
A Rigorous Approach to Uncovering Security Policy Violations in UML 
Designs

Lijun Yu, Robert France, Indrakshi Ray, Sudipto Ghosh
Colorado State University, USA

{lijun,france,iray,ghosh}@cs.colostate.edu

Abstract

There  is  a  need  for  rigorous  analysis  techniques  
that  developers  can  use  to  uncover  security  policy  
violations in their UML designs. There are a few UML 
analysis tools that can be used for this purpose,  but  
they either rely on theorem-proving mechanisms that  
require  sophisticated  mathematical  skill  to  use  
effectively,  or  they  are  based  on  model-checking  
techniques that require a “closed-world” view of the  
system (i.e., a system in which there are no inputs from  
external  sources).  In  this  paper  we  show  how  a  
lightweight,  scenario-based  UML  design  analysis  
approach  we  developed  can  be  used  to  rigorously 
analyze  a  UML  design  to  uncover  security  policy 
violations. 

In the method, a UML design class model, in which  
security  policies  and  operation  specifications  are  
expressed in the Object Constraint Language (OCL),  
is  analyzed  against  a  set  of  scenarios  describing 
behaviors  that  adhere  to  and  that  violate  security  
policies.  The  method  includes  a  technique  for  
generating  scenarios.  We  illustrate  how  the  method  
can  be  applied  through  an  example  involving  role-
based access control policies.

1. Introduction

Designers of software systems that are required to 
enforce or adhere to security policies must be able to 
analyze their designs to uncover policy violations. To 
support rigorous analysis, designs must be expressed in 
analyzable forms. Formal modeling languages such as 
Z [19] and Alloy [14] can be used to create analyzable 
designs,  but  these  languages  are  not  widely  used  in 
industry. The Unified Modeling Language (UML) [1] 
is  an  industrially  popular  standard  object-oriented 
modeling language that includes a language, called the 
Object Constraint Language (OCL) [2], for expressing 
operation  specifications  and  constraints  on  system 
states.  Currently,  there  are  very  few  tools  for 
rigorously analyzing UML designs. Some tools rely on 

sophisticated  theorem-proving  capabilities  (e.g.,  see 
[24]), while others utilize model-checkers that require 
a closed-world view of the software,  in which inputs 
from external sources (e.g.,  operation parameters) are 
not allowed (e.g., see [23]).

In this paper, we present a lightweight method for 
rigorously  analyzing  a  UML  design  model.  The 
method is lightweight, in that it does not guarantee that 
all possible violations will be found. It is rigorous, in 
that it will uncover all violations within the scope of a 
set of scenarios. Here, a scenario describes a sequence 
of state transitions, where a transition is the result of a 
completed  operation  execution.  The  method  uses  a 
scenario-based analysis technique that we developed to 
determine whether a scenario is allowed or disallowed 
in a UML design class model that includes operation 
specifications expressed in the OCL [7][8].

A verifier using the method first produces a set of 
scenarios  describing  legal  and  illegal  behaviors:  A 
legal  scenario  describes  behavior  that  adheres  to 
security  policies,  while  an  illegal  scenario  describes 
behavior that violates security policies. 

After the scenarios are produced,  the verifier then 
uses  the  scenario-based  analysis  technique  to  check 
whether the legal scenarios are allowed, and the illegal 
scenarios are not permitted in the design model. The 
design model under analysis is a UML class model in 
which  security  policies  are  modeled  as  invariants 
expressed  in  the  OCL.  The  analysis  is  essentially  a 
consistency check between the behaviors defined in the 
scenarios  and  the  behaviors  described  in  the  UML 
class model. Identified discrepancies can be the result 
of defects in the class model or in the scenarios. 

A  key  challenge  is  providing  the  verifier  with 
automated assistance for producing scenarios. A naïve 
syntax-based  generation  approach  can  produce 
scenarios  by  considering  all  possible  sequences  of 
operation calls.  The verifier  will  then be required to 
manually  label  each  generated  scenario  as  legal  or 
illegal.  For  industrial-strength  systems,  this  naïve 
approach  will  generate  too  many  scenarios  to  make 
manual labeling of scenarios infeasible.  In  this paper 



we  present  a  scenario  generation  technique  that 
improves  upon  the  naïve  approach  by  taking  into 
consideration  domain-specific  knowledge  about 
sequences of operation calls that reflect typical usages 
and  sequences  that  should  not  be  allowed.  This 
knowledge  is  encoded  in  operation  call  sequence 
patterns  that  are  used  by  the  verifier  to  generate 
scenarios.

The method is illustrated using a design model of an 
application  that  uses  Role-Based  Access  Control 
(RBAC) [6] to manage access to protected resources. 
UML has been used to specify access control policies. 
Epstein and Sandhu study the feasibility of using UML 
to support  role  engineering  [4].  Ahn and Shin study 
how to express RBAC constraints using OCL [3]. In 
earlier  work,  we  show  how  violations  of  RBAC 
policies  such  as  separation  of  duty,  prerequisite  and 
cardinality  constraints  can  be  modeled  using  anti-
patterns of object configurations [5]. None of the above 
approaches offer a method for systematically analyzing 
UML designs to uncover policy violations.

The  work  described  in  this  paper  extends  our 
previous work by providing a systematic approach to 
producing scenarios used in the analysis. Furthermore, 
we  illustrate  how  the  approach  can  be  used  to 
systematically  analyze  a  design  to  uncover  policy 
violations.

The remainder of the paper is organized as follows. 
In  Section  2 we provide  background  information on 
RBAC and we present a UML design class model that 
includes OCL invariants that express RBAC policies. 
In Section 3 we provide an overview of the scenario-
based UML design analysis technique we developed in 
previous work. In Section 4 we describe the analysis 
method and illustrate its use. In Section 5 we discuss 
related  work  in  verification  and  analysis  of  access 
control  policies,  and  in  Section  6  we  conclude  the 
paper.

2. RBAC

RBAC is an access  control model used to protect 
sensitive  information  resources  [6].  In  core  RBAC, 
permissions are granted to roles, and roles are assigned 
to users. The assigned roles that a user activates in a 
session determine the resources that the user can access 
in  the  session.  In  hierarchical  RBAC,  roles  are 
organized into hierarchies of junior and senior roles. A 
senior role dominates its junior roles, that is, a senior 
role inherits all the permissions of its junior roles, and 
a junior role inherits all the assigned users of the senior 
role. Separation of duty (SOD) constraints are added in 
the constrained form of RBAC. There are two forms of 
SOD  constraints:  A  static  separation  of  duty  (SSD) 

constraint  prohibits  the  assignment  of  conflict  of 
interest  roles  to  the  same  user,  and  a  dynamic 
separation  of  duty  (DSD)  constraint  prohibits  the 
simultaneous activation of conflict of interest roles by 
the same user. 

In this section we present a RBAC policy model in 
two parts: in the first part we give a UML design class 
model that describes RBAC classes and operations, in 
the second part  we describe RBAC constraints using 
OCL invariants. 

2.1. RBAC design class model

+AssignRole(in r : Role)
+DeassignRole(in r : Role)
+CreateSession() : Session
+DeleteSession() : Session
+GetAuthorizedRoles() : Set of Role
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+AddSeniorRole(in r : Role)
+DeleteSeniorRole(in r : Role)
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Figure 1. Hierarchical RBAC design class 
model

In the hierarchical RBAC design class model shown 
in  Fig.  1,  the  User,  Role and  Session classes  model 
users,  roles  and  sessions  entities  in  RBAC.  The 
Permission class describes RBAC permissions in terms 
of  operations  that  can  be  performed  on  targets.  The 
assignedRoles association  end  determines  the  set  of 
roles  directly  assigned  to  a  user.  The  operation 
GetAuthorizedRoles()  returns  all  roles  directly  and 
indirectly  assigned  to  a  user.  The  activeRoles 
association  end  determines  the  set  of  roles  directly 
activated  in  a  session,  and  the  operation 
GetActiveRoles() returns all roles directly activated in a 
session. The association end permissions is the set of 
all permissions directly associated with a role, and the 
operation  GetAuthorizedPermissions()  returns  all 
permissions  directly  and  indirectly  associated  with a 
role. The seniorRoles and juniorRoles association ends 
define the role hierarchy relationships. The  SSDRoles 



association  end  defines  the  set  of  role  pairs  that  are 
constrained  by  SSD.  The  DSDRoles association  end 
defines  the  set  of  role  pairs  that  are  constrained  by 
DSD. 

Operations  are  specified  using  the  OCL.  For 
example, the operation GetAuthorizedRoles() in User is 
defined using a query operation  GetDominatedRoles() 
as follows: 

// Get set of authorized roles to the 
user.
context User::GetAuthorizedRoles()
:Set(Role) 
post: result = 
self.assignedRoles.GetDominatedRoles()->
asSet()

// Get set of dominated roles to the 
role. 
context Role::GetDominatedRoles():
Set(Role) 
body: 
let oneStep:Set(Role)= Set{self} in
result = if oneStep.juniorRoles-
>isEmpty() then 
   oneStep 
else                
   oneStep->union(oneStep.juniorRoles
      .GetDominatedRoles())->asSet() 
endif

The  operations  that  are  involved  in  the  analysis 
presented in Section 3 are given below.

context User::AssignRole(r:Role) 
// Assign a role to the user. 
pre: 
not self.GetAuthorizedRoles()-
>includes(r) 
post: self.GetAuthorizedRoles()-
>includes(r) 

context Session::ActivateRole(r:Role) 
// Activate a role in the session. 
pre: 
not self.GetActiveRoles()->includes(r) 
post: self.GetActiveRoles()->includes(r) 

context 
Session::GetActivateRoles:Set(Role) 
// Return activated roles in the session. 
pre: true
post: result = self.activeRole

context Role::AddSeniorRole(r:Role) 
// Add a senior role to current role. 
pre: true 
post: self.seniorRoles->includes(r) and 
r.juniorRoles->includes(self)

context Role::CheckAccess(t:Target, 
o:Operation):Boolean 
// Query operation that checks 
permissions // of all active roles to see 
whether there 
// is a match for the target and 
operation. 
pre true 
post: result = self.GetActiveRoles().
GetAuthorizedPermissions()->exists (p | 
p.target = t and p.operation = o)

2.2. RBAC constraints

2.1.1.  Role  activation  constraint. A  fundamental 
constraint  in  role  activation  is  that  a  role  can  be 
activated by a user only if it has been assigned to the 
user. We express this constraint as an OCL invariant 
named RBAC_Policy_1: 

RBAC_Policy_1: A user can only activate roles that are 
assigned to him. 
context Session 
inv RBAC_Policy_1: 
self.user.authorizedRoles->
includesAll(self.activeRoles)

2.1.2.  Role  hierarchy constraints. According  to  the 
definition  of  role  hierarchy  in  the  NIST  RBAC 
standard  [6], a senior role dominating its junior roles 
implies that the senior role inherits all the permissions 
of  its  junior  roles,  and  a  junior  role  inherits  all  the 
assigned  users  of  the  senior  role.  RBAC_Policy_2 
expresses this constraint:

RBAC_Policy_2: A senior role inherits all permissions from 
junior roles, and a junior role inherits all the users of its 
senior roles. 
context Role
inv RBAC_Policy_2: 
seniorRoles->forAll(s | 
s.authorizedPermissions-> 
intersection(self.authorizedPermissions) 
= self.authorizedPermissions) and
self.seniorRoles->forAll(s | 
s.authorizedUsers-> 
intersection(self.authorizedUsers) = 
s.authorizedUsers)

The role hierarchy is  a  partial  order  on roles  and 
there should not be any cycles  in the role hierarchy. 
We  use  an  OCL  query  operation  on  roles  called 
Dominates in  the  policy  statement.  The  expression 
r1.Dominates(r2),  where  r1  and r2  are  roles,  returns 
true if r2 is a descendant of r1 in a senior-junior role 
structure.  The  constraint  is  expressed  by 
RBAC_Policy_3:



context Role::Dominates(r:Role):Boolean 
pre true 
post: 
if (self.juniorRoles->includes(r)) then 
result = true 
else 
result = self.juniorRoles->exists(j | 
j.Dominates(r)) 
endif 

RBAC_Policy_3: There must be no cycles in senior-junior  
role relationships. 
context Role
inv RBAC_Policy_3: 
not self.Dominates(self)

2.1.3.  Separation  of  duty  constraints. 
RBAC_Policy_4 expresses the static separation of duty 
constraint, and RBAC_Policy_5 expresses the dynamic 
separation of duty constraint:

RBAC_Policy_4: Conflict of interest roles cannot be 
assigned to the same user (SSD).
context User
inv RBAC_Policy_4: 
not self.GetAuthorizedRoles()->exists(r1, 
r2 | r1.SSDRoles->includes(r2))

RBAC_Policy_5: Conflict of interest roles can not be  
activated by the same user simultaneously (DSD).
context User
inv RBAC_Policy_5: 
not self.sessions.GetActiveRoles()->
exists(r1, r2 | r1.DSDRoles->
includes(r2))

3.  Scenario-based UML  design  analysis 
technique

A  UML design  class  model  can  be  viewed  as  a 
characterization of valid system states, where a system 
state  is  a  configuration of  objects.  A system state  is 
called a snapshot in this paper. Tools such as USE [10] 
and  OCLE  [11]  can  be  used  to  check  whether  a 
snapshot is valid with respect to a UML class model.

The scenario-based UML design analysis technique 
extends the applicability of these tools to behavior. The 
technique  is  used  to  determine  whether  behavior 
defined  in  a  scenario  is  allowed  by  a  UML  design 
model  [7][8].  A  verifier  charged  with  validating  a 
UML  design  model  produces  a  set  of  scenarios 
describing  legal  and  illegal  behaviors,  and  then  uses 
the scenario-based analysis technique to check whether 
the behaviors described in the scenarios are allowed or 
not in the UML design class model.

The  UML design  class  models  against  which  the 
scenarios  are  evaluated  consist  of  operations 

specifications  expressed  in  the  OCL.  A  scenario 
describes  a  sequence  of  snapshot  transitions,  where 
each  transition  is  triggered  by  an  operation  call  and 
describes  the net  effect  of  the operation’s  execution. 
More precisely, a snapshot transition consists of (1) the 
name  and  parameter  values  of  the  operation  that 
triggers the transition, (2) a before-snapshot describing 
the state of the system before the operation is executed, 
and  (3)  an  after-snapshot  describing  the  state  of  the 
system after the operation has executed.

In  order  to  use  tools  such  as  USE and  OCLE to 
support  scenario-based  analysis  we  developed  an 
approach  for  generating  a  class  model  that 
characterizes  valid  snapshot  transitions  from a  UML 
class model. The generated class model of behavior is 
called  a  Snapshot  Model.  Developers  can  use  tools 
such  as  USE  and  OCLE  to  check  that  a  scenario 
(sequence  of  snapshot  transitions),  satisfies  the 
constraints expressed in a Snapshot Model. 

+CreateSession() : Session
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+CheckAccess(in op : Operation, in t : Target) : Boolean

Session

+CheckAccess(in op : Operation, in t : Target) : Boolean

Role
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RBAC design class model

RBAC snapshot model

Figure 2. Partial RBAC Class Model and its 
Snapshot Model

The  Snapshot  Model  is  a  key  artifact  in  the 
approach.  In  previous  work  we  described  how  a 
Snapshot Model can be mechanically generated from a 
UML  design  class  model  [8].  The  Snapshot  Model 
generated  from  part  of  the  RBAC  design  model  is 
shown in Figure 2.

The  Snapshot  Model  consists  of  a  structured 



Snapshot class  that  characterizes  snapshots  (object 
configurations)  and  a  Transition class  that  relates 
before and after snapshots for an operation. The three 
specializations  of  the  Transition class  characterize 
transitions triggered by the three operations shown in 
the partial RBAC design class diagram shown above 
the  Snapshot  Model.  For  example,  the  class 
User_CreateSession_Transition characterizes 
transitions  triggered  by  invocations  of  the 
CreateSession() operation defined in the Session class. 
The  attributes  in  the  Transition subclasses  represent 
scalar  operation  parameters  and  references  to  before 
and  after  states  of  the  objects  accessed  by  the 
operations.  For  example,  the  attribute  userPost is  a 
reference to the start state of the User object created in 
an invocation of  CreateSession(). The created session 
object is stored in  ret and there is no before state for 
the session object that is created during the execution 
of an operation.

Operation  specifications  are  transformed  to 
invariants  on the  Snapshot  Model.  This  algorithm is 
described in our previously published paper [8].

A  scenario  is  described  by  a  UML  sequence 
diagram annotated with descriptions of the effects of 
each operation invoked in the scenario. We use a UML 
model animator called UMLAnT to produce snapshot 
transitions from a sequence model.

4. A policy analysis method

In this section we describe how the scenario-based 
technique can be used as the basis for a rigorous policy 
analysis method. A verifier uses the method to produce 
a  set  of  scenarios  describing  legal  and  illegal 
behaviors,  that is, behaviors that conform to and that 
violate  the  policies,  respectively.  The  scenarios  are 
then  evaluated  against  a  Snapshot  Model  generated 
from  an  RBAC design  model  in  which  policies  are 
expressed as invariants. 

The method is comprised of two steps: 
(1) Scenario  Generation:  In  this  step,  the  verifier 

produces scenarios, that is, sequences of snapshot 
transitions.  Each  scenario  must  be  labeled  as 
illegal or legal before proceeding to the next step.

(2) Analysis.  In  this  step  the  verifier  applies  the 
scenario-based UML design analysis technique (as 
described  in  Section  3)  to  check  whether  the 
scenarios  are  accepted  or  rejected  by  the  UML 
design  model.  If  legal  scenarios  are  rejected  or 
illegal scenarios are accepted by the UML design 
model,  it  means  that  the  design  model,  the 
scenarios, or both are problematic. 

In  the  first  step,  the  verifier  produces  sequence 

diagrams that  are animated to produce scenarios  that 
consist  of  sequences  of  snapshot  transitions.  These 
sequence  diagrams  must  refer  to  the  class  elements 
defined in the UML class model, but the behaviors of 
the  operations  invoked  in  the  scenarios  are  defined 
independently  by  the  verifier.  The  scenarios  thus 
reflect  the  verifier’s  understanding  of  how  the 
operations  are  to  behave  in  a  legal  scenario  or 
"misbehave" in  an  illegal  scenario.  The  verifier 
describes  behavior using a UML action language  we 
developed called the Java-like Action Language (JAL) 
[9].  The sequence diagrams are animated to produce 
scenarios. A model animator that we developed, called 
UMLAnT [9], can be used to generate scenarios. 

In  the  remainder  of  this  section  we  describe  the 
scenario generation technique, and we show how the 
policy analysis method can be used to analyze access 
control policy constraints in the RBAC design model. 
The example used in this section is intentionally small 
to better focus the description on the method.

4.1. Scenario generation

The scenario generation technique we developed is 
based upon a naïve scenario generation algorithm. The 
naïve algorithm generates too many scenarios, and thus 
we extend it by allowing the verifier to target specific 
families of scenarios by specifying patterns. 

The  naïve  scenario  generation  algorithm does  the 
following: (1) builds an operation invocation tree from 
a set of operations and parameter values, (2) traverses 
the  operation  invocation  tree  to  produce  all  possible 
sequences  of operation invocations,  and (3) animates 
each  sequence  of  operation  invocations  to produce  a 
sequence  of  snapshot  transitions.  The  verifier  must 
then  label  each  of  the  generated  snapshot  transition 
sequences as legal or illegal.

Each node in an operation invocation tree represents 
a  particular  invocation  of  a  system  operation  on  an 
object.  The invocation is  referred to as an  operation 
instance. Each node contains an object identifier (the 
receiver of the operation call), an operation name and a 
value for each operation parameter. The root of the tree 
represents the system initialization point and it contains 
information about the start state. Child nodes represent 
operation  invocations  that  can  occur  after  the 
invocation represented by the parent node. A scenario 
is a path that starts at the root and ends at any node in 
the tree.

To reduce the number of scenarios produced by the 
above algorithm, the extended technique we developed 
allows a verifier to (1) limit the depth of the tree, (2) 
limit the number of objects of a class that can be in a 
start state, and (3) explicitly define a small domain for 



each  input  parameter  of  the  operation.  For  example, 
given  an  operation  User::AssignRole(r:Role),  the 
verifier  can restrict  the  User domain size  to  2  users 
objects,  and  define  a  small  domain  for  the  Role 
parameter  as  follows:  Domain(Role)  =  {clerk,  
seniorClerk}.

The extended generation technique allows a verifier 
to specify patterns of operation sequences that restrict 
(1)  the  operation  calls  that  are  used  to  build  the 
operation invocation tree and (2)  the order  in which 
operations  can  be invoked.  These  patterns  are called 
operation invocation patterns. An operation invocation 
pattern is a characterization of particular sequences of 
operation  invocations  that  the  verifier  feels  typifies 
good  and  problematic  usages  of  the  system.  The 
patterns are manually created using the best available 
domain  expertise  and  experience  related  to  the 
sequences  of  operations  that  are  likely  to  uncover 
policy violations. The patterns are described in terms 
of constraints on initial states and on the sequencing of 
operation  calls.  The  use of  these  patterns  allows  the 
verifier to focus the analysis on particular sequences of 
invocation calls. 

For  example,  a  verifier  can  create  the  following 
pattern of operation calls for analyzing role activation 
behavior:
Initial State Constraint
u in Domain(User) // There is at least one user
#Role>3 //At least 4 roles are in the start state
Call Pattern
u.CreateSession(.)return(s:Session){1,2}  
u.AssignRole(.){2,4}
u->s.ActivateRole(.){1..4}
The first part of the pattern description constrains the 
initial state. In this case the initial state must consist of 
a User object, u, and at least four roles. 

The  second part  is  the  pattern  of  operation  calls. 
The expression  caller->callee.Op() (e.g.,  see last line 
of the above Call Pattern) identifies the sender (caller) 
and receiver (callee) of an operation call message. If 
the caller is omitted then it is assumed that the message 
is  coming  from  an  external  actor.  The  analysis  we 
perform  using  the  Snapshot  Model  does  not  require 
that  the  sender  of  an  operation  call  be  known;  this 
information  is  currently  used  only  to  visualize  the 
operation sequence as a sequence diagram that shows 
both senders and receivers of messages.

The  pattern  describes  the  following  sequences  of 
operation calls:
1. Start  with  1  or  2  calls  to  the  CreateSession() 

operation for  a user,  u using any parameters  (as 
indicated  by the  "." in  the  parameter  list  of  the 
operation), and each successfully returning a new 
session, s, (indicated by return(s:Session)),

2. followed  by  2  to  4  operation  calls  to  the 
AssignRole() for user u, and

3. ending with 1 to  4  calls  made by the user  u to 
activate roles in the sessions previously created by 
calls to CreateSession(). 

In order to generate snapshot transitions, a verifier 
must provide descriptions of operation behavior to the 
snapshot  generation  algorithm.  The  verifier  uses  a 
UML  action  language  called  the  Java-like  Action 
Language (JAL) to describe what the verifier considers 
legal  and  illegal  effects  of  operations [9].  JAL 
descriptions  can  be  interpreted  by  UMLAnT  [9],  an 
open-source Eclipse plugin developed by our research 
group. UMLAnT supports executing JAL descriptions 
of  behavior  and  generating  snapshot  transition 
sequences.

For example, a verifier can define the legal effects 
of the operation User::AssignRole as follows:

JAL_User_AssignRole
if (!this.userRoles._exists(role))
{
    this.userRoles._add(role);
}

The  verifier  creates  the  JAL  descriptions  using 
information  provided  in  requirements  use  cases  and 
misuse cases. In the case of access control policies, the 
misuse cases can be based on the access control anti-
patterns identified in our previous work [5].



Figure 3. Scenario generation algorithm 

Snapshot transitions are generated by traversing the 
operation  invocation  tree  and  interpreting  the 
associated  JAL  descriptions  of  behavior  using 
UMLAnT.  The  verifier  then  needs  to  determine 
whether  the  generated  scenarios  describe  legal  or 
illegal behaviors.

The scenario  generation  algorithm is  described  in 
Fig. 3. 

4.2. Analyze RBAC constraints

In this sub-section we show how some of the RBAC 
constraints given in Section 2 can be analyzed using 
the method.

4.2.1. Analyze role activation constraint. To analyze 
the role activation constraint (RBAC_Policy_1), we use 
the following operation invocation pattern:
Initial State Constraint
Domain(User) = {Bob}
Domain(Role)={clerk, seniorClerk}
Call Pattern
[no Bob.AssignRole(r)]{0..2}
Bob.CreateSession(.)return(s:Session)  Bob-
>s.ActivateRole(r){1..2}.
The  expression  [no  Bob.AssignRole(r)]  is  used  to 

match  all  operation  calls  except  calls  of  the  form 
Bob.AssignRole(r). 

The  above  pattern  describes  sequences  of 
operations  which end with 1 or 2 invocations of the 
ActivateRole() operation,  and  start  with  0  to  2 
operation  invocations  that  do  not  include  operation 
calls that assign the activated roles to the user Bob. 

The verifier describes the effect of the ActivateRole 
operation  using  JAL  –  The  JAL  description  simply 
activates the role. Scenarios generated from this pattern 
would allow roles to be activated even though they are 
not assigned to the user.  For this reason, the verifier 
knows that the pattern would produce illegal scenarios.

An example of an illegal scenario generated from 
the  above  pattern  is  shown  in  Fig.  4.  The  scenario 
starts  from  an  initial  system  state  with  one  user 
instance  Bob and  one  Role instance  clerk.  The  user 
creates  one session and  activates  the  clerk role.  The 
activation  succeeds  and  clerk is  added  to  the 
activeRoles association of the session.

<<illegal>>

Bob:User

session:Session

ActivateRole(clerk)

CreateSession

session

clerk:Role

create

Initial state:
Bob is instance of User , clerk is instance of Role.

Figure 4. Role activation analysis scenario

The RBAC design model should reject  the illegal 
behavior described by the scenario. Analysis with USE 
revealed  that  the  RBAC  design  model  is  consistent 
with the scenario. The defect in the design class model 
is  that  the  operation  Session::ActivateRole activates 
any role that is not activated. The pre-condition should 
check whether the role is assigned or not. 

4.2.2.  Analyze  separation  of  duty  constraints. We 
use the following operation invocation pattern to check 
enforcement of the SOD constraints:
Initial State Constraint
Domain(User) = Bob
cashier in Domain(Role)

Scenario generation algorithm 
Inputs. UML  design  class  model,  maximum 
number  of  operations  Max,  parameter  domain 
definitions, operation JAL definitions, tree node r. 
Operation invocation patterns.
Outputs. Set of scenarios.
Algorithm steps
For each operation call do: 
If operations from root to current tree node r and 
op match an operation invocation pattern:
1. Create one tree node n and add it as child of r.

2. Store  information  about  the  operation  call 
(e.g.,  operation  name,  parameters,  receiving 
object identifier) in tree node n.

3. Execute  desired  JAL  description  associated 
with the operation using the start state stored 
in r to get the next system state. Store the next 
system state in tree node n.

4. Print the sequence of operation calls from the 
tree root to tree node n as an output scenario.

5. If Max > 1

a) Call  the  scenario  generation  algorithm 
recursively with tree node n and Max - 
1 as maximum number of operations.



accountant in Domain(Role)
cashier in accountant.SSDRoles // the roles conflict
Call Pattern
[
[.]*
Bob.AssignRole(cashier)
Bob.AssignRole(accountant)
]{1}
[
Bob.CreateSession(.)return(s:Session)
s.ActivateRole(r){2..4} where( r = accountant and r = 
cashier)
]{0..1}
The expression [.] matches any operation call and "*" 
represents  the  multiplicity  "0  or  more".  The  where 
clause stipulates that at least one of the Activate() calls 
must activate the  accountant role, and at least one of 
the Activate() calls must activate the cashier role. 

<<illegal>>

accountant:RoleBob:User

AssignRole(accountant)

cashier:Role

Initial state:
Bob is instance of User , accountant and cashier are conflict of interest roles.

AssignRole(cashier)

Figure 5. Static separation of duty analysis 
scenario

<<illegal>>

accountant:RoleBob:User

session:Session

AssignRole(accountant)

CreateSession

session

cashier :Role

create

Initial state:
Bob is instance of User, accountant and cashier are conflict of interest roles.

AssignRole(cashier )

ActivateRole(cashier)

ActivateRole(accountant)

Figure 6. Dynamic separation of duty analysis 
scenario

The illegal  scenario  shown in Fig.  5  is  generated 
from the pattern. It  starts in a state consisting of two 
conflict of interest roles, cashier and accountant, and a 
user  Bob.  Bob is assigned  cashier role first and then 
assigned the accountant role. The scenario violates the 
static  separation  of  duty  constraint  defined  as 
RBAC_Policy_4 and thus it should be rejected by the 
RBAC  design.  In  the  design  model,  the 
User::AssignRole operation specified in Section 2 only 
checks whether the role is assigned to the user or not 
before it assigns the role, so that the illegal scenario is 
consistent with the RBAC design. To enforce the static 
separation of duty constraint in an RBAC design, the 
operation  should  also  check  whether  the  role  to  be 
assigned is in conflict of interest with roles that have 
been assigned to the user. 

The generated illegal scenario shown in Fig. 6 was 
used  to  analyze  the  dynamic  separation  of  duty 
constraint. In the scenario the user Bob is assigned two 
conflict  of interest  roles  cashier and  accountant,  and 
Bob activates  both  roles  in  one  session.  Again,  the 
Session::ActivateRole() operation does not check that 
the role to be activated is in a conflict of interest with a 
role in a session created by the user. 

5. Related work

Sohr et. al. [12] propose both formal and practical 
approaches  to  analyze  RBAC  policies.  The  formal 
approach verifies RBAC policy specifications in first-
order  LTL  (Linear  Temporal  Logic)  via  a  theorem 
prover  Isabelle;  The  practical  approach  analyzes 
RBAC policies specified in UML/OCL via USE tool 
[10]  which  automatically  generates  snapshots  to 
validate  policy  invariants.  The  formal  analysis 
approach  with  theorem  prover  guarantees  reliability 
but it needs human intervention. The practical analysis 
approach based on automatic snapshot generation may 
help detect conflicting or missing constraints but it is 
not  guaranteed  because  USE cannot  generate  all  the 
snapshots.  In  addition,  the  approach  focuses  the 
analysis on OCL invariants while operation constraints 
in the policy design model are not analyzed.

Model  checking  techniques  are  used  to  check 
properties  of states in state spaces.  Zhang et  al.  [17] 
present a model checking algorithm and tool to assess 
access control specifications in propositional logic. The 
assessment  checks  whether  the  access  control  policy 
gives  legitimate users enough permissions as well  as 
whether  it  prevents  intrusions.  Schaad  et  al.  [18] 
analyze separation of duty properties in ERP systems 
where delegation and revocation of workflow tasks and 
rights  is  frequent.  Model  checking  techniques  suffer 



from state-space explosion problems. Efforts to reduce 
the time and space complexity include simplifying the 
model to an abstract  one,  partial  order reduction and 
symbolic model checking which represents states and 
state transitions with Boolean formulas, however so far 
performance  is  still  major  issue  of  model  checking. 
Alloy  [14],  a  light-weight  formal  modeling  notation 
and  constraint  analyzer,  models  structural  aspects  of 
systems in Z-like specifications and analyzes claims in 
first-order  logic  by  simulating  an  example 
configuration or finding counter-examples. Zao et. al. 
[13] utilize Alloy to verify algebraic characteristics of 
RBAC schema. However, their work analyzes RBAC 
schema only instead of the whole policy design model, 
and Alloy analyzer is not efficient for analyzing large 
models as it has to reduce the search space of objects 
by  limiting  the  number  of  objects  in  the  logic 
expressions being analyzed. Neither Alloy nor model 
checking  technique  can  be  adapted  to  automatically 
generate scenarios.

UML model  animation  and  simulation  techniques 
execute  UML design  models  and  generate  semantic 
object models by interpreting OCL in the UML design 
model or defining and applying graph transformation 
rules  [20][21][22].  We  create  similar  semantic 
snapshot  models,  but  we  do  not  execute  the  UML 
design  model,  instead  we  generate  these  snapshot 
models from scenarios created from the perspective of 
verifiers.  Compared  with  existing  UML  model 
animation  and  simulation  work,  our  work  is  more 
rigorous and we also automatically generate legal and 
illegal scenarios for analysis.

Song et. al. [15][16] verify enforcement of access 
control  policies  in  the composition of  access  control 
aspect  model  and  application  model  by  manually 
discharging proof obligations.  The limitation of their 
work is that the proof is not generated automatically.

Ray et. al [5] analyzes access control constraints in 
the application model by modeling violations of access 
control  constraints  as  UML  object  diagrams  and 
statically  finding  matches  of  such  violations  in  the 
application model. The approach lacks tool support and 
the UML object  diagrams often do not cover  all  the 
violations of access control constraints so that not all 
the policy violations in the application model can be 
detected.

6. Conclusions

In  this  paper  we  describe  a  lightweight,  rigorous 
method  for  analyzing  security  policies.  The  method 
analyzes a UML design model by producing a set of 
scenarios  and  checking  the  consistency  between  the 
UML design model and these scenarios. 

We propose an algorithm to automatically generate 
scenarios  for  analysis.  The  verifier  uses  domain 
knowledge  and  experience  to  reduce  the  number  of 
scenarios  that  are  generated  by developing  operation 
invocation patterns that focus the analysis on families 
of scenarios. The generation is semi-automatic because 
the  verifier  sometimes  has  to  examine  the  scenarios 
and label them as legal or illegal.

Our future work includes building an Eclipse-based 
tool  environment  that  integrates  the  UMLAnT, 
USE/OCLE  tools  and  other  mechanisms  needed  to 
support  the  method  (e.g.,  the  mechanisms  for 
generating Snapshot Models from Design Class models 
and for generating scenarios). We also plan to develop 
techniques  for  systematically  producing  operation 
invocation  patterns  from  requirements  behavioral 
models.  These tools will ease the task of the verifier 
charged with producing scenarios to evaluate a design. 
We will continue to investigate the extent that domain 
knowledge and experience can be captured and used to 
support a more systematic approach to generating legal 
and illegal scenarios. 
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