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Abstract 

 
Identifying and resolving design problems in the 

early design phase can help ensure software quality 
and save costs. There are currently few tools for 
analyzing designs expressed using the Unified 
Modeling Language (UML). Tools such as OCLE and 
USE support analysis of static structural properties. 
These tools provide mechanisms for checking instance 
models against invariant properties expressed using 
the Object Constraint Language (OCL). In this paper 
we propose an approach to analyzing behavioral 
properties of UML models that can utilize static 
analysis tools. The approach includes a technique for 
generating a class model of behavior from operation 
specifications expressed in a restricted form of OCL 
Behavioral properties are expressed as invariants 
defined in the class model of behavior. Static analysis 
tools such as USE and OCLE can be used to check 
object models describing series of snapshots. Most of 
the analysis can be automated. We illustrate our 
approach by analyzing static separation of duty and 
dynamic separation of duty properties of a 
hierarchical role-based access control model 
(HRBAC).  
 
1. Introduction 

Tools supporting rigorous analysis of design models 
can enhance the ability of developers to identify 
potentially costly design errors earlier. Defects that are 
introduced in the design phase can be more expensive 
to find and fix after the implementation is built. 
Correcting design errors early also minimizes the time-
wasting process of implementing faulty designs. 
Design models must be expressed in an analyzable 
form to support analysis. 

The Unified Modeling Language (UML) [UML2] 
can be used to formally describe structural properties 
of systems. The structural properties are expressed in 
class models that may contain invariants expressed in 
the Object Constraint Language (OCL). Static analysis 

tools such as OCLE and USE can be used to analyze 
class models [Chiorean] [Gogolla]. For example, the 
OCLE [Chiorean] tool can be used to check that object 
diagrams conform to a class model, that is, that 
invariants specified in the class model hold in the 
object diagrams. These static analysis tools are 
currently not capable of analyzing behavioral 
properties captured by operation specifications in class 
models. 

In this paper we describe a technique for describing 
behavioral properties in class modeling terms to enable 
the use of tools such as OCLE and USE in the analysis 
of these properties. The approach takes a class model 
describing the structural aspects of a system and 
transforms it into a snapshot class model that specifies 
behavior in terms of sequences of snapshots. A 
snapshot represents the state of a system at some point 
in time and can be described by an object diagram. 
Constraints on sequences of snapshots are expressed 
using the OCL. Modeling behavior in this way allows 
one to use tools such as USE and OCLE to analyze 
behavior.  

In this paper, we describe an approach to generating 
snapshot class models from application class models 
that contain operation specifications expressed in a 
restricted form of OCL. Behavioral properties are 
expressed as invariants in the snapshot class models. A 
sequence of snapshots described as an object diagram 
can be checked against the snapshot model to 
determine if the behavior represented by the sequence 
is compliant with the snapshot class model. We 
illustrate the approach using a snapshot model 
generated from a Role-Based Access Control (RBAC) 
model. 

The rest of the paper is organized as follows. In 
Section 2 we give an overview of our approach. In 
Section 3 we introduce the RBAC model and the 
behavioral properties to be analyzed. In Section 4 we 
provide the steps for generating a snapshot class 
model. We illustrate each step using the RBAC 
example. In Section 5 we discuss related work. In 



Section 6 we summarize our contributions and give 
pointers to future directions.  
 
2. Overview  
 

In the approach a design model consists of a design 
class model and sequence models. Each class has fully 
defined attributes (that is, each attribute has a defined 
type, cardinality, and visibility) and each operation is 
associated with a specification consisting of pre- and 
post-conditions. Invariants and operation specifications 
are expressed in the OCL.  

 
Figure 1. Snapshot class model 

 
The approach is used to systematically produce a 

snapshot model from a UML application design model. 
In the snapshot model shown in Figure 1 a Snapshot 
class is used to record the system state. Its instances 
are snapshots. Each snapshot is associated with an 
operation instance that represents a call to the next 
operation to be performed on the snapshot. We assume 
operations are executed sequentially. The Snapshot 
class is thus associated with an Operation class 
representing operation calls. An instance of Operation 
represents an invocation of an operation. The attribute 
operationID is a reference to the operation description 
in the application class model. Note that a single 
operation can be called many times and thus there may 
be more than one operation instance with the same 
operationID. The before and after snapshots associated 
with an operation instance can be obtained using the 
next-previous relationship between snapshots.  

Sequence diagrams are used to describe the 
sequence of operation calls that are to be analyzed. A 
sequence of operation calls produces a sequence of 
snapshots, where each pair in the sequence represents 
before and after states for an operation execution that is 
a consequence of an operation call. A Snapshot 

invariant is generated for each call in a sequence. We 
also represent behavioral properties as invariants in the 
Snapshot model.  

Object diagrams are used to describe sequences of 
snapshots representing the effects of a sequence of 
operation calls. We can use tools such as OCLE and 
USE to check that a snapshot object diagram conforms 
to a Snapshot class model. An object diagram 
conforms to a Snapshot model if the invariants 
specified in the model hold in the object diagram.  
 
3. The Role-Based Access Control example 
 

 We illustrate our approach by analyzing the static 
separation of duty (SSD) and dynamic separation of 
duty (DSD) properties of the hierarchical role-based 
access control model (HRBAC) [Ferraiolo]. The 
analysis of the properties is done using the OCLE 
modeling environment.  

The HRBAC model used in this paper is shown in 
Figure 2. Users are assigned to roles that determine the 
permissions they have. Users activate sessions and they 
user activate a subset of their assigned roles in a 
session. We do not model permissions because the 
properties we analyze do not involve them.  

The children-parent role hierarchy (RH) association 
models the dominance relationship between roles. The 
dominance relationship is reflexive, anti-symmetric 
and transitive. In RH relationships, dominating roles 
inherit assigned users of dominated roles and 
dominating roles inherit permissions of dominated 
roles. To simplify the modeling and analysis, 
dominated roles and dominating roles are separately 
assigned and activated, i.e. when activating or de-
activating a role, all its dominated roles and 
dominating roles are not activated or de-activated 
automatically.  

The static separation of duty (SSD) constraint is 
described as an invariant of the User class. It restricts 
the assignment of conflicting roles to one user. The 
dynamic separation of duty (DSD) constraint is 
modeled as an invariant of the Session class. It restricts 
the activation of conflicting roles to one session 
created by a user.  

To illustrate the approach we will analyze SSD and 
DSD properties for a sequence of operation calls 
defined in an application which uses the hierarchical 
RBAC model. The application has several users. Two 
such users are Alice and Bob. The roles are Cashier, 
Accountant, Senior Accountant, Senior Cashier and 
Teller. Senior Accountant role dominates the role of 
Accountant.  

 



 
 

Figure 2. RBAC class model 
 

The SSD property in this application is that the role 
Accountant and Cashier cannot be assigned to the same 
user. Any role dominating the Accountant role and any 
role dominating the Cashier role cannot be assigned to 
the same user.  

The DSD property allows the assignment of 
Accountant and Cashier to the same user. However, 
they can not be activated by the same user in one 
session. Thus any senior Accountant role and any 
senior Cashier role cannot be activated by the same 
user in one session.  

The invariants in the HRBAC model are given 
below.  

 
[OCL invariants in the RBAC model] 
context User 
//Static separation of duty constraint 
inv SSD: not (self.assignedRoles->exists(r | r.name = 
"Accountant") and self.assignedRoles->exists(r| r.name 
= "Cashier")) 
//Static separation of duty constraint with role 
hierarchies 
inv SSD_RH: not (self.assignedRoles->exists(r | 
r.isDominating(“Accountant”)) and self.assignedRoles 
->exists(r | r.isDominating("Cashier"))) 
 
//pre- and post- conditions of Assign method 
context User::Assign(role:Role) 
pre: self.assignedRoles->forAll(r | r.name <> 
role.name) 
post: self.assignedRoles->exists(r | r.name = 
role.name) and self.assignedRoles@pre->forAll(r1 | 
self.assignedRoles->exists(r2 | r1.name = r2.name)) 
and (self.assignedRoles->size() = self. 
assignedRoles@pre->size() + 1) 
 
//Query method to determine the role hierarchy 
relationship 
context Role::isDominating(roleName:String):Boolean 
pre:true 
post:  

if self.name = roleName then 
    result = true 
else 
    if self.dominating->size() = 0 then 
        result = false  
    else result =  
        (self.dominating.isDominating(roleName)) 
    endif 
endif 
 
//pre- and post- conditions of Activate method 
context Session::Activate(role:Role) 
pre: self.activatedRoles->forAll(r | r.name <> 
role.name) and self.user.assignedRoles->exists(r | 
r.name = role.name) 
post: self.activatedRoles->exists(r | r.name = 
role.name) and self.activatedRoles@pre->forAll(r1 | 
self.activatedRoles->exists(r2 | r1.name = r2.name)) 
and (self.activatedRoles->size() =  
self.activatedRoles@pre->size() + 1) 
 
context Session 
//Dynamic separation of duty constraint 
inv DSD: not (self.activatedRoles ->exists(r | r.name = 
"Accountant") and self.activatedRoles ->exists(r| 
r.name = "Cashier")) 
//Dynamic separation of duty constraint with role 
hierarchies 
inv SSD_RH: not (self.activatedRoles ->exists(r | r. 
isDominating(“Accountant”)) and self.activatedRoles  
->exists(r | r.isDominating("Cashier"))) 

 
The behavior that will be analyzed is described by a 

sequence diagram that describes the following 
interactions in the order given (space does not allow us 
to show the sequence diagram but its form can be 
inferred from what follows): (1) user Bob creates a 
session using CreateSession(), (2) Bob is assigned 
Accountant and SeniorCashier roles through two calls 
to the Assign() operation, (3) Bob activates the 
assigned roles in the session by calling Activate(). We 
will illustrate the approach by showing how it is used 
to evaluate the behavior described by this sequence of 
operation calls. 
 
 
 
4. Generating snapshot models 
 

In this chapter we describe how snapshot models 
are generated from design class models. We use the 
(hierarchical) RBAC example described in the 
previous section to illustrate each step of the 



generation process. The process consists of four steps 
which are described in the remainder of this section. 
 
Step 1 Generate basic snapshot class model 
 

The basic snapshot class model does not contain 
OCL constraints. The snapshot model is formed by (1) 
introducing Snapshot and Operation classes to the 
application class model, (2) specifying the links 
between the snapshots and the system state. Here, 
system state is an object configuration that conforms to 
the application class model.  In the case of the RBAC 
model a system state is a collection of users, roles and 
sessions that are linked as specified in the RBAC class 
model. Each collection of objects in the system state 
(e.g., users) is modeled as a linked list in the snapshot 
model. 

In the following we describe the automatable 
process for creating basic snapshot class models. We 
refer to the application class model as the system 
design model.  
 
[Snapshot class model generation algorithm] 
Input: System design class diagram 
Output: Snapshot class diagram 
Process: 
1. For each class in the system design model: Organize 
the instances in a linked list by introducing a self 
association that relates an instance to the next instance 
in the list. Associate Snapshot with each class such that 
each snapshot is linked to exactly one object of the 
class (the first element in the linked list). 
2. For each operation in each class:  
a. Generate ClassName_OperationName as an 
Operation enumeration. The enumerations are the 
values that can be assigned to the operationID 
attribute. 
b. For each parameter of the operation: Generate 
ClassName_OperationName_ParameterName as an 
attribute of the Operation class. 
 

Figure 3 shows the result of applying the process to 
the RBAC model. The formal parameters in the 
Assign(), CreateSession(), and Activate() operations are 
represented as attributes in the Operation class. The 
operationID attribute references the operation names 
used in the RBAC model as reflected in the use of the 
OperationName enumeration type. 
 

 
 

Figure 3. RBAC snapshot model 
 
Step 2 Generate snapshot transition diagrams  
 

To analyze behavioral properties for a sequence of 
operation calls made in a sequence diagram, we 
generate a sequence of snapshot transitions in which 
the order of the transitions is determined by the order 
in which operations are called in the sequence diagram.  

A snapshot transition diagram describes how a 
system state transits to a next system state as a 
consequence of an operation invocation. Snapshot 
transitions are described in an object diagram called a 
collaboration. A collaboration has two snapshot 
instances which record the system states before and 
after the operation invocation, and an operation 
instance which represents the operation context.  

Some operation invocations spawn calls to sub-
operations. For example, a Transfer operation in a 
Bank class may call a sub-operation Withdraw to take 
out money from the source account and then call a sub-
operation Deposit to add the money to the destination 
account, before returning a result to the caller. In our 
approach we treat an externally invoked operation and 
its associated sub-operation as one atomic operation, 
that is, the calls to the sub-operations are considered to 
be internal actions that are not visible during analysis. 
This allows us to more readily generate behavioral 
constraints. 

The Snapshot collaboration generation algorithm 
generates snapshot transitions from the operation 
invocation sequence given in the operation invocation 
sequence diagram.  
 
[Snapshot collaboration generation algorithm] 
Input: Snapshot class diagram, Operation invocation 
sequence diagram, initial system state 
Output: Snapshot transitions for each atomic 
operation 



Process: 
1. Partition the operation invocation sequence into 
atomic operations: 
Trace each externally initiated operation call through 
its sub-operations until a result is returned to the 
initiator; the trace is treated as a single operation call.  
2. Generate snapshot collaborations: 
For each atomic operation call in the sequence 
diagram 

 Generate a unique collaborationID 
 Create an uninitialized snapshot object (instance 

of Snapshot) and an unintialized operation object 
(instance of Operation) . 

 Instantiate the operation object. The values used 
to instantiate the attributes representing 
parameters are the parameter values given in the 
sequence diagrams. 

 Create linked list of system state instances. These 
are the elements in the before system state for the 
operation. 

 Generate the after system state; see [next system 
state generation algorithm]. 

 
The next system state generation algorithm is called 

to generate the next system state. We generate the next 
system state from the pre- and post- conditions of 

current operation. Since our approach verifies 
behavioral properties by checking invariants against 
snapshot (system state) transitions, we must make sure 
the next system state is determined precisely. To 
ensure this, we require that the operation specifications 
be deterministic and complete. A complete operation 
specification is one that specifies its effect on all 
attributes in class. To shorten the presentation of 
complete specifications, it is assumed that if an effect 
is not specified for an attribute, then the attribute 
values in the before and after states are identical.  

We also require that operation specifications be 
operative, that is, one should be able to implement 

their effect using a process that completes its task in a 
finite time. For example, quantifying values over an 
infinite type space is disallowed. If operation 
specifications do not have the properties mentioned 
above then the after state must be produced manually. 
 
[Next system state generation algorithm] 
Assumptions: The post-condition of the current 
operation is complete and operative. We restrict the 
post-condition to assignments involving single-valued 
and multi-valued attributes.  
Input: Current operation, System state before current 
operation 

Figure 4. Assign Accountant role to Bob collaboration



Output: System state after current operation is 
executed and results are returned 
Process: 
1. Evaluate pre-condition of current operation: 
If the before system state does not satisfy the pre-
condition, it means that either the system state is not 
valid with respect to the operation or the pre-condition 
is not correct. The algorithm halts and the user is 
notified of the problem.  
2. Convert post-condition into a procedural form: 
Convert single-value assignment into simple 
assignment in a procedural language (e.g., the Java 
programming language).  
Convert multi-value assignments or assignment with 
forall quantifier into iterative statements in algorithmic 
language.  
3. Run the procedure to generate the next system state. 
 

The sequence of RBAC behavior described in 
Section 3 involves an invocation of the 
CreateSession() operation, two invocations of the 
Assign() operation and two invocations of the 
Activate() operation. For illustration purposes we focus 
on four snapshot collaborations in this paper: The two 
Assign() invocations and the two Activate() 
invocations. The collaboration for one of the Assign() 
operations is shown in Figure 4. To make Figure 4 
more compact we use “1” to represent the value 
User_Assign that is assigned to operationID. This 
value indicates that the operation Assign() in User 
provides the context for the transition. The system 
states in the collaboration are created manually because 
the post-condition of Assign() is not fully operative.  
 
 
Step 3 Generate snapshot constraints 
 

In this step operation specifications are transformed 
to snapshot invariants. The step is performed for each 
collaboration produced in the previous step. Note that 
the transformation of the same operation on different 
snapshot collaborations generates different snapshot 
invariants because the operation may be performed on 
different objects. 
 
[Snapshot invariant transformation algorithm] 
Input: Snapshot transitions, operation specifications  
Output: Snapshot invariant for each snapshot 
transition 
Process:  
For each snapshot transition (Snapshot collaboration) 
with operation call op, create a Snapshot invariant 
from the pre- and post- conditions of op in the class 
model in the following way: 

1. Replace each object reference in the pre- and 
post- conditions with a reference to the objects in 
the associated linked lists. This involves finding 
the object in the linked list. 

2. For each object reference in the pre- and post- 
conditions in the form of X@pre, replace it with X. 

3. For each object reference in the post-conditions in 
the form of X, replace it with self.next.X. 

4. Form the conjunction of the pre and post 
conditions generated from the above steps and 
include in the body of the Snapshot invariant. 

5. Add equalities for operationID and 
collaborationID in the pre-condition of the 
Snapshot invariant. The final invariant will have 
the following form:  

Invariant: operationID = op_enumeration 
and collaborationID = 
current_colaborationID implies Snapshot 
invariant body 

 
The following are the snapshot invariants generated 

for the four RBAC collaborations mentioned in the 
previous step: 
[Constraints of the RBAC Snapshots] 
context Snapshot 
inv Collaboration1-Assign1:  

(self.operation.collaborationID = 1 and 
self.operation.operationID = 1) implies  

(self.userInstance.assignedRoles->forAll(r | r.name 
<> self.roleInstance.name) and 

self.next.userInstance.assignedRoles->exists(r | 
r.name = self.roleInstance.name)) and  

self.userInstance.assignedRoles->forAll(r1 |  
self.next.userInstance.assignedRoles->exists(r2 | 

r1.name = r2.name)) and 
  (self.next.userInstance.assignedRoles->size() = 
self.userInstance.assignedRoles->size() + 1) 
 
inv Collaboration2-Assign2:  

(self.operation.collaborationID = 2 and 
self.operation.operationID = 1) implies 

(self.userInstance.assignedRoles->forAll(r | r.name 
<> self.roleInstance.next.next.name) and 

self.next.userInstance.assignedRoles->exists(r | 
r.name = self.roleInstance.next.next.name)) and 

self.userInstance.assignedRoles->forAll(r1 |  
self.next.userInstance.assignedRoles->exists(r2 | 

r1.name = r2.name)) and 
  (self.next.userInstance.assignedRoles->size() = 
self.userInstance.assignedRoles->size() + 1) 
 
inv Collaboration3-Activate1:  

(self.operation.collaborationID = 3 and 
self.operation.operationID = 2) implies 



(self.sessionInstance.activatedRoles->forAll(r | 
r.name <> self.roleInstance.name) and 

self.sessionInstance.user.assignedRoles->exists(r | 
r.name = self.roleInstance.name) and 

self.next.sessionInstance.activatedRoles->exists(r | 
r.name = self.roleInstance.name)) and 

self.sessionInstance.activatedRoles->forAll(r1 |  
self.next.sessionInstance.activatedRoles-

>exists(r2 | r1.name = r2.name)) and 
  (self.next.sessionInstance.activatedRoles->size() = 
self.sessionInstance.activatedRoles->size() + 1) 
 
inv Collaboration4-Activate2:  

(self.operation.collaborationID = 4 and 
self.operation.operationID = 2) implies 

(self.sessionInstance.activatedRoles->forAll(r | 
r.name <> self.roleInstance.next.next.name) and  

self.sessionInstance.user.assignedRoles->exists(r | 
r.name = self.roleInstance.next.next.name) and 

  self.next.sessionInstance.activatedRoles->exists(r | 
r.name = self.roleInstance.next.next.name)) and 

self.sessionInstance.activatedRoles->forAll(r1 |  
self.next.sessionInstance.activatedRoles-

>exists(r2 | r1.name = r2.name)) and 
  (self.next.sessionInstance.activatedRoles->size() = 
self.sessionInstance.activatedRoles->size() + 1) 
 
Step 4 Analyze behavioral properties 
 

We analyzed the SSD constraint based on the first 
two Assign Snapshot transitions. The OCLE tool was 
used to perform the analysis and it reported the error 
arising from the assignment of two conflicting roles to 
the same user. Note that SeniorCashier dominates 
Cashier and Cashier conflicts with Accountant.  

In our second analysis we removed the SSD 
constraints and analyzed the snapshot sequence 
involving the two Activation Snapshot transitions 
against the DSD constraints. As we expected OCLE 
reported the error arising from the activation of two 
conflicting roles in the same session created by Bob. 
 
5. Related work 
 

Existing UML modeling tools like OCLE 
[Chiorean] and USE [Gogolla] support for validating 
syntactic and structural properties. OCLE [Chiorean] 
for example can detect syntactic errors in models and 
syntax errors in OCL specifications. OCLE also checks 
the consistency of OCL invariants on objects or object 
diagrams. The limitation of these tools is they do not 
evaluate pre- and post-conditions of operations.  

The Alloy Analyzer [Jackson] developed by the 
Software Design Group of MIT generates examples or 

counter-examples of certain properties by exploring a 
search space given by limiting the number of entities in 
the model. Alloy models systems in a structural 
modeling language based on first-order logic. Alloy 
has been used to check abstract system designs and 
specification consistencies. The checking of UML 
models with Alloy requires the transformation of UML 
models to Alloy models. Such transformations must be 
validated if they are to be trusted and one must e able 
to trace errors in Alloys to errors in UML models. 
These are currently challenging problems.  

Model checking has been applied to automate the 
verification of the safety and correctness of finite state-
based systems [Clark]. Zhang et. al. [Zhang] developed 
a model checking approach to evaluating access 
control policies. As with Alloy, a translation process is 
needed to convert the UML specifications into a model 
that can be verified by the model checker. 

Static model analysis is useful in verifying design 
models. Ray et. al. [Ray] model RBAC and MAC 
access control policies with parameterized UML and 
compose the models. The static analysis on the 
composed models can find undesirable violations to 
the access control policies. However, the proposed 
approach is manual.  

Testing techniques are applied to UML models to 
check design faults. Dinh-Trong [Dinh-Trong] 
proposes a systematic approach to testing UML 
designs. In the approach test cases are generated from a 
set of test adequacy criteria on the UML design model. 
Java is used to formally define execution semantics of 
UML. The design model is then transformed to 
executable models that exercise the test cases and 
evaluate the test results. Model execution is another 
way to check dynamic model behaviors. Harel et. al. 
[Harel] propose a model execution framework 
Rhapsody that can translate class diagram and state 
charts into executable code and execute it.  
 
6. Conclusions and future work 
 

In this paper we propose an approach to modeling 
behavioral properties using class models of behavior 
that can be analyzed using existing static analysis tools 
such as OCLE and USE. The approach takes a design 
model consisting of design class models with operation 
specifications and sequence models and generates a 
snapshot model. It analyzes the behavior specified by 
sequence diagrams against the snapshot model. It does 
this by checking object diagrams describing sequences 
of state changes against invariants in the snapshot 
model. We demonstrate the approach by analyzing 
RBAC SSD and DSD properties for a sequence of 
operation calls in an application model.  



The approach limits the form of operation 
specifications that can be present in a design class 
model. Models that do not conform to these restrictions 
require significant human effort to produce the 
snapshot model. Another limitation is that it can only 
be used to verify systems where the operations occur 
sequentially. Our future work aims to remove as much 
of these limitations while preserving the level of 
automation to the extent possible. 
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