
A Rigorous Approach to Uncovering Security Policy Violations in UML
Designs

Lijun Yu, Robert France, Indrakshi Ray, Sudipto Ghosh
Colorado State University, USA

{lijun,france,iray,ghosh}@cs.colostate.edu

Abstract

There is a need for rigorous analysis techniques
that developers can use to uncover security policy
violations in their UML designs. There are a few UML
analysis tools that can be used for this purpose, but
they either rely on theorem-proving mechanisms that
require sophisticated mathematical skill to use
effectively, or they are based on model-checking
techniques that require a “closed-world” view of the
system (i.e., a system in which there are no inputs from
external sources). In this paper we show how a
lightweight, scenario-based UML design analysis
approach we developed can be used to rigorously
analyze a UML design to uncover security policy
violations.

In the method, a UML design class model, in which
security policies and operation specifications are
expressed in the Object Constraint Language (OCL),
is analyzed against a set of scenarios describing
behaviors that adhere to and that violate security
policies. The method includes a technique for
generating scenarios. We illustrate how the method
can be applied through an example involving role-
based access control policies.

1. Introduction

Designers of software systems that are required to
enforce or adhere to security policies must be able to
analyze their designs to uncover policy violations. To
support rigorous analysis, designs must be expressed in
analyzable forms. Formal modeling languages such as
Z [19] and Alloy [14] can be used to create analyzable
designs, but these languages are not widely used in
industry. The Unified Modeling Language (UML) [1]
is an industrially popular standard object-oriented
modeling language that includes a language, called the
Object Constraint Language (OCL) [2], for expressing
operation specifications and constraints on system
states. Currently, there are very few tools for
rigorously analyzing UML designs. Some tools rely on

sophisticated theorem-proving capabilities (e.g., see
[24]), while others utilize model-checkers that require
a closed-world view of the software, in which inputs
from external sources (e.g., operation parameters) are
not allowed (e.g., see [23]).

In this paper, we present a lightweight method for
rigorously analyzing a UML design model. The
method is lightweight, in that it does not guarantee that
all possible violations will be found. It is rigorous, in
that it will uncover all violations within the scope of a
set of scenarios. Here, a scenario describes a sequence
of state transitions, where a transition is the result of a
completed operation execution. The method uses a
scenario-based analysis technique that we developed to
determine whether a scenario is allowed or disallowed
in a UML design class model that includes operation
specifications expressed in the OCL [7][8].

A verifier using the method first produces a set of
scenarios describing legal and illegal behaviors: A
legal scenario describes behavior that adheres to
security policies, while an illegal scenario describes
behavior that violates security policies.

After the scenarios are produced, the verifier then
uses the scenario-based analysis technique to check
whether the legal scenarios are allowed, and the illegal
scenarios are not permitted in the design model. The
design model under analysis is a UML class model in
which security policies are modeled as invariants
expressed in the OCL. The analysis is essentially a
consistency check between the behaviors defined in the
scenarios and the behaviors described in the UML
class model. Identified discrepancies can be the result
of defects in the class model or in the scenarios.

A key challenge is providing the verifier with
automated assistance for producing scenarios. A naïve
syntax-based generation approach can produce
scenarios by considering all possible sequences of
operation calls. The verifier will then be required to
manually label each generated scenario as legal or
illegal. For industrial-strength systems, this naïve
approach will generate too many scenarios to make
manual labeling of scenarios infeasible. In this paper

we present a scenario generation technique that
improves upon the naïve approach by taking into
consideration domain-specific knowledge about
sequences of operation calls that reflect typical usages
and sequences that should not be allowed. This
knowledge is encoded in operation call sequence
patterns that are used by the verifier to generate
scenarios.

The method is illustrated using a design model of an
application that uses Role-Based Access Control
(RBAC) [6] to manage access to protected resources.
UML has been used to specify access control policies.
Epstein and Sandhu study the feasibility of using UML
to support role engineering [4]. Ahn and Shin study
how to express RBAC constraints using OCL [3]. In
earlier work, we show how violations of RBAC
policies such as separation of duty, prerequisite and
cardinality constraints can be modeled using anti-
patterns of object configurations [5]. None of the above
approaches offer a method for systematically analyzing
UML designs to uncover policy violations.

The work described in this paper extends our
previous work by providing a systematic approach to
producing scenarios used in the analysis. Furthermore,
we illustrate how the approach can be used to
systematically analyze a design to uncover policy
violations.

The remainder of the paper is organized as follows.
In Section 2 we provide background information on
RBAC and we present a UML design class model that
includes OCL invariants that express RBAC policies.
In Section 3 we provide an overview of the scenario-
based UML design analysis technique we developed in
previous work. In Section 4 we describe the analysis
method and illustrate its use. In Section 5 we discuss
related work in verification and analysis of access
control policies, and in Section 6 we conclude the
paper.

2. RBAC

RBAC is an access control model used to protect
sensitive information resources [6]. In core RBAC,
permissions are granted to roles, and roles are assigned
to users. The assigned roles that a user activates in a
session determine the resources that the user can access
in the session. In hierarchical RBAC, roles are
organized into hierarchies of junior and senior roles. A
senior role dominates its junior roles, that is, a senior
role inherits all the permissions of its junior roles, and
a junior role inherits all the assigned users of the senior
role. Separation of duty (SOD) constraints are added in
the constrained form of RBAC. There are two forms of
SOD constraints: A static separation of duty (SSD)

constraint prohibits the assignment of conflict of
interest roles to the same user, and a dynamic
separation of duty (DSD) constraint prohibits the
simultaneous activation of conflict of interest roles by
the same user.

In this section we present a RBAC policy model in
two parts: in the first part we give a UML design class
model that describes RBAC classes and operations, in
the second part we describe RBAC constraints using
OCL invariants.

2.1. RBAC design class model

+AssignRole(in r : Role)
+DeassignRole(in r : Role)
+CreateSession() : Session
+DeleteSession() : Session
+GetAuthorizedRoles() : Set of Role

User

+ActivateRole(in r : Role)
+DeactivateRole(in r : Role)
+GetActiveRoles () : Set of Role
+CheckAccess (in t : Target, in o : Operation) : Boolean

Session

+AddSeniorRole(in r : Role)
+DeleteSeniorRole(in r : Role)
+GrantPermission(in p : Permission)
+RevokePermission(in p : Permission)
+GetAuthorizedPermissions() : Set of Permission
+GetAuthorizedUsers() : Set of User
+GetSODRoles() : Set of Role

Role

Target

Operation

Permission

-roles*

-permissions*

-activeRoles
*

-sessions
*

-assignedRoles

*

-users

*

-user

1

-sessions

*

*

-target

1

-operation

1

*

-juniorRoles*

-seniorRoles

*

*

+DSDRoles

*

*

+SSDRoles

*

Figure 1. Hierarchical RBAC design class
model

In the hierarchical RBAC design class model shown
in Fig. 1, the User, Role and Session classes model
users, roles and sessions entities in RBAC. The
Permission class describes RBAC permissions in terms
of operations that can be performed on targets. The
assignedRoles association end determines the set of
roles directly assigned to a user. The operation
GetAuthorizedRoles() returns all roles directly and
indirectly assigned to a user. The activeRoles
association end determines the set of roles directly
activated in a session, and the operation
GetActiveRoles() returns all roles directly activated in a
session. The association end permissions is the set of
all permissions directly associated with a role, and the
operation GetAuthorizedPermissions() returns all
permissions directly and indirectly associated with a
role. The seniorRoles and juniorRoles association ends
define the role hierarchy relationships. The SSDRoles

association end defines the set of role pairs that are
constrained by SSD. The DSDRoles association end
defines the set of role pairs that are constrained by
DSD.

Operations are specified using the OCL. For
example, the operation GetAuthorizedRoles() in User is
defined using a query operation GetDominatedRoles()
as follows:

// Get set of authorized roles to the
user.
context User::GetAuthorizedRoles()
:Set(Role)
post: result =
self.assignedRoles.GetDominatedRoles()->
asSet()

// Get set of dominated roles to the
role.
context Role::GetDominatedRoles():
Set(Role)
body:
let oneStep:Set(Role)= Set{self} in
result = if oneStep.juniorRoles-
>isEmpty() then
 oneStep
else
 oneStep->union(oneStep.juniorRoles
 .GetDominatedRoles())->asSet()
endif

The operations that are involved in the analysis
presented in Section 3 are given below.

context User::AssignRole(r:Role)
// Assign a role to the user.
pre:
not self.GetAuthorizedRoles()-
>includes(r)
post: self.GetAuthorizedRoles()-
>includes(r)

context Session::ActivateRole(r:Role)
// Activate a role in the session.
pre:
not self.GetActiveRoles()->includes(r)
post: self.GetActiveRoles()->includes(r)

context
Session::GetActivateRoles:Set(Role)
// Return activated roles in the session.
pre: true
post: result = self.activeRole

context Role::AddSeniorRole(r:Role)
// Add a senior role to current role.
pre: true
post: self.seniorRoles->includes(r) and
r.juniorRoles->includes(self)

context Role::CheckAccess(t:Target,
o:Operation):Boolean
// Query operation that checks
permissions // of all active roles to see
whether there
// is a match for the target and
operation.
pre true
post: result = self.GetActiveRoles().
GetAuthorizedPermissions()->exists (p |
p.target = t and p.operation = o)

2.2. RBAC constraints

2.1.1. Role activation constraint. A fundamental
constraint in role activation is that a role can be
activated by a user only if it has been assigned to the
user. We express this constraint as an OCL invariant
named RBAC_Policy_1:

RBAC_Policy_1: A user can only activate roles that are
assigned to him.
context Session
inv RBAC_Policy_1:
self.user.authorizedRoles->
includesAll(self.activeRoles)

2.1.2. Role hierarchy constraints. According to the
definition of role hierarchy in the NIST RBAC
standard [6], a senior role dominating its junior roles
implies that the senior role inherits all the permissions
of its junior roles, and a junior role inherits all the
assigned users of the senior role. RBAC_Policy_2
expresses this constraint:

RBAC_Policy_2: A senior role inherits all permissions from
junior roles, and a junior role inherits all the users of its
senior roles.
context Role
inv RBAC_Policy_2:
seniorRoles->forAll(s |
s.authorizedPermissions->
intersection(self.authorizedPermissions)
= self.authorizedPermissions) and
self.seniorRoles->forAll(s |
s.authorizedUsers->
intersection(self.authorizedUsers) =
s.authorizedUsers)

The role hierarchy is a partial order on roles and
there should not be any cycles in the role hierarchy.
We use an OCL query operation on roles called
Dominates in the policy statement. The expression
r1.Dominates(r2), where r1 and r2 are roles, returns
true if r2 is a descendant of r1 in a senior-junior role
structure. The constraint is expressed by
RBAC_Policy_3:

context Role::Dominates(r:Role):Boolean
pre true
post:
if (self.juniorRoles->includes(r)) then
result = true
else
result = self.juniorRoles->exists(j |
j.Dominates(r))
endif

RBAC_Policy_3: There must be no cycles in senior-junior
role relationships.
context Role
inv RBAC_Policy_3:
not self.Dominates(self)

2.1.3. Separation of duty constraints.
RBAC_Policy_4 expresses the static separation of duty
constraint, and RBAC_Policy_5 expresses the dynamic
separation of duty constraint:

RBAC_Policy_4: Conflict of interest roles cannot be
assigned to the same user (SSD).
context User
inv RBAC_Policy_4:
not self.GetAuthorizedRoles()->exists(r1,
r2 | r1.SSDRoles->includes(r2))

RBAC_Policy_5: Conflict of interest roles can not be
activated by the same user simultaneously (DSD).
context User
inv RBAC_Policy_5:
not self.sessions.GetActiveRoles()->
exists(r1, r2 | r1.DSDRoles->
includes(r2))

3. Scenario-based UML design analysis
technique

A UML design class model can be viewed as a
characterization of valid system states, where a system
state is a configuration of objects. A system state is
called a snapshot in this paper. Tools such as USE [10]
and OCLE [11] can be used to check whether a
snapshot is valid with respect to a UML class model.

The scenario-based UML design analysis technique
extends the applicability of these tools to behavior. The
technique is used to determine whether behavior
defined in a scenario is allowed by a UML design
model [7][8]. A verifier charged with validating a
UML design model produces a set of scenarios
describing legal and illegal behaviors, and then uses
the scenario-based analysis technique to check whether
the behaviors described in the scenarios are allowed or
not in the UML design class model.

The UML design class models against which the
scenarios are evaluated consist of operations

specifications expressed in the OCL. A scenario
describes a sequence of snapshot transitions, where
each transition is triggered by an operation call and
describes the net effect of the operation’s execution.
More precisely, a snapshot transition consists of (1) the
name and parameter values of the operation that
triggers the transition, (2) a before-snapshot describing
the state of the system before the operation is executed,
and (3) an after-snapshot describing the state of the
system after the operation has executed.

In order to use tools such as USE and OCLE to
support scenario-based analysis we developed an
approach for generating a class model that
characterizes valid snapshot transitions from a UML
class model. The generated class model of behavior is
called a Snapshot Model. Developers can use tools
such as USE and OCLE to check that a scenario
(sequence of snapshot transitions), satisfies the
constraints expressed in a Snapshot Model.

+CreateSession() : Session

User

+CheckAccess(in op : Operation, in t : Target) : Boolean

Session

+CheckAccess(in op : Operation, in t : Target) : Boolean

Role

-activeRoles
*

-sessions
*

-assignedRoles
*

-users
*

-user

1

-sessions

*

users:User sessions:Session

roles:Role

-activeRoles

*

-sessions

*

-assignedRoles

*

-users

*

-user

1

-sessions

*

User

Session

Role

Snapshot

Transition

+userPre,userPost : User
+ret : Session

User_CreateSession_Transition

+rolePre,rolePost : Role
+opPre,opPost : Operation
+tPre,tPost : Target
+ret : Boolean

Role_CheckAccess_Transition

+before

1

*

+after

1

*

+sessionPre,sessionPost : Session
+opPre,opPost : Operation
+tPre,tPost : Target
+ret : Boolean

Session_CheckAccess_Transition

RBAC design class model

RBAC snapshot model

Figure 2. Partial RBAC Class Model and its
Snapshot Model

The Snapshot Model is a key artifact in the
approach. In previous work we described how a
Snapshot Model can be mechanically generated from a
UML design class model [8]. The Snapshot Model
generated from part of the RBAC design model is
shown in Figure 2.

The Snapshot Model consists of a structured

Snapshot class that characterizes snapshots (object
configurations) and a Transition class that relates
before and after snapshots for an operation. The three
specializations of the Transition class characterize
transitions triggered by the three operations shown in
the partial RBAC design class diagram shown above
the Snapshot Model. For example, the class
User_CreateSession_Transition characterizes
transitions triggered by invocations of the
CreateSession() operation defined in the Session class.
The attributes in the Transition subclasses represent
scalar operation parameters and references to before
and after states of the objects accessed by the
operations. For example, the attribute userPost is a
reference to the start state of the User object created in
an invocation of CreateSession(). The created session
object is stored in ret and there is no before state for
the session object that is created during the execution
of an operation.

Operation specifications are transformed to
invariants on the Snapshot Model. This algorithm is
described in our previously published paper [8].

A scenario is described by a UML sequence
diagram annotated with descriptions of the effects of
each operation invoked in the scenario. We use a UML
model animator called UMLAnT to produce snapshot
transitions from a sequence model.

4. A policy analysis method

In this section we describe how the scenario-based
technique can be used as the basis for a rigorous policy
analysis method. A verifier uses the method to produce
a set of scenarios describing legal and illegal
behaviors, that is, behaviors that conform to and that
violate the policies, respectively. The scenarios are
then evaluated against a Snapshot Model generated
from an RBAC design model in which policies are
expressed as invariants.

The method is comprised of two steps:
(1) Scenario Generation: In this step, the verifier

produces scenarios, that is, sequences of snapshot
transitions. Each scenario must be labeled as
illegal or legal before proceeding to the next step.

(2) Analysis. In this step the verifier applies the
scenario-based UML design analysis technique (as
described in Section 3) to check whether the
scenarios are accepted or rejected by the UML
design model. If legal scenarios are rejected or
illegal scenarios are accepted by the UML design
model, it means that the design model, the
scenarios, or both are problematic.

In the first step, the verifier produces sequence

diagrams that are animated to produce scenarios that
consist of sequences of snapshot transitions. These
sequence diagrams must refer to the class elements
defined in the UML class model, but the behaviors of
the operations invoked in the scenarios are defined
independently by the verifier. The scenarios thus
reflect the verifier’s understanding of how the
operations are to behave in a legal scenario or
"misbehave" in an illegal scenario. The verifier
describes behavior using a UML action language we
developed called the Java-like Action Language (JAL)
[9]. The sequence diagrams are animated to produce
scenarios. A model animator that we developed, called
UMLAnT [9], can be used to generate scenarios.

In the remainder of this section we describe the
scenario generation technique, and we show how the
policy analysis method can be used to analyze access
control policy constraints in the RBAC design model.
The example used in this section is intentionally small
to better focus the description on the method.

4.1. Scenario generation

The scenario generation technique we developed is
based upon a naïve scenario generation algorithm. The
naïve algorithm generates too many scenarios, and thus
we extend it by allowing the verifier to target specific
families of scenarios by specifying patterns.

The naïve scenario generation algorithm does the
following: (1) builds an operation invocation tree from
a set of operations and parameter values, (2) traverses
the operation invocation tree to produce all possible
sequences of operation invocations, and (3) animates
each sequence of operation invocations to produce a
sequence of snapshot transitions. The verifier must
then label each of the generated snapshot transition
sequences as legal or illegal.

Each node in an operation invocation tree represents
a particular invocation of a system operation on an
object. The invocation is referred to as an operation
instance. Each node contains an object identifier (the
receiver of the operation call), an operation name and a
value for each operation parameter. The root of the tree
represents the system initialization point and it contains
information about the start state. Child nodes represent
operation invocations that can occur after the
invocation represented by the parent node. A scenario
is a path that starts at the root and ends at any node in
the tree.

To reduce the number of scenarios produced by the
above algorithm, the extended technique we developed
allows a verifier to (1) limit the depth of the tree, (2)
limit the number of objects of a class that can be in a
start state, and (3) explicitly define a small domain for

each input parameter of the operation. For example,
given an operation User::AssignRole(r:Role), the
verifier can restrict the User domain size to 2 users
objects, and define a small domain for the Role
parameter as follows: Domain(Role) = {clerk,
seniorClerk}.

The extended generation technique allows a verifier
to specify patterns of operation sequences that restrict
(1) the operation calls that are used to build the
operation invocation tree and (2) the order in which
operations can be invoked. These patterns are called
operation invocation patterns. An operation invocation
pattern is a characterization of particular sequences of
operation invocations that the verifier feels typifies
good and problematic usages of the system. The
patterns are manually created using the best available
domain expertise and experience related to the
sequences of operations that are likely to uncover
policy violations. The patterns are described in terms
of constraints on initial states and on the sequencing of
operation calls. The use of these patterns allows the
verifier to focus the analysis on particular sequences of
invocation calls.

For example, a verifier can create the following
pattern of operation calls for analyzing role activation
behavior:
Initial State Constraint
u in Domain(User) // There is at least one user
#Role>3 //At least 4 roles are in the start state
Call Pattern
u.CreateSession(.)return(s:Session){1,2}
u.AssignRole(.){2,4}
u->s.ActivateRole(.){1..4}
The first part of the pattern description constrains the
initial state. In this case the initial state must consist of
a User object, u, and at least four roles.

The second part is the pattern of operation calls.
The expression caller->callee.Op() (e.g., see last line
of the above Call Pattern) identifies the sender (caller)
and receiver (callee) of an operation call message. If
the caller is omitted then it is assumed that the message
is coming from an external actor. The analysis we
perform using the Snapshot Model does not require
that the sender of an operation call be known; this
information is currently used only to visualize the
operation sequence as a sequence diagram that shows
both senders and receivers of messages.

The pattern describes the following sequences of
operation calls:
1. Start with 1 or 2 calls to the CreateSession()

operation for a user, u using any parameters (as
indicated by the "." in the parameter list of the
operation), and each successfully returning a new
session, s, (indicated by return(s:Session)),

2. followed by 2 to 4 operation calls to the
AssignRole() for user u, and

3. ending with 1 to 4 calls made by the user u to
activate roles in the sessions previously created by
calls to CreateSession().

In order to generate snapshot transitions, a verifier
must provide descriptions of operation behavior to the
snapshot generation algorithm. The verifier uses a
UML action language called the Java-like Action
Language (JAL) to describe what the verifier considers
legal and illegal effects of operations [9]. JAL
descriptions can be interpreted by UMLAnT [9], an
open-source Eclipse plugin developed by our research
group. UMLAnT supports executing JAL descriptions
of behavior and generating snapshot transition
sequences.

For example, a verifier can define the legal effects
of the operation User::AssignRole as follows:

JAL_User_AssignRole
if (!this.userRoles._exists(role))
{
 this.userRoles._add(role);
}

The verifier creates the JAL descriptions using
information provided in requirements use cases and
misuse cases. In the case of access control policies, the
misuse cases can be based on the access control anti-
patterns identified in our previous work [5].

Figure 3. Scenario generation algorithm

Snapshot transitions are generated by traversing the
operation invocation tree and interpreting the
associated JAL descriptions of behavior using
UMLAnT. The verifier then needs to determine
whether the generated scenarios describe legal or
illegal behaviors.

The scenario generation algorithm is described in
Fig. 3.

4.2. Analyze RBAC constraints

In this sub-section we show how some of the RBAC
constraints given in Section 2 can be analyzed using
the method.

4.2.1. Analyze role activation constraint. To analyze
the role activation constraint (RBAC_Policy_1), we use
the following operation invocation pattern:
Initial State Constraint
Domain(User) = {Bob}
Domain(Role)={clerk, seniorClerk}
Call Pattern
[no Bob.AssignRole(r)]{0..2}
Bob.CreateSession(.)return(s:Session) Bob-
>s.ActivateRole(r){1..2}.
The expression [no Bob.AssignRole(r)] is used to

match all operation calls except calls of the form
Bob.AssignRole(r).

The above pattern describes sequences of
operations which end with 1 or 2 invocations of the
ActivateRole() operation, and start with 0 to 2
operation invocations that do not include operation
calls that assign the activated roles to the user Bob.

The verifier describes the effect of the ActivateRole
operation using JAL – The JAL description simply
activates the role. Scenarios generated from this pattern
would allow roles to be activated even though they are
not assigned to the user. For this reason, the verifier
knows that the pattern would produce illegal scenarios.

An example of an illegal scenario generated from
the above pattern is shown in Fig. 4. The scenario
starts from an initial system state with one user
instance Bob and one Role instance clerk. The user
creates one session and activates the clerk role. The
activation succeeds and clerk is added to the
activeRoles association of the session.

<<illegal>>

Bob:User

session:Session

ActivateRole(clerk)

CreateSession

session

clerk:Role

create

Initial state:
Bob is instance of User , clerk is instance of Role.

Figure 4. Role activation analysis scenario

The RBAC design model should reject the illegal
behavior described by the scenario. Analysis with USE
revealed that the RBAC design model is consistent
with the scenario. The defect in the design class model
is that the operation Session::ActivateRole activates
any role that is not activated. The pre-condition should
check whether the role is assigned or not.

4.2.2. Analyze separation of duty constraints. We
use the following operation invocation pattern to check
enforcement of the SOD constraints:
Initial State Constraint
Domain(User) = Bob
cashier in Domain(Role)

Scenario generation algorithm
Inputs. UML design class model, maximum
number of operations Max, parameter domain
definitions, operation JAL definitions, tree node r.
Operation invocation patterns.
Outputs. Set of scenarios.
Algorithm steps
For each operation call do:
If operations from root to current tree node r and
op match an operation invocation pattern:
1. Create one tree node n and add it as child of r.

2. Store information about the operation call
(e.g., operation name, parameters, receiving
object identifier) in tree node n.

3. Execute desired JAL description associated
with the operation using the start state stored
in r to get the next system state. Store the next
system state in tree node n.

4. Print the sequence of operation calls from the
tree root to tree node n as an output scenario.

5. If Max > 1

a) Call the scenario generation algorithm
recursively with tree node n and Max -
1 as maximum number of operations.

accountant in Domain(Role)
cashier in accountant.SSDRoles // the roles conflict
Call Pattern
[
[.]*
Bob.AssignRole(cashier)
Bob.AssignRole(accountant)
]{1}
[
Bob.CreateSession(.)return(s:Session)
s.ActivateRole(r){2..4} where(r = accountant and r =
cashier)
]{0..1}
The expression [.] matches any operation call and "*"
represents the multiplicity "0 or more". The where
clause stipulates that at least one of the Activate() calls
must activate the accountant role, and at least one of
the Activate() calls must activate the cashier role.

<<illegal>>

accountant:RoleBob:User

AssignRole(accountant)

cashier:Role

Initial state:
Bob is instance of User , accountant and cashier are conflict of interest roles.

AssignRole(cashier)

Figure 5. Static separation of duty analysis
scenario

<<illegal>>

accountant:RoleBob:User

session:Session

AssignRole(accountant)

CreateSession

session

cashier :Role

create

Initial state:
Bob is instance of User, accountant and cashier are conflict of interest roles.

AssignRole(cashier)

ActivateRole(cashier)

ActivateRole(accountant)

Figure 6. Dynamic separation of duty analysis
scenario

The illegal scenario shown in Fig. 5 is generated
from the pattern. It starts in a state consisting of two
conflict of interest roles, cashier and accountant, and a
user Bob. Bob is assigned cashier role first and then
assigned the accountant role. The scenario violates the
static separation of duty constraint defined as
RBAC_Policy_4 and thus it should be rejected by the
RBAC design. In the design model, the
User::AssignRole operation specified in Section 2 only
checks whether the role is assigned to the user or not
before it assigns the role, so that the illegal scenario is
consistent with the RBAC design. To enforce the static
separation of duty constraint in an RBAC design, the
operation should also check whether the role to be
assigned is in conflict of interest with roles that have
been assigned to the user.

The generated illegal scenario shown in Fig. 6 was
used to analyze the dynamic separation of duty
constraint. In the scenario the user Bob is assigned two
conflict of interest roles cashier and accountant, and
Bob activates both roles in one session. Again, the
Session::ActivateRole() operation does not check that
the role to be activated is in a conflict of interest with a
role in a session created by the user.

5. Related work

Sohr et. al. [12] propose both formal and practical
approaches to analyze RBAC policies. The formal
approach verifies RBAC policy specifications in first-
order LTL (Linear Temporal Logic) via a theorem
prover Isabelle; The practical approach analyzes
RBAC policies specified in UML/OCL via USE tool
[10] which automatically generates snapshots to
validate policy invariants. The formal analysis
approach with theorem prover guarantees reliability
but it needs human intervention. The practical analysis
approach based on automatic snapshot generation may
help detect conflicting or missing constraints but it is
not guaranteed because USE cannot generate all the
snapshots. In addition, the approach focuses the
analysis on OCL invariants while operation constraints
in the policy design model are not analyzed.

Model checking techniques are used to check
properties of states in state spaces. Zhang et al. [17]
present a model checking algorithm and tool to assess
access control specifications in propositional logic. The
assessment checks whether the access control policy
gives legitimate users enough permissions as well as
whether it prevents intrusions. Schaad et al. [18]
analyze separation of duty properties in ERP systems
where delegation and revocation of workflow tasks and
rights is frequent. Model checking techniques suffer

from state-space explosion problems. Efforts to reduce
the time and space complexity include simplifying the
model to an abstract one, partial order reduction and
symbolic model checking which represents states and
state transitions with Boolean formulas, however so far
performance is still major issue of model checking.
Alloy [14], a light-weight formal modeling notation
and constraint analyzer, models structural aspects of
systems in Z-like specifications and analyzes claims in
first-order logic by simulating an example
configuration or finding counter-examples. Zao et. al.
[13] utilize Alloy to verify algebraic characteristics of
RBAC schema. However, their work analyzes RBAC
schema only instead of the whole policy design model,
and Alloy analyzer is not efficient for analyzing large
models as it has to reduce the search space of objects
by limiting the number of objects in the logic
expressions being analyzed. Neither Alloy nor model
checking technique can be adapted to automatically
generate scenarios.

UML model animation and simulation techniques
execute UML design models and generate semantic
object models by interpreting OCL in the UML design
model or defining and applying graph transformation
rules [20][21][22]. We create similar semantic
snapshot models, but we do not execute the UML
design model, instead we generate these snapshot
models from scenarios created from the perspective of
verifiers. Compared with existing UML model
animation and simulation work, our work is more
rigorous and we also automatically generate legal and
illegal scenarios for analysis.

Song et. al. [15][16] verify enforcement of access
control policies in the composition of access control
aspect model and application model by manually
discharging proof obligations. The limitation of their
work is that the proof is not generated automatically.

Ray et. al [5] analyzes access control constraints in
the application model by modeling violations of access
control constraints as UML object diagrams and
statically finding matches of such violations in the
application model. The approach lacks tool support and
the UML object diagrams often do not cover all the
violations of access control constraints so that not all
the policy violations in the application model can be
detected.

6. Conclusions

In this paper we describe a lightweight, rigorous
method for analyzing security policies. The method
analyzes a UML design model by producing a set of
scenarios and checking the consistency between the
UML design model and these scenarios.

We propose an algorithm to automatically generate
scenarios for analysis. The verifier uses domain
knowledge and experience to reduce the number of
scenarios that are generated by developing operation
invocation patterns that focus the analysis on families
of scenarios. The generation is semi-automatic because
the verifier sometimes has to examine the scenarios
and label them as legal or illegal.

Our future work includes building an Eclipse-based
tool environment that integrates the UMLAnT,
USE/OCLE tools and other mechanisms needed to
support the method (e.g., the mechanisms for
generating Snapshot Models from Design Class models
and for generating scenarios). We also plan to develop
techniques for systematically producing operation
invocation patterns from requirements behavioral
models. These tools will ease the task of the verifier
charged with producing scenarios to evaluate a design.
We will continue to investigate the extent that domain
knowledge and experience can be captured and used to
support a more systematic approach to generating legal
and illegal scenarios.

Acknowledgements
This work was supported in part by AFOSR under
contract number FA9550-07-1-0042.

References

[1] Object Management Group, Unified Modeling Language:
Superstructure, version 2.0 Final Adopted Standard.

[2] Object Management Group, Object Constraint Language
Specification, Version 2.0.

[3] Ahn, G. and Shin, M. E. 2001. "Role-Based
Authorization Constraints Specification Using Object
Constraint Language". In Proceedings of the 10th IEEE
international Workshops on Enabling Technologies:
infrastructure For Collaborative Enterprises (June 20 - 22,
2001). WETICE. IEEE Computer Society, Washington, DC,
157-162.

[4] Epstein, P. and Sandhu, R. 1999. "Towards a UML based
approach to role engineering". In Proceedings of the Fourth
ACM Workshop on Role-Based Access Control (Fairfax,
Virginia, United States, October 28 - 29, 1999). RBAC '99.
ACM, New York, NY, 135-143. DOI=
http://doi.acm.org/10.1145/319171.319184

[5] Ray, I., Li, N., France, R., and Kim, D. 2004. "Using
UML to visualize role-based access control constraints". In
Proceedings of the Ninth ACM Symposium on Access
Control Models and Technologies, Yorktown Heights, New
York, USA, June 02 - 04, 2004.

[6] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.

http://doi.acm.org/10.1145/319171.319184

Chandramouli. "Proposed NIST Standard for Role-Based
Access Control". ACM Transactions on Information and
Systems Security, 4(3), Aug. 2001.

[7] Lijun Yu, Robert France, Indrakshi Ray, Kevin Lano, "A
Light-weight Static Approach to Analyzing UML Behavioral
Properties", Proceedings of the International Conference on
Engineering Complex Computer Systems (ICECCS 2007),
Auckland, New Zealand, July 2007.

[8] Lijun Yu, Robert France, Indrakshi Ray, "Scenario-based
Static Analysis of UML Class Models", Proceedings of
ACM/IEEE 11th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2008),
Toulouse, France, Sep. 28-Oct.3, 2008.

[9] T. Dinh-Trong, N. Kawane, S. Ghosh, R. B. France, and
A. A. Andrews. "A Tool-Supported Approach to Testing
UML Design Models", Proceedings of the 10th IEEE
International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society Press, pp. 519-
528, Shanghai, China, June 16-20, 2005.

[10] Gogolla, M., Büttner, F., and Richters, M. 2007. "USE:
A UML-based specification environment for validating UML
and OCL". Sci. Comput. Program. 69, 1-3, Dec. 2007.

[11] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, S.
Moldovan, "Ensuring UML Models Consistency Using the
OCL Environment", Electronic Notes in Theoretical
Computer Science, Volume 102, Nov. 2004, pages 99-110.

[12] Sohr, K., Drouineaud, M., Ahn, G., and Gogolla, M.
2008. "Analyzing and Managing Role-Based Access Control
Policies". IEEE Trans. on Knowl. and Data Eng. 20, 7 (Jul.
2008), 924-939. DOI=
http://dx.doi.org/10.1109/TKDE.2008.28

[13] Zao, J., Wee, H., Chu, J., Jackson, D.: RBAC Schema
Verification Using Lightweight Formal Model and Constraint
Analysis. Submitted to SACMAT 2003,
http://alloy.mit.edu/contributions/RBAC.pdf

[14] D. Jackson, "Alloy: a lightweight object modeling
notation", ACM Transactions on Software Engineering and
Methodology, Volume 11, Issue 2, April 2002, pages 256-
290.

[15] Eunjee Song, Raghu Reddy, Robert France, Indrakshi
Ray, Geri Georg, Roger Alexander, "Verifiable Composition
of Access Control Features and Applications", Proceedings
of the 10th ACM Symposium on Access Control Models and
Technologies (SACMAT 2005), Scandic Hasselbacken,
Stockholm, June 1-3, 2005.

[16] Eunjee Song, Robert France, Indrakshi Ray, and Hanil
Kim, "Checking Policy Enforcement in an Access Control
Aspect Model", Proceedings of the International Conference
on Convergence Technology and Information Convergence
(CTIC) '07, Anaheim, California, November 2007.

[17] Nan Zhang, Mark D. Ryan and Dimitar Guelev,
"Evaluating Access Control Policies Through Model
Checking". Eighth Information Security Conference (ISC'05).
Lecture Notes in Computer Science volume 3650, pages 446-
460, Springer-Verlag, 2005.

[18] Schaad, A., Lotz, V., and Sohr, K. 2006. "A model-
checking approach to analysing organisational controls in a
loan origination process". In Proceedings of the Eleventh
ACM Symposium on Access Control Models and
Technologies (Lake Tahoe, California, USA, June 07 - 09,
2006). SACMAT '06. ACM, New York, NY, 139-149. DOI=
http://doi.acm.org/10.1145/1133058.1133079

[19] Jim Davies and Jim Woodcock (1996). Using Z:
Specification, Refinement and Proof. Prentice Hall
International Series in Computer Science. ISBN 0-13-
948472-8. http://www.usingz.com/text/online/

[20] Ermel, C., Holscher, K., Kuske, S., and Ziemann, P.
2005. "Animated Simulation of Integrated UML Behavioral
Models Based on Graph Transformation". In Proceedings of
the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (September 20 - 24, 2005).
VLHCC. IEEE Computer Society, Washington, DC, 125-
133. DOI= http://dx.doi.org/10.1109/VLHCC.2005.18

[21] Patricio Letelier Torres, Pedro Sánchez, "Validation of
UML Classes through Animation", In Proceedings of the
International Workshop on Conceptual Modeling Quality,
IWCMQ'02, pp. 61-73.

[22] Oliver, I. 1999. "Validation of Object Oriented Models
Using Animation". In Proceedings of the Workshop on
Object-Oriented Technology (June 14 - 18, 1999). A. M.
Moreira and S. Demeyer, Eds. Lecture Notes In Computer
Science, vol. 1743. Springer-Verlag, London, 375-376.

[23] Lilius, J.; Paltor, I.P., "vUML: a tool for verifying UML
models", Automated Software Engineering, 1999. 14th IEEE
International Conference on, Oct 1999 Page(s):255 – 258.

[24] Jürjens, J. 2002. "UMLsec: Extending UML for Secure
Systems Development". In Proceedings of the 5th
international Conference on the Unified Modeling Language
(September 30 - October 04, 2002).

http://dx.doi.org/10.1109/VLHCC.2005.18
http://www.usingz.com/text/online/
http://en.wikipedia.org/wiki/Special:BookSources/0139484728
http://en.wikipedia.org/wiki/Special:BookSources/0139484728
http://www.usingz.com/text/online/
http://www.usingz.com/text/online/
http://doi.acm.org/10.1145/1133058.1133079
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/05-isc.pdf
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/05-isc.pdf
http://alloy.mit.edu/contributions/RBAC.pdf
http://dx.doi.org/10.1109/TKDE.2008.28
http://ftp.informatik.uni-trier.de/~ley/db/journals/tcs/entcs.html
http://ftp.informatik.uni-trier.de/~ley/db/journals/tcs/entcs.html
http://ftp.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Moldovan:Sorin.html
http://ftp.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Moldovan:Sorin.html
http://ftp.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Botiza:Cristian.html
http://ftp.informatik.uni-trier.de/~ley/db/indices/a-tree/c/C=acirc=rcu:Adrian.html
http://ftp.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pasca:Mihai.html
http://ftp.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chiorean:Dan.html

	1. Introduction
	2. RBAC
	2.1. RBAC design class model
	2.2. RBAC constraints

	3. Scenario-based UML design analysis technique
	4. A policy analysis method
	4.1. Scenario generation
	4.2. Analyze RBAC constraints

	5. Related work
	6. Conclusions
	Acknowledgements
	References

