measured from an anonymization is a scalar
quantity. It is known that maximum privacy and maximum
utility are orthogonal objectives that cannot be achieved at
the same time. Hence, it is imperative that when an anony-
mization with a better utility is found by an algorithm, the
privacy factor must suffer. However, this facet may not be
exposed if scalar measures are used to represent privacy. The
anonymization bias plays an important role here in explain-
ing a degraded performance in privacy from high utility an-
onymizations. Further, optimization attempts are also rare
where emphasis is laid on obtaining anonymizations that
satisfy more than one privacy property.

Discrepancies of the above nature prompts us to consider
vector based measurements of the properties induced by an
anonymization. Our perspective of an anonymization is that
of a source that induces various properties, both in terms of
privacy and utility, and more importantly, the properties
can be measured on each tuple in the data set. Thereafter,
methods to compare these property vectors (one or more)
are devised to evaluate the competence of an anonymization.

The first question we ask is the feasibility of perform-
ing strict comparisons. A strict comparison between prop-
erty vectors follows from the concept of dominance, widely
used in the multi-objective optimization community. The
notions of weak and strong dominance enables us to make
strong statements about the superiority of an anonymizat-
ion. Weak dominance says that every measured value of a
property on every tuple of the data set after an anonymiz-
ation must be at least as good as the value measured from
the corresponding tuples with another anonymization. This

establishes a “not worse than” relationship between vectors.
Strong dominance offers a stricter notion and establishes the
“better than” relationship (Table 4). The non-dominance re-
lationship signifies incomparable vectors. We are interested
in strict comparisons based on dominance because they pro-
vide a framework to undoubtedly justify why an anonymiza-
tion is better than another. It can potentially eliminate the
effects of anonymization bias during a comparative study.
However, the following discussion shows that adopting a
dominance based comparative method could be rather im-
practical.

Theorem 1. Let D1 and D2 be two property vectors mea-
suring the same property and induced by the 1–property an-
onymizations G1 and G2 respectively on a data set of size N .
If P = (P1, P2, . . . , Pn) be a vector of n unique unary quality
indices such that

∀1 ≤ i ≤ n : Pi(D1) ≥ Pi(D2) ⇐⇒ D1 � D2,

then the number of indices is at least equal to the size of the
data set, i.e. n ≥ N .

Proof. The proof follows from the fact that the number
of open hypercubes required to cover RN is finite. We shall
show that if n < N , then infinite such open hypercubes
can be defined. The proof is by induction. Consider the two
non-comparable property vectorsD1 = (a, b) andD2 = (b, a)
with a, b ∈ R and n = 1. Then either P1(D1) ≥ P1(D2) or
P1(D1) < P1(D2). This implies that either D1 � D2 or
D2 � D1, which leads to a contradiction since D1 ‖ D2.
Hence the theorem holds for N = 2.

Let us suppose that the theorem holds for data sets of size
N−1. Consider the two property vectorsD1 = (a, a, . . . , a, c)
and D2 = (b, b, . . . , b, c) with a, b ∈ R and a < b on a data
set of size N . Further, let us assume that there exists a
combination of n < N unary quality indices satisfying the
relation in the theorem.

We first show that ∀1 ≤ i ≤ n : Pi(D1) < Pi(D2).
If ∃j such that Pj(D1) > Pj(D2) then D2 � D1 which

results in a contradiction.
Next, consider a property vector D ∈ Dc = {(d1, d2,

. . . , dN−1, c)|∀1 ≤ i ≤ N − 1 : a < di < b}; c ∈ R. We
then have D2 � D � D1 leading to ∀1 ≤ i ≤ n : Pi(D2) ≥
Pi(D) ≥ Pi(D1). If ∃j such that Pj(D2) = Pj(D1), then
Pj(D2) = Pj(D) = Pj(D1). With this we can now prove
that the number of indices required for data sets of size
N − 1 can be less than N − 1, contrary to the hypothesis
assumed. To do so, we consider two property vectors Dp =
(p1, p2, . . . , pN−1) and Dq = (q1, q2, . . . , qN−1) on a data set
of size N − 1, such that ∀1 ≤ i ≤ N − 1 : a < pi ≤ qi < b.
Hence, Dq � Dp. Next, we expand the two vectors by con-
catenating the same arbitrary element c ∈ R, the concate-
nated vectors being denoted by Dp|c and Dq|c respectively.



Since ∀1 ≤ i ≤ n : Pi(Dq|c) ≥ Pi(Dp|c) ⇐⇒ Dq|c � Dp|c
and (Dq � Dp) ⇐⇒ (Dq|c � Dp|c), we have ∀1 ≤ i ≤
n : Pi(Dq|c) ≥ Pi(Dp|c) ⇐⇒ Dq � Dp. Also, using the
result that Pj(D2) = Pj(D) = Pj(D1) for any D ∈ Dc, we
have Pj(Dq|c) = Pj(Dp|c). Hence the result of Pj can be
ignored and one can write ∀1 ≤ i 6= j ≤ n : Pi(Dq|c) ≥
Pi(Dp|c) ⇐⇒ Dq � Dp, which means that less than N − 1
(recall n < N ) quality indices can be used to compare Dp

and Dq . Since this is contrary to the assumed hypothesis,
the existence of such j is not possible.

Thus, ∀1 ≤ i ≤ n : Pi(D1) < Pi(D2).
Let us now consider the open hyperrectangle Ic = {(r1, r2,

. . . , rn) ∈ Rn|∀1 ≤ i ≤ n : Pi(D1) < ri < Pi(D2)}. Also,
for f > c, Ic ∩ If = φ; if ∃(r1, r2, . . . , rn) ∈ Ic ∩ If then
∀1 ≤ i ≤ n : [Pi((a, a, . . . , a, c)) < ri < Pi((b, b, . . . , b, c))] ∧
[Pi((a, a, . . . , a, f)) < ri < Pi((b, b, . . . , b, f))], giving ∀1 ≤
i ≤ n : P ((a, a, . . . , a, f)) < Pi((b, b, . . . , b, c)), and implying
that (b, b, . . . , b, c) � (a, a, . . . , a, f) which is absurd. Hence,
since R is uncountable and c is chosen arbitrarily in R, there
are uncountably many disjoint open hyperrectangles in the
n-dimensional quality index space Rn. This is in contra-
diction to the fact that Rn contains countably many dis-
joint open hyperrectangles. Therefore, n ≮ N which implies
n ≥ N .

A similar proof can be given for the case when strong
dominance has to be inferred between two property vectors,
i.e. for the equivalence relation [∀1 ≤ i ≤ n : Pi(D1) ≥
Pi(D2) ∧ ∃j ∈ {1, . . . , n}|Pj(D1) > Pj(D2)] ⇐⇒ D1 � D2

to hold, n must be at least N .
An important question here is whether all possible N -

dimensional property vectors are valid given a specific pri-
vacy measurement and a specific data set. The answer is a
strict no. For example, if we consider the size of the equiv-
alence class as the privacy property, one commonly used in
models like k-anonymity and `-diversity, we would find that
the measurements are dependent. In other words, if a tuple
belongs to an equivalence class of size s, then there exists
s−1 other tuples that belong to the same equivalence class.
Hence the measurement (size of equivalence class) will be
the same for all s tuples. This restricts us from attaining all
possible property vectors. This then raises the question if
Theorem 1 is valid when the set of possible property vectors
is actually a subset of the set of all possible property vectors.
We show that the theorem in fact holds for such a subset as
well.

Corollary 1. Let Π be the set of all property vectors
that can be defined for a data set of size N . Let D ⊆ Π be a
set of property vectors measuring a particular property such
that ∀D1,D2 ∈ D,

∀1 ≤ i ≤ n : Pi(D1) ≥ Pi(D2) ⇐⇒ D1 � D2

Then, n ≥ N .

Proof. Let us assume that n < N . The proof is given by
constructing the maximal superset DM of D on which the re-
lationship holds. Let a = (a1, a2, . . . , aN ), b = (b1, b2, . . . , bN )
∈ D. Hence we can say, ∀1 ≤ i ≤ n : Pi(a) ≥ Pi(b) ⇐⇒
a � b. Also then a, b ∈ DM . Now consider the following
vectors.

• x ∈ X = {(a1c1, a2c2, . . . , aN cN )|∀1 ≤ i ≤ N ; ci ≥ 1}

• y ∈ Y = {(b1+(a1−b1)e1, . . . , bN+(aN−bN )eN )|∀1 ≤
i ≤ N ; 0 ≤ ei ≤ 1}

• z ∈ Z = {(b1/d1, b2/d2, . . . , bN /dN )|∀1 ≤ i ≤ N ; di ≥
1}

We have the following relation on these vectors: a � b ⇐⇒
x � a � y � b � z. Hence, by applying the quality indices
Pi’s on a and b one can compare two property vectors be-
longing to two different sets from X , Y and Z. Note that one
can still not assert that two vectors belonging to the same
set (X ,Y or Z) can be compared in the same manner. Thus,
we arbitrarily choose three vectors, one each from X ,Y and
Z, and include it in DM , i.e. DM = {x, a, y, b, z}. Hence,
given two vectors in DM , we can find at least three other
vectors that satisfy the relationship, thereby increasing the
cardinality of DM . Since the choice of the new vectors is
arbitrary, we can continue the process as many times as pos-
sible, every time increasing the cardinality of DM . Then, in
the limit, DM will become equal to Π. This contradicts the
result from Theorem 1 saying that n ≥ N quality indices
are required to compare two property vectors in Π. There-
fore, the assumed hypothesis n < N is incorrect, implying
n ≥ N .

The situation becomes worse if comparisons are to be
made against multiple properties. On first thought, it is pos-
sible to map a set of property vectors to an unique property
vector of size N and Theorem 1 could suggest that the lower
bound on n is thereforeN . Let Υp = {Dp1,Dp2, . . . ,Dpr} be
a set of r property vectors, where Dpi = (dp

i1, d
p
i2, . . . , d

p
iN );

1 ≤ i ≤ r. Consider the vector dj ∈ Dj = {(dp
1j , d

p
2j , . . . , d

p
rj)

∈ Rr} for some j ∈ {1, ...,N}. Note that |Dj | = Rr and
since the cardinality of Rr and R is the same, there exists a
bijective function fj : Dj → R. Now define the function F :
Υ→ RN which maps each set of r property vectors to a vec-
tor of size N as F(Υp ∈ Υ) = (f1(d1), f2(d2), . . . , fN (dN )).
Since every fj is a bijective function, F is bijective too.
However, a bijective mapping is not sufficient to imply the
equivalence relation F(Υ1) � F(Υ2) ⇐⇒ Υ1 � Υ2 and
hence the lower bound (n ≥ N ) given by Theorem 1 would
be incorrect. It can be shown that for the relation to hold, n
should at least be equal to rN . The following corollary gives
this lower bound on the number of quality indices required
to compare two sets of property vectors. Note that the corol-
lary uses notions of quality index functions extended to sets
of property vectors.

Corollary 2. Let Υ1 = {D11,D12, . . . ,D1r} and Υ2 =
{D21,D22, . . . ,D2r} be two sets of property vectors induced
by the r–property anonymizations G1 and G2 respectively on
a data set of size N . If P = (P1, P2, . . . , Pn) be a vector of
n unary quality indices such that

∀1 ≤ i ≤ n : Pi(Υ1) ≥ Pi(Υ2) ⇐⇒ Υ1 � Υ2

then n ≥ rN .

Proof. Let us assume that there exists quality indices
Pi; 1 ≤ i < rN such that the equivalence relation holds.
Now, Υ1 � Υ2 ⇐⇒ ∀1 ≤ j ≤ r;D1j � D2j . If Dpj =
(dp

j1, d
p
j2, . . . , d

p
jN ) then D1j � D2j ⇐⇒ ∀1 ≤ z ≤ N ; d1

jz ≥
d2

jz. Therefore, Υ1 � Υ2 ⇐⇒ ∀1 ≤ j ≤ r;∀1 ≤ z ≤
N ; d1

jz ≥ d2
jz. By transitivity, we then have ∀1 ≤ i < rN :

Pi(Υ1) ≥ Pi(Υ2) ⇐⇒ ∀1 ≤ j ≤ r;∀1 ≤ z ≤ N ; d1
jz ≥ d2

jz.
Let us now consider a data set of size rN . For two prop-

erty vectors D1 and D2 defined on this data set, D1 � D2 if
and only if every component of D1 is greater than or equal to



the corresponding component of D2. We first divide a prop-
erty vector on this data set into r equal sections, thereby
resulting in r N -dimensional vectors. The quality indices Pi

can then be applied to these resulting vectors. The equiva-
lence relation ∀1 ≤ i < rN : Pi(Υ1) ≥ Pi(Υ2) ⇐⇒ ∀1 ≤
j ≤ r; ∀1 ≤ z ≤ N ; d1

jz ≥ d2
jz can then be used to state that

less than rN quality indices can be used to establish a dom-
inance relation between D1 and D2. This contradicts the
result from Theorem 1 which states that we would require
at least rN quality indices to compare any two property vec-
tors on a data set of size rN . Hence, no such combination
of quality indices with n < rN can exist.

The results till this point indicate that it is rather im-
practical to determine the superiority of an anonymization
based on notions of weak or strong dominance, and with
unary quality indices. This prompts us to consider other
methods of representing the quality of anonymizations rela-
tive to one another by defining I-better (read as metric bet-
ter) comparators. For example, we can define a Icov-better
comparator such that, given two equivalence size property
vectors D1 and D2, D1IcovD2 if more tuples in D1 have a
higher equivalence class size than the corresponding number
in D2. Another example is the Imin-better comparator typ-
ically used in models such as k-anonymity – D1 Imin D2 if
min

d1
i

(D1) > min
d2

i

(D2). In fact, current methods of compari-

son are all based on some I-better comparator.
I-better comparators may naturally induce the quality

indices to be used to infer the relationship, for example
Pk−anon is the quality index to be used to infer Imin-better.
However, as mentioned earlier, comparators such as Imin

are limited by the fact that they are based on some aggregate
property of the vectors, ignoring the anonymization bias al-
together. On the other hand, Icov is a rational candidate
since the relationship is based on the output from compar-
ing multiple tuples in the two property vectors. Note that
Icov in fact induces a binary quality index as presented in
the next section.

5. I-BETTER COMPARATORS
Comparisons with dominance based comparators suffer

from the drawback that the number of unary quality in-
dices required is impractically large. This also follows from
our intuition that comparison of two N -dimensional vectors
cannot be accomplished with less than N scalar quantities
without losing information. Besides this difficulty, domi-
nance based comparison is a rather strict way of evaluating
the quality of an anonymization. It is not unlikely that a
property vector is not able to dominate another vector be-
cause of low property values for a minor fraction of the tu-
ples. This effectuates to saying that the anonymization bias
could be present negligibly resulting in a non-dominance re-
lationship.

Although removing the effects of anonymization bias is
hard (or perhaps impossible), methods can be devised to
keep it in consideration during a comparative study. We
therefore seek other comparators, called I-better compara-
tors, that can capture the quality of anonymizations to-
gether with the bias they introduce. I-better compara-
tors provide a weaker notion of superiority than dominance-
based ones, nonetheless their objective is also targeted to-
wards identifying anonymizations with better utilization of

the bias. Hence, we emphasize that such comparators pay
adequate attention to the property values across all tuples
of the anonymized data set.

In the following discussion, we introduce a number of
I-better comparators and the corresponding unary/binary
quality index they induce. All expressions below are in
terms of two property vectors D1 = (d1

1, d
1
2, . . . , d

1
N ) and

D2 = (d2
1, d

2
2, . . . , d

2
N ) measuring a given property when in-

duced by two different anonymizations on a data set of size
N . Without loss of generality, we assume that a higher value
of a property measurement for a tuple is better.

5.1 Irank-better
Consider the N -dimensional space of all property vectors

for a given property. Let Dmax be a point of interest and
all points are assigned a rank based on their distance from
Dmax. We then say D1 Irank D2 if the rank of D1 is
lower than the rank of D2. A visualization of this on a
2-dimensional space is depicted in Fig. 2. The point Dmax

here is the property vector that is the most desired one, quite
often the property vector that offers the maximum measure
of the property for every tuple in the data set. The arcs sur-
rounding Dmax are the locus of points at the same distance
from Dmax. Note that any two points on the same arc are in-
comparable vectors and are assigned the same rank. Points
on two different arcs are compared based on how close they
are to achieving the most desired property vector. The rank-
based unary quality index

Prank(D1) =‖ D1 −Dmax ‖

can then be used to infer the relationship Prank(D1) <
Prank(D2) ⇐⇒ D1 Irank D2. It is also possible to asso-
ciate a tolerance level ε to the rank such that two property
vectors differing in rank by ε or less are considered equally
good.
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Figure 2: The rank-based Irank-better comparator
assigns ranks to property vectors based on the dis-
tance from a point of interest Dmax.

The direct implication of equi-ranked property vectors is
that two different anonymizations are equivalent in terms
of their ability to pursue the most desirable levels of the
property being measured. In other words, the amount of bias
each has to overcome (or introduce) to reach the desirable
level is equivalent. In a comparative setting, the rank of a



property vector can be viewed as an estimate of the bias
present in an anonymization w.r.t. a particular property.

5.2 Icov-better
The coverage comparator Icov compares two property

vectors based on the fraction of tuples in one that has a
better measurement of the property than in the other. This
comparator follows from the intuition that an anonymization
better than another should be able to retain higher values
of the measured property for more individuals represented
in the data set. With this comparator and the equivalence
class size property, the aforementioned anonymization T4 is
Icov-better than T3a, and T3b is Icov-better than T4. The
quality index induced from this comparator is binary in na-
ture, given as

Pcov(D1,D2) =
|{d1

i |d1
i ≥ d2

i }|
N

and satisfying Pcov(D1,D2) > Pcov(D2,D1) ⇐⇒ D1 Icov

D2. Note that if Pcov(D1,D2) = 1 and Pcov(D2,D1) = 0,
then D1 � D2, and vice versa. Fig. 3 shows the computa-
tion of the coverage-based quality index for two hypothetical
property vectors.
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Figure 3: Computation of the quality index func-
tions based on the Icov and Ispr comparators. Pcov

is based on the number of tuples with better prop-
erty value while Pspr is based on the actual difference
in magnitude of the measured property value.

The coverage comparator is useful when two anonymiz-
ations demonstrate similar levels of collective privacy, for
example both are k-anonymous for some given k. The com-
parator then identifies what fraction of the tuples is favored
by the skewness in the distribution of privacy levels. A
higher value of Pcov(D1,D2), compared to Pcov(D2,D1), im-
plies that more tuples benefit from the skewed distribution
of property values in one anonymization than in the other.
Such a comparison helps justify that the bias introduced by
an anonymization can be useful in providing better property
values for a larger fraction of the data set.

5.3 Ispr-better
The coverage comparator does not take into considera-

tion the difference in magnitude of a measured property for
a given tuple when comparing it across two different prop-
erty vectors. It is possible that for two vectors D1 and D2

with Pcov(D1,D2) ≈ Pcov(D2,D1) (the quality index values

are close), D1 maintains much better values in the property
for the tuples on which it is superior than D2 compared to
those on which D2 is superior. For example, consider the
hypothetical property vectors D1 = (2, 2, 3, 4, 5) and D2 =
(3, 2, 4, 2, 3). In this case, Pcov(D1,D2) = Pcov(D2,D1) = 3

5
.

However, one can argue that D1 is a superior vector since the
difference in magnitude of the measured property is higher
(a value of 2) in the two tuples where it is better than D2.
This difference is only 1 in the two tuples where D2 is better.
The spread comparator Ispr is based on the total amount of
variation (or spread) present between tuples w.r.t. a prop-
erty. The quality index based on this comparator is given
as

Pspr(D1,D2) =

NX
i=1

max(d1
i − d2

i , 0)

and measures the total difference in magnitude of the mea-
sured property for the tuples on which D1 performs better
than D2. We then say Pspr(D1,D2) > Pspr(D2,D1) ⇐⇒
D1 Ispr D2. We also have Pspr(D1,D2) = 0 ⇐⇒ D2 � D1.
Fig. 3 shows the difference in computation of the coverage-
based and spread-based quality indices.

The spread comparator uses a quantification of the lever-
age availed by individual tuples from the skewed distribution
of property values. This is crucial when the fraction of tuples
benefited, as given by the Pcov quality index, are equivalent.
The Pspr quality index quantifies the utilization of the bias
in terms of differences in observed property values. Even
for the case when two anonymizations have different col-
lective privacy levels, this quantification differentiates them
further, often counter to established preferential norms. For
example, consider the equivalence class size property vector
(3, 3, 3, 5, 5, 5, 5, 5, 3, 3, 3, 4, 4, 4, 4) from a 3-anonymous gen-
eralization and (2, 2, 6, 6, 6, 6, 6, 6, 3, 3, 3, 4, 4, 4, 4) from a 2-
anonymous generalization. Both anonymizations show signs
of bias towards a certain fraction of the tuples. The 3-
anonymous generalization will be a typical choice when pre-
defined notions of “better privacy” is used. However, the 2-
anonymous generalization achieves better privacy for 6 more
tuples (tuples 3 to 8) at the expense of reducing the privacy
levels of tuple 1 and 2. This is a reasonable justification to
choosing the 2-anonymous generalization instead. The Pspr

quality index values compare at 2 and 8, thereby revealing
this reasoning. In fact, the Pcov index also points at the
same.

5.4 Ihv-better
Another way of measuring the superiority of an anonym-

ization is to ask how good it is against other possible ano-
nymizations apart from the one it is compared to. Such a
method refrains itself from performing relative comparisons
and instead adopts a “tournament” style mechanism. In a
tournament mechanism, a candidate a is preferred over can-
didate b not because a performs better than b, but because
a performs better than a larger number of other candidates
than the number of candidates over which b performs better.

For a given property vectorDi, we consider the set of prop-
erty vectors Ψi = {Dj |Di � Dj}. Fig. 4 depicts this set, for
a 2-dimensional space, as the volume enclosed by all prop-
erty vectors which are not better than the vector in question
under the � comparator. When performing comparisons
for two property vectors, the hypervolume comparator Ihv

assigns superiority based on the hypervolume enclosed by



points which are not superior to both property vectors un-
der the � comparator. In Fig. 4, D1 is �-better than all
points in region A, none of which appears in Ψ2. Similarly,
region B has all points that do not appear in Ψ1 and region
C has all points that appear in Ψ1 ∩Ψ2. Thus, the quality
index

Phv(D1,D2) =

NY
i=1

d1
i −

NY
i=1

min(d1
i , d

2
i )

is a measurement of the hypervolume on which D1 is solely
�-better, giving us the relationship Phv(D1,D2) > Phv(D2,
D1) ⇐⇒ D1 Ihv D2. Further, if Phv(D1,D2) = 0 then
D2 � D1, and vice versa. Note that the subtraction of the
commonly dominated hypervolume is only used to signify
what the quality index wishes to compute, but is otherwise
not required during a comparison.
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Figure 4: The hypervolume comparator Ihv gives
preference to property vectors that solely outper-
form more property vectors – D2 in this case since
volume of region B > volume of region A.

The hypervolume comparator checks the effectiveness of
an anonymization w.r.t. possibly unseen anonymizations.
Such anonymizations are captured in the dominated hyper-
volume. This expands the comparison beyond the anonymi-
zations considered in the comparative process. A higher hy-
pervolume for an anonymization indicates that a larger num-
ber of other anonymizations (possibly generated by other
algorithms) will induce worse property values than it.

Let us consider the property vector s = (3, 3, 3, 5, 5, 5, 5, 5)
induced by an anonymization S for a particular property.
Let t = (4, 4, 4, 4, 4, 4, 4, 4) be the property vector induced
by anonymization T for the same property. Any anonymiz-
ation U inducing the property vector u = (u1, u2, . . . , u8) is
worse than S if ui < 3; i = 1, 2, 3 and ui < 5; i = 4, . . . , 8.
The hypervolume is a measure of such anonymizations. Sim-
ilarly, U is worse than T if ui < 4; i = 1, . . . , 8. In this case,
Phv(s, t) > Phv(t, s) indicating that the number of possible
anonymizations that is worse than S is more than that is
worse than T . If the volume enclosed by all property vectors
is finite, then one can also say that the number of possible
anonymizations better than S is less than that is better than
T . This method of looking into the effectiveness of an an-
onymization is complementary to the method behind Pcov

and Pspr. While the latter two facilitates a comparison on
a one-to-one basis, comparisons via Phv involves a broader
extent of the space of property vectors.

These four quality indices can be used to compare prop-
erty vectors measuring a single property only. It is true that
an anonymization evaluated as being better w.r.t. a particu-
lar property can be worse in the context of another. Hence,
for the case when more than one property is being mea-
sured on an anonymization, other mechanisms are required
to weigh the importance of the different properties when
making comparisons. We now consider sets of property vec-
tors, instead of a single one, and suggest three indices to
compare two such sets. Let us assume that comparisons
are to be made across the sets Υ1 = {D11,D12, . . . ,D1r}
and Υ2 = {D21,D22, . . . ,D2r} induced by two r–property
anonymizations G1 and G2 respectively. In the following ex-
pressions, we use the notation P (X,Y ) to indicate a binary
quality index defined to compare two property vectors X
and Y . Note that different quality indices can be used to
compare different properties. Also, without any loss of gen-
erality, we assume that a higher value of the quality index
is desirable; otherwise we can negate the index value.

5.5 IWTD-better
The first method to compare sets of property vectors is

based on the classical weighted sum approach. Weight as-
signments are useful when the properties analyzed are or-
thogonal in nature, such as privacy and utility. The weight-
based comparator IWTD requires a vector W = (w1, . . . wr)
such that the weight wi signifies the importance of the ith

property being measured. Typically the weights are chosen
such that, for 1 ≤ i ≤ r, 0 < wi < 1 and

Pr
i=1 wi = 1. The

quality index is given as

PWTD(Υ1,Υ2) =

rX
i=1

[wi · P (D1i,D2i)]

and comparisons are made using the relationship PWTD(Υ1,
Υ2) > PWTD(Υ2,Υ1) ⇐⇒ Υ1 IWTD Υ2. It is advisable
to normalize the P values before computing the weighted
sum.

Consider the 3-anonymous generalizations in T3a and T3b.
The size of equivalence class property vectors for the two
generalizations are pa = (3, 3, 3, 3, 4, 4, 4, 3, 3, 4) and pb =
(3, 7, 7, 3, 7, 7, 7, 3, 7, 7) respectively. Using Iyengar’s data
utility metric [7], the utility property vectors for them are
ua = (2.03, 1.7, 1.7, 2.03, 1.6, 1.6, 1.6, 2.03, 1.7, 1.6) and ub =
(2.03, 0.97, 0.97, 2.03, 0.97, 0.97, 0.97, 2.03, 0.97, 0.97) respec-
tively. Using the coverage comparator we have, Pcov(pa, pb) =
0.3 < 1 = Pcov(pb, pa) and Pcov(ua, ub) = 1 > 0.3 =
Pcov(ub, ua). Thus, if equal weights are assigned to both pri-
vacy and utility, then generalizations T3a and T3b are equally
good.

5.6 ILEX-better
The weight-based comparator suffers from the drawback

that it may sometimes be difficult to assign weight values
specifying the preference of a property. An alternative to
this is to instead specify a lexicographic ordering of the dif-
ferent properties. For example, when privacy levels depicted
by different privacy models are to be used in conjunction to
decide on an anonymization, the property vectors induced
from different privacy properties can be ordered in descend-
ing order of relevance. Such a method orders the elements of
a set of property vectors such that the most desirable prop-
erty is the first element, the second most desirable property
as the second element, and so on. With this ordering in



place, we define the following quality index.

PLEX(Υ1,Υ2) = min
i
{1 ≤ i ≤ r|

P (D1i,D2i)− P (D2i,D1i) > εi}

Here, ε = (ε1, . . . , εr) is a significance vector where εi gives
the maximum tolerable difference in the P values for the ith

property. Thus, two property vectors D1i and D2i are con-
sidered to be equally good if |P (D1i,D2i)−P (D2i,D1i)| ≤ εi.
The ε-lexicographic comparator ILEX assigns superiority to
a set of property vectors based on the property on which
it is more superior, given the ordering on the properties
and the significance vector. PLEX(Υ1,Υ2) thereby com-
putes the first property on the ordering where Υ1 is su-
perior. If PLEX(Υ1,Υ2) < PLEX(Υ2,Υ1), then Υ1 has
a more desirable property where it is superior to Υ2, i.e.
PLEX(Υ1,Υ2) < PLEX(Υ2,Υ1) ⇐⇒ Υ1 ILEX Υ2.

5.7 IGOAL-better
The goal-based comparator IGOAL is useful when the

competence of an anonymization can be measured in terms
of its closeness to a desirable level (or goal). In such a sit-
uation, a goal vector G = (g1, . . . , gr) specifies the values
desired in the quality indices used – the P functions. The
quality index

PGOAL(Υ1,Υ2) =

rX
i=1

[P (D1i,D2i)− gi]
2

then computes the sum-of-squares error of the quality in-
dices from the goal values. The comparison is performed
with the relationship PGOAL(Υ1,Υ2) < PGOAL(Υ2,Υ1) ⇐⇒
Υ1 IGOAL Υ2. We can also use unary performance indices
as replacements for the binary functions P . The use of unary
indices simplifies the specification of the goal vector in terms
of the goal property vectors instead. If Dg1 , . . . ,Dgr are the
goal property vectors, then the goal vector can be formu-
lated as G = (P1(Dg1), . . . , Pr(Dgr )), where Pis are unary
quality indices.

6. RELATED WORK
Several algorithms have been proposed to find effective

k–anonymization [17]. The µ-argus algorithm is based on
the greedy generalization of infrequently occurring combi-
nations of quasi-identifiers and suppresses outliers to meet
the k–anonymity requirement [6]. µ-argus suffers from the
shortcoming that larger combinations of quasi-identifiers are
not checked for k–anonymity and hence the property is not
always guaranteed [16].

Sweeney’s Datafly approach uses a heuristic method to
generalize the attribute containing the most distinct sequence
of values for a provided subset of quasi-identifiers [16]. Se-
quences occurring less than k times are suppressed. In the
same work, Sweeney proposes a theoretical algorithm that
can exhaustively search all potential generalizations to find
the one that minimally distorts the data during anonymiz-
ation. Samarati’s algorithm [15] can identify all k–minimal
generalizations, out of which an optimal generalization can
be chosen based on certain preference information provided
by the data recipient.

Iyengar proposes a flexible generalization scheme and uses
a genetic algorithm to perform k–anonymization on the larger
search space that resulted from it [7]. Although the method

can maintain a good solution quality, it has been criticized
for being a slow iterative process. In this context, Lunacek
et al. introduce a new crossover operator that can be used
with a genetic algorithm for constrained attribute general-
ization, and effectively show that Iyengar’s approach can be
made faster [12]. In order to obtain a guaranteed optimal
solution, Bayardo and Agrawal propose a complete search
method that iteratively constructs less generalized solutions
starting from a completely generalized data set [1].

LeFevre et al. extend the notion of generalizations on
attributes to generalization on tuples in the data set [9].
The authors argue that such multidimensional partitioning
of the generalization domain shows better performance in
capturing the underlying multivariate distribution of the at-
tributes, often advantageous in answering queries with pred-
icates on more than just one attribute.

Xiao and Tao argue that the privacy obtained by a par-
ticular generalization may not be sufficient in terms of an
individual’s personal requirement [21]. To this end, they
propose a model where each individual specifies a guarding
node on attribute values. A generalization scheme is re-
quired to prohibit divulgence of any information finer than
the value of the guarding node.

The drawbacks of using k–anonymity are first described by
Machanavajjhala et al. [13]. They identify that k–anonymiz-
ed data sets are susceptible to privacy violations when there
is little diversity in the sensitive attributes of a k–anonymous
equivalence class. In order to alleviate such privacy breaches,
they propose the model of `–diversity which obtains anony-
mizations with an emphasis on the diversity of values on a
k–anonymous equivalence class. Further work presented by
Li et al. show that the `–diversity model is also susceptible to
certain types of attacks [10]. To this effect, they emphasize
having the t–closeness property that maintains the same dis-
tribution of sensitive attribute values in an equivalence class
as is present in the entire data set, with a tolerance level of t.
Truta and Vinay propose p-sensitive k-anonymity to enforce
diversity in the sensitive attribute values in an equivalence
class [19]. According to the model, every equivalence class is
required to have at least p distinct values of the sensitive at-
tribute. The model suffers from the drawback that attribute
values may not be uniformly distributed in a data set and
hence obtaining p distinct values in an equivalence class can
become impossible.

Dewri et al. [2] presents a multi-objective optimization
formulation to explore the privacy and utility trade-offs in
microdata anonymization. Their work is based on the no-
tion of weighted-k–anonymity which does not constrain k in
k–anonymity to a particular value, but rather explores the
resulting utility when the weighted equivalence class size
varies across anonymizations. Although a potential draw-
back of their work is the induction of low k (even k = 1)
values in the solution set, their approach points out that
changes in the utility of an anonymization is a resultant of
the difference in the distribution of the k values across differ-
ent tuples of the data set. Another multi-objective analysis
is presented by Huang and Du for the problem of optimizing
randomized response schemes for privacy protection [5].

Problems similar to the ones encountered here are known
to exist in the multi-objective optimization community as
well. Quality assessment of solution sets in this community
is often difficult because of the existence of non-dominance
relationships between one or more members of two differ-



ent sets. Hansen and Jaszkiewicz propose the use of quality
measures that induce a linear ordering on the space of all
possible solution sets [4]. Knowles and Corne [8] provide a
critical overview of existing quality measures and show that
most existing measures do not cater to the “ordering” re-
quirement proposed by Hanse and Jaszkiewicz. Later work
presented by Zitzler et al. explore the limitations of a com-
parative study done under the light of quality indicators [23].
We have found that a principle theorem proved in their work
is equally applicable in the case of anonymization compar-
isons. The analysis presented in their work serves as a back-
bone for this study.

7. CONCLUSION AND EXTENSIONS
In this paper, we explore an often ignored factor in the

comparison of anonymizations reported by microdata dis-
closure control algorithms. This factor, which we call the
anonymization bias, results in anonymizations being skewed
towards a fraction of the data set w.r.t. a privacy property.
Hence, the attainment of a collective privacy level is not suf-
ficient to conclude that two anonymizations offer the same
level of privacy. We therefore introduce property vectors as
an alternate representation of a property (privacy/utility)
measured on an anonymization. This representation helps
indicate the privacy level of every individual in the data
set separately. Further, the issue of comparing anonymiz-
ations is addressed by the usage of quality index functions
that gives an absolute or a relative quantitative estimate
of the quality of property vectors. Our initial conclusion
on such a comparative method is that unary quality indices
are limited in their ability to perform comparisons, specifi-
cally when strict inferences like “not worse than” or “better
than” are to be made between anonymizations. As a re-
sult, we explore alternative methods of comparison, keeping
in mind that comparators defined on such grounds should
make adequate effort to quantify the differences in values of
the property measured across the tuples of the entire data
set instead of a minimalistic estimate. Estimates based on
rank, spread and hypervolume are thus suggested. We also
present various preference based techniques when compar-
isons are to be made across multiple properties induced by
anonymizations.

An immediate extension of this work is the identification
of privacy measures that address the anonymization bias.
Moreover, vector-based representations of privacy would re-
quire a rethinking of the utility optimization problem since
trade-offs between privacy and utility now becomes more
apparent. The currently adopted optimization framework
in disclosure control is single objective in nature. The scalar
quantification of privacy enables the framework to direct its
search for higher utility anonymization while satisfying a
privacy constraint. If vector representations of privacy are
adopted, then the framework has to undergo changes. This
is primarily because the vector representation allows one
to distinguish between anonymizations even when a typical
privacy constraint is satisfied by both. Note that the cur-
rent framework only makes this distinction based on utility,
whereas the vector representation enables the distinction to
be made at the privacy front as well. Finding “good” an-
onymizations thus converts into a multi-objective problem.
Although the multi-objective nature of the privacy versus
utility problem is well understood in the community, it has
remained irrelevant under the pretext of scalar privacy rep-

resentations. However, under the light of vector representa-
tions, privacy should no longer be imposed only as a con-
straint in the framework but rather handled directly as an
objective to maximize. We leave the exploration of this fron-
tier for a later study.
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