
A light-weight static approach to analyzing UML behavioral properties

Lijun Yu, Robert B. France, Indrakshi Ray
Colorado State University, USA

{lijun, france, iray}@cs.colostate.edu
Kevin Lano

Kings College, UK.
kcl@dcs.kcl.ac.uk

Abstract

Identifying and resolving design problems in the

early design phase can help ensure software quality
and save costs. There are currently few tools for
analyzing designs expressed using the Unified
Modeling Language (UML). Tools such as OCLE and
USE support analysis of static structural properties.
These tools provide mechanisms for checking instance
models against invariant properties expressed using
the Object Constraint Language (OCL). In this paper
we propose an approach to analyzing behavioral
properties of UML models that can utilize static
analysis tools. The approach includes a technique for
generating a class model of behavior from operation
specifications expressed in a restricted form of OCL
Behavioral properties are expressed as invariants
defined in the class model of behavior. Static analysis
tools such as USE and OCLE can be used to check
object models describing series of snapshots. Most of
the analysis can be automated. We illustrate our
approach by analyzing static separation of duty and
dynamic separation of duty properties of a
hierarchical role-based access control model
(HRBAC).

1. Introduction

Tools supporting rigorous analysis of design models
can enhance the ability of developers to identify
potentially costly design errors earlier. Defects that are
introduced in the design phase can be more expensive
to find and fix after the implementation is built.
Correcting design errors early also minimizes the time-
wasting process of implementing faulty designs.
Design models must be expressed in an analyzable
form to support analysis.

The Unified Modeling Language (UML) [UML2]
can be used to formally describe structural properties
of systems. The structural properties are expressed in
class models that may contain invariants expressed in
the Object Constraint Language (OCL). Static analysis

tools such as OCLE and USE can be used to analyze
class models [Chiorean] [Gogolla]. For example, the
OCLE [Chiorean] tool can be used to check that object
diagrams conform to a class model, that is, that
invariants specified in the class model hold in the
object diagrams. These static analysis tools are
currently not capable of analyzing behavioral
properties captured by operation specifications in class
models.

In this paper we describe a technique for describing
behavioral properties in class modeling terms to enable
the use of tools such as OCLE and USE in the analysis
of these properties. The approach takes a class model
describing the structural aspects of a system and
transforms it into a snapshot class model that specifies
behavior in terms of sequences of snapshots. A
snapshot represents the state of a system at some point
in time and can be described by an object diagram.
Constraints on sequences of snapshots are expressed
using the OCL. Modeling behavior in this way allows
one to use tools such as USE and OCLE to analyze
behavior.

In this paper, we describe an approach to generating
snapshot class models from application class models
that contain operation specifications expressed in a
restricted form of OCL. Behavioral properties are
expressed as invariants in the snapshot class models. A
sequence of snapshots described as an object diagram
can be checked against the snapshot model to
determine if the behavior represented by the sequence
is compliant with the snapshot class model. We
illustrate the approach using a snapshot model
generated from a Role-Based Access Control (RBAC)
model.

The rest of the paper is organized as follows. In
Section 2 we give an overview of our approach. In
Section 3 we introduce the RBAC model and the
behavioral properties to be analyzed. In Section 4 we
provide the steps for generating a snapshot class
model. We illustrate each step using the RBAC
example. In Section 5 we discuss related work. In

Section 6 we summarize our contributions and give
pointers to future directions.

2. Overview

In the approach a design model consists of a design
class model and sequence models. Each class has fully
defined attributes (that is, each attribute has a defined
type, cardinality, and visibility) and each operation is
associated with a specification consisting of pre- and
post-conditions. Invariants and operation specifications
are expressed in the OCL.

Figure 1. Snapshot class model

The approach is used to systematically produce a

snapshot model from a UML application design model.
In the snapshot model shown in Figure 1 a Snapshot
class is used to record the system state. Its instances
are snapshots. Each snapshot is associated with an
operation instance that represents a call to the next
operation to be performed on the snapshot. We assume
operations are executed sequentially. The Snapshot
class is thus associated with an Operation class
representing operation calls. An instance of Operation
represents an invocation of an operation. The attribute
operationID is a reference to the operation description
in the application class model. Note that a single
operation can be called many times and thus there may
be more than one operation instance with the same
operationID. The before and after snapshots associated
with an operation instance can be obtained using the
next-previous relationship between snapshots.

Sequence diagrams are used to describe the
sequence of operation calls that are to be analyzed. A
sequence of operation calls produces a sequence of
snapshots, where each pair in the sequence represents
before and after states for an operation execution that is
a consequence of an operation call. A Snapshot

invariant is generated for each call in a sequence. We
also represent behavioral properties as invariants in the
Snapshot model.

Object diagrams are used to describe sequences of
snapshots representing the effects of a sequence of
operation calls. We can use tools such as OCLE and
USE to check that a snapshot object diagram conforms
to a Snapshot class model. An object diagram
conforms to a Snapshot model if the invariants
specified in the model hold in the object diagram.

3. The Role-Based Access Control example

 We illustrate our approach by analyzing the static
separation of duty (SSD) and dynamic separation of
duty (DSD) properties of the hierarchical role-based
access control model (HRBAC) [Ferraiolo]. The
analysis of the properties is done using the OCLE
modeling environment.

The HRBAC model used in this paper is shown in
Figure 2. Users are assigned to roles that determine the
permissions they have. Users activate sessions and they
user activate a subset of their assigned roles in a
session. We do not model permissions because the
properties we analyze do not involve them.

The children-parent role hierarchy (RH) association
models the dominance relationship between roles. The
dominance relationship is reflexive, anti-symmetric
and transitive. In RH relationships, dominating roles
inherit assigned users of dominated roles and
dominating roles inherit permissions of dominated
roles. To simplify the modeling and analysis,
dominated roles and dominating roles are separately
assigned and activated, i.e. when activating or de-
activating a role, all its dominated roles and
dominating roles are not activated or de-activated
automatically.

The static separation of duty (SSD) constraint is
described as an invariant of the User class. It restricts
the assignment of conflicting roles to one user. The
dynamic separation of duty (DSD) constraint is
modeled as an invariant of the Session class. It restricts
the activation of conflicting roles to one session
created by a user.

To illustrate the approach we will analyze SSD and
DSD properties for a sequence of operation calls
defined in an application which uses the hierarchical
RBAC model. The application has several users. Two
such users are Alice and Bob. The roles are Cashier,
Accountant, Senior Accountant, Senior Cashier and
Teller. Senior Accountant role dominates the role of
Accountant.

Figure 2. RBAC class model

The SSD property in this application is that the role
Accountant and Cashier cannot be assigned to the same
user. Any role dominating the Accountant role and any
role dominating the Cashier role cannot be assigned to
the same user.

The DSD property allows the assignment of
Accountant and Cashier to the same user. However,
they can not be activated by the same user in one
session. Thus any senior Accountant role and any
senior Cashier role cannot be activated by the same
user in one session.

The invariants in the HRBAC model are given
below.

[OCL invariants in the RBAC model]
context User
//Static separation of duty constraint
inv SSD: not (self.assignedRoles->exists(r | r.name =
"Accountant") and self.assignedRoles->exists(r| r.name
= "Cashier"))
//Static separation of duty constraint with role
hierarchies
inv SSD_RH: not (self.assignedRoles->exists(r |
r.isDominating(“Accountant”)) and self.assignedRoles
->exists(r | r.isDominating("Cashier")))

//pre- and post- conditions of Assign method
context User::Assign(role:Role)
pre: self.assignedRoles->forAll(r | r.name <>
role.name)
post: self.assignedRoles->exists(r | r.name =
role.name) and self.assignedRoles@pre->forAll(r1 |
self.assignedRoles->exists(r2 | r1.name = r2.name))
and (self.assignedRoles->size() = self.
assignedRoles@pre->size() + 1)

//Query method to determine the role hierarchy
relationship
context Role::isDominating(roleName:String):Boolean
pre:true
post:

if self.name = roleName then
 result = true
else
 if self.dominating->size() = 0 then
 result = false
 else result =
 (self.dominating.isDominating(roleName))
 endif
endif

//pre- and post- conditions of Activate method
context Session::Activate(role:Role)
pre: self.activatedRoles->forAll(r | r.name <>
role.name) and self.user.assignedRoles->exists(r |
r.name = role.name)
post: self.activatedRoles->exists(r | r.name =
role.name) and self.activatedRoles@pre->forAll(r1 |
self.activatedRoles->exists(r2 | r1.name = r2.name))
and (self.activatedRoles->size() =
self.activatedRoles@pre->size() + 1)

context Session
//Dynamic separation of duty constraint
inv DSD: not (self.activatedRoles ->exists(r | r.name =
"Accountant") and self.activatedRoles ->exists(r|
r.name = "Cashier"))
//Dynamic separation of duty constraint with role
hierarchies
inv SSD_RH: not (self.activatedRoles ->exists(r | r.
isDominating(“Accountant”)) and self.activatedRoles
->exists(r | r.isDominating("Cashier")))

The behavior that will be analyzed is described by a

sequence diagram that describes the following
interactions in the order given (space does not allow us
to show the sequence diagram but its form can be
inferred from what follows): (1) user Bob creates a
session using CreateSession(), (2) Bob is assigned
Accountant and SeniorCashier roles through two calls
to the Assign() operation, (3) Bob activates the
assigned roles in the session by calling Activate(). We
will illustrate the approach by showing how it is used
to evaluate the behavior described by this sequence of
operation calls.

4. Generating snapshot models

In this chapter we describe how snapshot models
are generated from design class models. We use the
(hierarchical) RBAC example described in the
previous section to illustrate each step of the

generation process. The process consists of four steps
which are described in the remainder of this section.

Step 1 Generate basic snapshot class model

The basic snapshot class model does not contain
OCL constraints. The snapshot model is formed by (1)
introducing Snapshot and Operation classes to the
application class model, (2) specifying the links
between the snapshots and the system state. Here,
system state is an object configuration that conforms to
the application class model. In the case of the RBAC
model a system state is a collection of users, roles and
sessions that are linked as specified in the RBAC class
model. Each collection of objects in the system state
(e.g., users) is modeled as a linked list in the snapshot
model.

In the following we describe the automatable
process for creating basic snapshot class models. We
refer to the application class model as the system
design model.

[Snapshot class model generation algorithm]
Input: System design class diagram
Output: Snapshot class diagram
Process:
1. For each class in the system design model: Organize
the instances in a linked list by introducing a self
association that relates an instance to the next instance
in the list. Associate Snapshot with each class such that
each snapshot is linked to exactly one object of the
class (the first element in the linked list).
2. For each operation in each class:
a. Generate ClassName_OperationName as an
Operation enumeration. The enumerations are the
values that can be assigned to the operationID
attribute.
b. For each parameter of the operation: Generate
ClassName_OperationName_ParameterName as an
attribute of the Operation class.

Figure 3 shows the result of applying the process to
the RBAC model. The formal parameters in the
Assign(), CreateSession(), and Activate() operations are
represented as attributes in the Operation class. The
operationID attribute references the operation names
used in the RBAC model as reflected in the use of the
OperationName enumeration type.

Figure 3. RBAC snapshot model

Step 2 Generate snapshot transition diagrams

To analyze behavioral properties for a sequence of
operation calls made in a sequence diagram, we
generate a sequence of snapshot transitions in which
the order of the transitions is determined by the order
in which operations are called in the sequence diagram.

A snapshot transition diagram describes how a
system state transits to a next system state as a
consequence of an operation invocation. Snapshot
transitions are described in an object diagram called a
collaboration. A collaboration has two snapshot
instances which record the system states before and
after the operation invocation, and an operation
instance which represents the operation context.

Some operation invocations spawn calls to sub-
operations. For example, a Transfer operation in a
Bank class may call a sub-operation Withdraw to take
out money from the source account and then call a sub-
operation Deposit to add the money to the destination
account, before returning a result to the caller. In our
approach we treat an externally invoked operation and
its associated sub-operation as one atomic operation,
that is, the calls to the sub-operations are considered to
be internal actions that are not visible during analysis.
This allows us to more readily generate behavioral
constraints.

The Snapshot collaboration generation algorithm
generates snapshot transitions from the operation
invocation sequence given in the operation invocation
sequence diagram.

[Snapshot collaboration generation algorithm]
Input: Snapshot class diagram, Operation invocation
sequence diagram, initial system state
Output: Snapshot transitions for each atomic
operation

Process:
1. Partition the operation invocation sequence into
atomic operations:
Trace each externally initiated operation call through
its sub-operations until a result is returned to the
initiator; the trace is treated as a single operation call.
2. Generate snapshot collaborations:
For each atomic operation call in the sequence
diagram

 Generate a unique collaborationID
 Create an uninitialized snapshot object (instance

of Snapshot) and an unintialized operation object
(instance of Operation) .

 Instantiate the operation object. The values used
to instantiate the attributes representing
parameters are the parameter values given in the
sequence diagrams.

 Create linked list of system state instances. These
are the elements in the before system state for the
operation.

 Generate the after system state; see [next system
state generation algorithm].

The next system state generation algorithm is called

to generate the next system state. We generate the next
system state from the pre- and post- conditions of

current operation. Since our approach verifies
behavioral properties by checking invariants against
snapshot (system state) transitions, we must make sure
the next system state is determined precisely. To
ensure this, we require that the operation specifications
be deterministic and complete. A complete operation
specification is one that specifies its effect on all
attributes in class. To shorten the presentation of
complete specifications, it is assumed that if an effect
is not specified for an attribute, then the attribute
values in the before and after states are identical.

We also require that operation specifications be
operative, that is, one should be able to implement

their effect using a process that completes its task in a
finite time. For example, quantifying values over an
infinite type space is disallowed. If operation
specifications do not have the properties mentioned
above then the after state must be produced manually.

[Next system state generation algorithm]
Assumptions: The post-condition of the current
operation is complete and operative. We restrict the
post-condition to assignments involving single-valued
and multi-valued attributes.
Input: Current operation, System state before current
operation

Figure 4. Assign Accountant role to Bob collaboration

Output: System state after current operation is
executed and results are returned
Process:
1. Evaluate pre-condition of current operation:
If the before system state does not satisfy the pre-
condition, it means that either the system state is not
valid with respect to the operation or the pre-condition
is not correct. The algorithm halts and the user is
notified of the problem.
2. Convert post-condition into a procedural form:
Convert single-value assignment into simple
assignment in a procedural language (e.g., the Java
programming language).
Convert multi-value assignments or assignment with
forall quantifier into iterative statements in algorithmic
language.
3. Run the procedure to generate the next system state.

The sequence of RBAC behavior described in
Section 3 involves an invocation of the
CreateSession() operation, two invocations of the
Assign() operation and two invocations of the
Activate() operation. For illustration purposes we focus
on four snapshot collaborations in this paper: The two
Assign() invocations and the two Activate()
invocations. The collaboration for one of the Assign()
operations is shown in Figure 4. To make Figure 4
more compact we use “1” to represent the value
User_Assign that is assigned to operationID. This
value indicates that the operation Assign() in User
provides the context for the transition. The system
states in the collaboration are created manually because
the post-condition of Assign() is not fully operative.

Step 3 Generate snapshot constraints

In this step operation specifications are transformed
to snapshot invariants. The step is performed for each
collaboration produced in the previous step. Note that
the transformation of the same operation on different
snapshot collaborations generates different snapshot
invariants because the operation may be performed on
different objects.

[Snapshot invariant transformation algorithm]
Input: Snapshot transitions, operation specifications
Output: Snapshot invariant for each snapshot
transition
Process:
For each snapshot transition (Snapshot collaboration)
with operation call op, create a Snapshot invariant
from the pre- and post- conditions of op in the class
model in the following way:

1. Replace each object reference in the pre- and
post- conditions with a reference to the objects in
the associated linked lists. This involves finding
the object in the linked list.

2. For each object reference in the pre- and post-
conditions in the form of X@pre, replace it with X.

3. For each object reference in the post-conditions in
the form of X, replace it with self.next.X.

4. Form the conjunction of the pre and post
conditions generated from the above steps and
include in the body of the Snapshot invariant.

5. Add equalities for operationID and
collaborationID in the pre-condition of the
Snapshot invariant. The final invariant will have
the following form:

Invariant: operationID = op_enumeration
and collaborationID =
current_colaborationID implies Snapshot
invariant body

The following are the snapshot invariants generated

for the four RBAC collaborations mentioned in the
previous step:
[Constraints of the RBAC Snapshots]
context Snapshot
inv Collaboration1-Assign1:

(self.operation.collaborationID = 1 and
self.operation.operationID = 1) implies

(self.userInstance.assignedRoles->forAll(r | r.name
<> self.roleInstance.name) and

self.next.userInstance.assignedRoles->exists(r |
r.name = self.roleInstance.name)) and

self.userInstance.assignedRoles->forAll(r1 |
self.next.userInstance.assignedRoles->exists(r2 |

r1.name = r2.name)) and
 (self.next.userInstance.assignedRoles->size() =
self.userInstance.assignedRoles->size() + 1)

inv Collaboration2-Assign2:

(self.operation.collaborationID = 2 and
self.operation.operationID = 1) implies

(self.userInstance.assignedRoles->forAll(r | r.name
<> self.roleInstance.next.next.name) and

self.next.userInstance.assignedRoles->exists(r |
r.name = self.roleInstance.next.next.name)) and

self.userInstance.assignedRoles->forAll(r1 |
self.next.userInstance.assignedRoles->exists(r2 |

r1.name = r2.name)) and
 (self.next.userInstance.assignedRoles->size() =
self.userInstance.assignedRoles->size() + 1)

inv Collaboration3-Activate1:

(self.operation.collaborationID = 3 and
self.operation.operationID = 2) implies

(self.sessionInstance.activatedRoles->forAll(r |
r.name <> self.roleInstance.name) and

self.sessionInstance.user.assignedRoles->exists(r |
r.name = self.roleInstance.name) and

self.next.sessionInstance.activatedRoles->exists(r |
r.name = self.roleInstance.name)) and

self.sessionInstance.activatedRoles->forAll(r1 |
self.next.sessionInstance.activatedRoles-

>exists(r2 | r1.name = r2.name)) and
 (self.next.sessionInstance.activatedRoles->size() =
self.sessionInstance.activatedRoles->size() + 1)

inv Collaboration4-Activate2:

(self.operation.collaborationID = 4 and
self.operation.operationID = 2) implies

(self.sessionInstance.activatedRoles->forAll(r |
r.name <> self.roleInstance.next.next.name) and

self.sessionInstance.user.assignedRoles->exists(r |
r.name = self.roleInstance.next.next.name) and

 self.next.sessionInstance.activatedRoles->exists(r |
r.name = self.roleInstance.next.next.name)) and

self.sessionInstance.activatedRoles->forAll(r1 |
self.next.sessionInstance.activatedRoles-

>exists(r2 | r1.name = r2.name)) and
 (self.next.sessionInstance.activatedRoles->size() =
self.sessionInstance.activatedRoles->size() + 1)

Step 4 Analyze behavioral properties

We analyzed the SSD constraint based on the first
two Assign Snapshot transitions. The OCLE tool was
used to perform the analysis and it reported the error
arising from the assignment of two conflicting roles to
the same user. Note that SeniorCashier dominates
Cashier and Cashier conflicts with Accountant.

In our second analysis we removed the SSD
constraints and analyzed the snapshot sequence
involving the two Activation Snapshot transitions
against the DSD constraints. As we expected OCLE
reported the error arising from the activation of two
conflicting roles in the same session created by Bob.

5. Related work

Existing UML modeling tools like OCLE
[Chiorean] and USE [Gogolla] support for validating
syntactic and structural properties. OCLE [Chiorean]
for example can detect syntactic errors in models and
syntax errors in OCL specifications. OCLE also checks
the consistency of OCL invariants on objects or object
diagrams. The limitation of these tools is they do not
evaluate pre- and post-conditions of operations.

The Alloy Analyzer [Jackson] developed by the
Software Design Group of MIT generates examples or

counter-examples of certain properties by exploring a
search space given by limiting the number of entities in
the model. Alloy models systems in a structural
modeling language based on first-order logic. Alloy
has been used to check abstract system designs and
specification consistencies. The checking of UML
models with Alloy requires the transformation of UML
models to Alloy models. Such transformations must be
validated if they are to be trusted and one must e able
to trace errors in Alloys to errors in UML models.
These are currently challenging problems.

Model checking has been applied to automate the
verification of the safety and correctness of finite state-
based systems [Clark]. Zhang et. al. [Zhang] developed
a model checking approach to evaluating access
control policies. As with Alloy, a translation process is
needed to convert the UML specifications into a model
that can be verified by the model checker.

Static model analysis is useful in verifying design
models. Ray et. al. [Ray] model RBAC and MAC
access control policies with parameterized UML and
compose the models. The static analysis on the
composed models can find undesirable violations to
the access control policies. However, the proposed
approach is manual.

Testing techniques are applied to UML models to
check design faults. Dinh-Trong [Dinh-Trong]
proposes a systematic approach to testing UML
designs. In the approach test cases are generated from a
set of test adequacy criteria on the UML design model.
Java is used to formally define execution semantics of
UML. The design model is then transformed to
executable models that exercise the test cases and
evaluate the test results. Model execution is another
way to check dynamic model behaviors. Harel et. al.
[Harel] propose a model execution framework
Rhapsody that can translate class diagram and state
charts into executable code and execute it.

6. Conclusions and future work

In this paper we propose an approach to modeling
behavioral properties using class models of behavior
that can be analyzed using existing static analysis tools
such as OCLE and USE. The approach takes a design
model consisting of design class models with operation
specifications and sequence models and generates a
snapshot model. It analyzes the behavior specified by
sequence diagrams against the snapshot model. It does
this by checking object diagrams describing sequences
of state changes against invariants in the snapshot
model. We demonstrate the approach by analyzing
RBAC SSD and DSD properties for a sequence of
operation calls in an application model.

The approach limits the form of operation
specifications that can be present in a design class
model. Models that do not conform to these restrictions
require significant human effort to produce the
snapshot model. Another limitation is that it can only
be used to verify systems where the operations occur
sequentially. Our future work aims to remove as much
of these limitations while preserving the level of
automation to the extent possible.

Acknowledgement

This work was partially supported by a grant from
the AFOSR under Contract No. FA9550-04-1-0102.

7. References

[Chiorean] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, S.
Moldovan, “Ensuring UML Models Consistency Using the
OCL Environment”, Electronic Notes in Theoretical
Computer Science, Volume 102, Nov. 2004, pages 99-110.

[Clark] E. Clark, O. Grumberg, and D. Peled. Model
Checking. The MIT Press, 1999.

[Dinh-Trong] T. T. Dinh-Trong, “A Systematic Approach to
Testing UML Design Models”, Doctoral Symposium, 7th
International Conference on the Unified Modeling Language
(UML), Lisbon, Portugal, 2004.

[Ferraiolo] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R.
Kuhn, and R. Chandramouli. “Proposed NIST Standard for
Role-Based Access Control”. ACM Transactions on
Information and Systems Security, 4(3), Aug. 2001.

[Gogolla] M. Gogolla, J. Bohling, and M. Richters.
“Validating UML and OCL Models in USE by Automatic
Snapshot Generation”. Journal on Software and System
Modeling, 4(4):386-398, 2005.

[Harel] D. Harel and E. Gery, “Executable Object Modelling
with Statecharts”, IEEE Computer, 30(7): 31-42, 1997.

[Jackson] D. Jackson, “Alloy: a lightweight object modeling
notation”, ACM Transactions on Software Engineering and
Methodology, Volume 11, Issue 2, April 2002, pages 256-
290.

[Ray] I. Ray, N. Li, D-K. Kim, R. France, “Using
Parameterized UML to Specify and Compose Access Control
Models”, Proceedings of the 6th IFIP WG 11.5 Working
Conference on Integrity and Internal Control in Information
Systems, Lausanne, Switzerland, Nov. 2003.

[UML2] Object Management Group, Unified Modeling
Language: Superstructure, vers 2.0 Final Adopted Standard.

[Zhang] N. Zhang, M. Ryan, and D. Guelev. “Evaluating
Access Control Policies through Model Checking”,
Proceedings of the 8th International Conference on
Information Security, Singapore, Sept. 2005.

