
A Semantic-Based Transaction Processing Model for

Multilevel Transactions�

Indrakshi Rayy Paul Ammannz Sushil Jajodiay

Abstract

Multilevel transactions have been proposed for multilevel secure databases; in contrast to

most proposals, such transactions allow users to read and write across multiple security lev-

els. The security requirement that no high level operation inuence a low level operation

often conicts with the atomicity requirement of the standard transaction processing model.

In particular, others have shown that no concurrency control algorithm based on the standard

transaction processing model can guarantee both atomicity and security. This conict moti-

vates us to propose an alternative semantic-based transaction processing model for multilevel

transactions. Our model uses the semantics of the application to analyze an application and

reason about its behavior. Our notion of correctness is based on semantic correctness instead

of serializability as in the standard transaction processing model. Semantic correctness ensures

that database consistency is maintained, transactions output consistent data, and all partially

executed transactions complete. We show how an example application can be analyzed to as-

sure semantic correctness and how this analysis can be automated. We also propose a simple

timestamp-based multiversion concurrency control algorithm for transaction processing on a

kernelized architecture. The advantages of our model over the standard transaction processing

model are that atomicity can be assessed, and for some applications ensured via o� line analysis,

more concurrency is achieved, lesser synchronization between security levels is required, and a

larger class of multilevel transactions can be processed.

1 Introduction

Most of the research in transaction processing in multilevel secure databases is limited to single-
level transactions. A �xed security level is associated with a single-level transaction, which can
read objects that are at its level or below, but can only write objects that are at its level. The
need for multilevel transactions { transactions that can read and write objects at di�erent security
levels { arises in many applications. The standard transaction processing model [BHG87] based on
serializability is not appropriate for multilevel transactions { executing multilevel transactions using
mechanisms based on the standard transaction processing model may result in illegal information
ow. Although the serializability model has been adapted for multilevel transactions [CM92, CJ93]
atomicity cannot be ensured. In this work, we propose an alternative semantic-based transaction
processing model which is appropriate for multilevel transactions. The chief advantage is that

�An earlier version of this paper appeared in IEEE Symposium on Security and Privacy, pages 74{84, Oakland,

CA, May 1996.
yThe work of Sushil Jajodia and Indrakshi Ray was partially supported by National Security Agency under grants

MDA904{96{1{0103 and MDA904{96{1{0104 and by US Air Force/Rome Labs under grant F30602{97{1{0139. The

work of Indrakshi Ray was also partially supported by a George Mason University Fellowship Award.
zThe work of Paul Ammann was partially supported by US Air Force/Rome Labs under grants F30602{97{1{0139.

1

atomicity can be assessed in advance via o� line analysis. In addition, our model achieves greater
concurrency, requires lesser synchronization between security levels, and can process a larger class
of multilevel transactions than the algorithms based on the standard transaction processing model.

We �rst motivate the requirement for multilevel transactions. By de�nition, a single-level trans-
action prevents update operations at di�erent levels from being grouped as an atomic transaction.
Users, on the other hand, may need to execute a number of operations at di�erent security levels
as an atomic transaction. An example will help to illustrate this point. Suppose there is a mission
database that maintains threat/resource information in a military environment. A resource is in a
busy or idle state depending on whether or not it has been assigned to some threat. The information
of whether a resource is busy or not is classi�ed at a lower level (secret) than the information of
the resource to threat assignment (top secret). The transaction Respond is responsible for assigning
a resource to some threat. The Respond transaction performs two operations: (i) it picks an idle
resource and changes its state to busy, and (ii) assigns the resource picked in operation (i) to the
threat. The user submitting this transaction must be cleared to the top secret level. Note that
Respond updates at multiple security levels; hence it cannot be modeled as one single-level trans-
action. To execute Respond using single-level transactions, the user must �rst log-on at the level
secret and execute operation (i) and subsequently log-on at level top secret and execute operation
(ii). Executing Respond as two single-level transactions may be undesirable for two reasons. First,
it forces the user to manage the scheduling of the single-level transactions. Even worse, interleav-
ings with other transactions may produce incorrect results. Consequently, multilevel transactions
[BJMN93, CJ93, CM92, SBJN96] have been proposed to overcome this di�culty. A multilevel trans-
action permits read and write operations across a range of security levels to be executed as an atomic
unit. To minimize the size of trusted code, a multilevel transaction is decomposed into single-level
sections; a section contains all operations at the same security level.

Almost all the work in the area of multilevel transaction is based on the standard transaction
processing model [BHG87]. The latter requires transactions to satisfy the atomicity, consistency,
and isolation properties.x Consequently, multilevel transactions based on the standard transaction
processing model are also required to satisfy these three properties. In addition, multilevel trans-
actions must also satisfy the security property [SBJN96], which ensures that executing a multilevel
transaction causes no illegal information ow across security levels. The atomicity requirement often
conicts with the security requirement of a multilevel transaction: a high section of a transaction
may be unable to complete due to violations of the integrity constraints, and a rollback of low
sections can be exploited to implement a covert channel. Smith et al. [SBJN96] prove that it is im-
possible to have concurrency control algorithms based on the standard transaction processing model
that ensures the simultaneous satisfaction of the atomicity and security properties. This motivates
us to propose an alternative semantic-based model for processing multilevel transactions.

Our model uses the semantics of the transaction to reason about correct and incorrect behavior
of the application. Like other researchers [CM92, CJ93], we decompose a multilevel transaction into
single-level sections. We execute each section atomically. Decomposing transactions into atomic
sections results in the loss of the atomicity, consistency and isolation properties. To remedy this
loss, we propose a set of replacement properties which we call the semantic atomicity property, the
consistent execution property and the sensitive transaction isolation property. In the case of single
level transactions, these properties reduce to the traditional properties. The new properties are
de�ned in terms of semantic histories which are necessary to reason about correct and incorrect
interleavings of sections of transactions. The semantic atomicity property ensures that all partially
executed transactions complete, or, in other words, either all or none of the sections of a transaction

xThe fourth standard property, durability, is exactly the same for secure databases as for traditional databases and

so we do not mention it further.

2

appear in a history. The consistent execution property ensures that if a complete semantic history
executes in a consistent state, the �nal state is also consistent. The sensitive transaction isolation
property ensures that no inconsistencies are displayed to the user. These properties are more relaxed
than their counterparts in the standard transaction processing model, and form the basis of semantic
correctness. In addition to the replacement properties we specify two more properties, namely the
composition property and the isolation atomicity property. The composition property ensures that
a decomposition correctly models the original transaction. The isolation atomicity property ensures
that if the lowest level section of a transaction has been executed, then it will be possible to execute
all the other sections of the transaction when the transaction is executed in isolation. The isolation
atomicity property is necessary if transactions are to be executed by algorithms based on the standard
transaction processing model [CM92, CJ93]; this property, however, is optional in our semantic-based
model.

The properties generate a set of proof obligations for a given application. The proof obligations
must be successfully discharged to get assurance of the properties. As a feasibility study, we show
how to get assurance of these properties for a speci�c application by enumerating and discharg-
ing the associated proof obligations using the Z speci�cation language [Spi92]. For large complex
applications, it is desirable to automate as much as possible the process of discharging the proof
obligations. One solution is to use a theorem prover to automatically discharge the proof obligations.
However, theorem proving is tedious, time consuming, di�cult, and requires substantial expertise.
This motivated us to adopt an alternate software veri�cation technique known as model checking
for our analysis. We show how the SMV model checker [McM92, CGL94] can be used, in part, to
automatically discharge the proof obligations.

It is worth noting that the various properties are correctness properties rather than security

properties. In other words, although an erroneous proof may result in an application that does not
behave as intended with respect to functionality, the erroneous proof does not result in a security
breach.

Once all the properties have been proved, the application must be executed by some concur-
rency control algorithm. Towards this end, we develop a simple timestamp based mechanism on
a kernelized architecture for concurrently executing the decomposed multilevel transactions. The
advantages of our model over the standard transaction processing model are that our model provides
more concurrency, requires lesser synchronization between security levels and can process multilevel
transactions which do not have isolation atomicity.

1.1 Related Work

The earliest works on multilevel transactions were done by Costich, Jajodia and McDermott [CM92,
CJ93]; the authors present concurrency control algorithms based on kernelized [CJ93] and replicated
[CM92] architectures which produce one-copy serializable histories of multilevel transactions. The
algorithm proposed by Costich and McDermott [CM92] has a restriction: it can only execute trans-
actions in which no low data item is written after accessing a high data item. This algorithm also
requires the operations in a transaction to be ordered according to the security lattice structure.
This requirement is obviated in the algorithm proposed by Costich and Jajodia [CJ93] and it accepts
multilevel transactions where operations are not necessarily arranged in the order of security levels.
This algorithm [CJ93] saves all the versions written by a transaction, and by using an indexing
technique records the version of x that must be given to a read x operation. This technique always
gives the correct version of x although the execution order may be di�erent from that speci�ed in
the transaction. In both these works, the authors make an assumption { if one section of a trans-
action is successfully executed then it will be possible to execute all the other sections successfully.

3

This assumption makes the algorithms proposed by Costich and others [CM92, CJ93] suitable for
only a limited class of multilevel transactions { transactions satisfying isolation atomicity property
[AJR96].

Blaustein et al. [BJMN93] discuss the problem of ensuring atomicity for multilevel transactions
and propose three degrees of atomicity for multilevel transactions { ML atomicity, L atomicity and
complete atomicity. ML atomicity requires that if a section commits, then all sections at dominated
levels must also commit. L atomicity requires that if a section commits, then all sections dominated
by security level L must also commit. Complete atomicity requires that if a section commits then
all other sections must also commit; complete atomicity corresponds to the traditional atomicity
[GR93]. The authors also propose the notion of an execution graph which determines if the atomicity
requirement of a multilevel transaction can be satis�ed. The authors give two transaction processing
algorithms { High-Ready-Wait and Low-First. The High-Ready-Wait algorithm is a two-phased
algorithm. In the �rst phase the sections of a multilevel transaction are executed (but not committed)
in a high to low order; in the second phase the sections are committed in the low to high order. The
High-Ready-Wait su�ers from three problems. First, it cannot handle multilevel transactions having
low to high dependencies. Second, it is suitable only for those multilevel transactions in which the
security levels of the sections are linearly ordered; that is, it cannot handle multilevel transactions in
which two sections have incomparable security levels. Third, it contains a limited bandwidth timing
channel; a high section can modulate the time it takes to execute and thereby convey information
to a low section. Unlike High-Ready-Wait, Low-First executes and commits sections of a multilevel
transaction in a low to high order. The limitation of Low-First is that it cannot guarantee complete
atomicity of multilevel transactions.

A formal treatment of multilevel transactions is presented by Smith et al. [SBJN96]. The au-
thors de�ne four correctness properties of multilevel transactions. These are atomicity, consistency,
isolation and security. Atomicity (A correctness) requires either all or none of the operations in a
transaction to commit. Consistency (C correctness) requires that the order of conicting operations
in a transaction be preserved in the schedule. Isolation (I Correctness) requires that the concurrent
execution of a set of transactions be equivalent to the serial execution of the set of transactions.
Security (S Correctness) requires that in a schedule no operations at a dominated level is inuenced
by any operation at a dominating level. The authors argue why it is impossible to give algorithms
which guarantee the satisfaction of all four correctness properties. More speci�cally, it is impossible
to give algorithms which guarantee both A correctness and S correctness. The authors also de�ne
partial correctness criteria based on relaxing the properties. The relaxed atomicity criterion, referred
to as A� correctness, corresponds to ML atomicity [BJMN93]. S� correctness, the relaxed security
criterion, is like S correctness, except that it allows timing channels. I� correctness, the relaxed
isolation property, achieves only degree 2 isolation [GR93].

The authors [SBJN96] give three algorithms : (i) Low-Ready-Wait, (ii) Low-First with Multi-
version Timestamp Order, and (iii) Low-First with Hybrid Multiversioning. The Low-Ready-Wait
algorithm is based on two phase locking; the sections are executed in the ascending order and are
committed in the descending order of security levels. This algorithm ensures atomicity, consistency,
isolation and relaxed security. In the Low-First with Multiversion Timestamp Ordering the sections
are executed and committed in the ascending order of security levels. A unique timestamp is as-
signed to the transaction; sections inherit the timestamps of the transaction. If a section reads from
a strictly dominated section of another transaction with an earlier timestamp, then it must wait for
the completion of these strictly dominated sections. This algorithm ensures ML-atomicity, consis-
tency, isolation and security. In Low-First with Hybrid Multiversioning the sections are executed
and committed in the ascending order of security levels. Unlike Low-First with Multiversion Times-
tamp Ordering algorithm, sections are assigned unique timestamps. For reading and writing data
items at its own level, a section follows the locking rules. For read downs, the timestamp ordering

4

rules determine the version of the data item that will be read. This algorithm ensures ML-atomicity,
consistency, security and degree 2 isolation.

The shortcomings of the standard transaction processing model and the need for alternative
semantic-based transaction processing approaches is well researched in the context of long duration
transactions. In these works [AAS93, AJR97, BL96, F�O89, GM83, GMS87, KS94], the authors
have introduced the notions of transaction decomposition, transaction steps, compensating steps,
allowed versus prohibited interleavings of steps, and implementations in locking environments. The
correctness of executions is based on semantic correctness and not on serializability. The goal of these
works is to provide better performance than that provided by the standard transaction processing
model.

Semantic-based transaction processing in the multilevel secure domain has been proposed by
Ammann et al. [AJR96]. In this work the semantics of the application is used to statically analyze
an application and determine its behavior. Correctness of the application was assessed in terms of
satisfaction of the necessary properties. However in this work [AJR96] the ideas were informally
presented. Our current work extends the work [AJR96] in the following ways: formalization of the
properties, generating and discharging the proof obligations for a typical application, automated
veri�cation of the properties for the application using model checking approach, developing a notion
of correctness for concurrent execution of a set of multilevel transactions, and giving a concurrency
control algorithm based on a kernelized architecture.

1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 presents a motivating example { the
mission database. Section 3 discusses the decomposition of multilevel transactions into sections; this
section also discusses how to arrange the sections according to the security poset (partially ordered
set) structure which is necessary for reasons of security. Section 4 discusses the details of our model.
Section 5 presents the notion of correctness for concurrent execution of multilevel transactions.
Section 6 describes a concurrency control algorithm based on a kernelized architecture. Section 7
concludes the paper. Appendix A illustrates how the the properties can be proved by hand for the
mission example. Appendix B describes automated veri�cation of the properties for the mission
example with the SMV model checker [McM92, CGL94].

2 A Semantic View of Multilevel Transactions

We consider a security structure that is a partial order, (C, <). C is a set of security levels or
classes, and < is the dominance relation between classes. If C

1
� C

2
, C

2
is said to dominate C

1
and

C
1
is said to be dominated by C

2
. If C

1
< C

2
, C

2
is said to strictly dominate C

1
and C

1
is said to

be strictly dominated by C
2
. Two classes C

1
and C

2
are said to be incomparable if neither C

1
� C

2

nor C
2
� C

1
.

A database is composed of a collection of objects where each object is associated with a single
security level. At any given time, the state is determined by the values of the objects in the database.
A change in the value of a database object changes the state. A database also has some predicates
de�ned on the objects. These predicates are known as invariants or integrity constraints. A database
state is said to be consistent if the values of the objects satisfy the given integrity constraints;
otherwise the database is said to be in an inconsistent state. We do not impose any constraint
on the nature of integrity constraints. That is, integrity constraints may be de�ned over objects
belonging to the same level or they may be de�ned over objects belonging to di�erent security levels.

5

N Set of Natural Numbers
PA Powerset of Set A
bagA Bag or MultiSet A
#A Cardinality of Set A
[Set Union
n Set Di�erence (Also schema `hiding')
] Bag (Multiset) Union
[- Bag (Multiset) Di�erence
A o

9 B Forward Composition of A with B

x 7! y Ordered Pair (x ; y)
A 7! B Partial Function from A to B
A 7� B Partial Injective Function from A to B

B �CA Relation A with Set B Removed from Domain
AB B Relation A with Range Restricted to Set B
domA Domain of Relation A

ranA Range of Relation A

A� B Function A Overridden with Function B

x? Variable x? is an Input
x ! Variable x ! is an Output
x State Variable x before an Operation
x 0 State Variable x 0 after an Operation
[[x]] Bag containing x
�A Before and After State of Schema A
�A �A with No Change to State

Table 1: Relevant Z Notation

A section of level C can view only those integrity constraints which involve objects at level C or
below. Consequently, only the highest section, if present, can view all the integrity constraints of
the database.

Each multilevel transaction is speci�ed with a set of preconditions and a set of postconditions on
the database objects. A precondition limits the database states to which a multilevel transaction
can be applied. A postcondition constrains the possible database states after a multilevel transac-
tion completes. Together, preconditions and postconditions ensure that if a multilevel transaction
executes on a consistent state, the result is again a consistent state. Postconditions of a multi-
level transaction can update objects at di�erent security levels; this is in contrast to single-level
transactions where postconditions can update objects at only one security level.

2.1 An Example Illustrating Our View

In this paper we adopt the Z speci�cation language for formalizing our ideas. Z is based on set
theory, �rst order predicate logic, and a schema calculus to organize large speci�cations. Knowledge
of Z is helpful, but not required, for reading this paper, since we narrate the formal speci�cations
in English. Table 1 briey explains the Z notation used in our examples. Other speci�cation and
analysis conventions peculiar to Z are explained as the need arises.

We illustrate our view with an example of a mission database. A Z speci�cation appears in �gure
1. The mission database has a set of objects, three integrity constraints on these objects, and three

6

[Threat ;Resource]
Status ::= Idle j Busy

Mission

ASSIGN : Resource 7! Threat

STATUS : Resource 7! Status

dom(STATUS B fBusyg) = domASSIGN

Respond

�Mission

t? : Threat
r? : Resource

STATUS (r?) = Idle

STATUS 0 = STATUS � fr? 7! Busyg
ASSIGN 0 = ASSIGN [fr? 7! t?g

Cancel

�Mission

r? : Resource

r? 2 domASSIGN

STATUS 0 = STATUS � fr? 7! Idleg
ASSIGN 0 = fr?g �CASSIGN

Report

�Mission

currentstatus ! : Resource 7! Status

currentassignments ! : Resource 7! Threat

currentstatus ! = STATUS

currentassignments ! = ASSIGN

Figure 1: Initial Speci�cation of the Mission Database

types of transactions, which we identify and explain below. The speci�cation assumes two types,
Threat and Resource, which enumerate all possible resources and all possible threats, respectively.

In Z states, as well as operations, are described with a two-dimensional notation called a schema,
in which declarations for the objects appear in the top part and constraints on the objects appear in
the bottom part. The objects in the mission database are listed in the schemaMission, which de�nes
the state of the mission. The object STATUS is a partial function that records the status of each
resource which may be Busy or Idle. The information whether a resource is busy or not is classi�ed
as secret and so the object STATUS has a security level secret. The object ASSIGN is a partial
function that relates the resources with status Busy and the threats to which these resources are
assigned. The information of the actual resource to threat assignment is classi�ed at a higher level,
namely top secret. Thus the object ASSIGN has a security level top secret. Note that the partial
functions representing the objects STATUS and ASSIGN implicitly captures the following integrity
constraints: (i) each resource can be either busy or idle, and (ii) each resource can be assigned to
at most one threat. An additional integrity constraint on the objects in mission database appear in
the bottom part of schema Mission: dom(STATUS B fBusyg) = domASSIGN { this states that
the set of resources with status busy is exactly the set of resources assigned to threats. Note that
this integrity constraint involves objects at di�erent security levels: secret and top secret.

The three types of transactions in the mission database are Respond , Cancel and Report as shown
in �gure 1. Respond takes as input a resource r? and a threat t?. Respond has a precondition that
some resource r? must be Idle. Respond has a postcondition that the status of r? is changed to Busy ,
and the ordered pair r? 7! t? is added to the function ASSIGN . Cancel cancels an assignment of a
resource to a threat. Cancel has a precondition that r? must be assigned to some threat (that is, r?
must be in the domain of ASSIGN) and a postcondition that r? is removed from the domain of the
function ASSIGN , and status of r? is changed to Idle. Note that the postconditions in Respond and
Cancel update objects at di�erent security levels; hence they cannot be modeled using single-level
transactions. Report has no preconditions and prints the objects STATUS and ASSIGN as outputs.

7

3 Decomposition of Multilevel Transactions

In the previous section we showed how multilevel transactions can be speci�ed using preconditions
and postconditions. Now a precondition check evaluates to reading one or more database objects
and performing some check. A postcondition may involve updating an object; this update may
depend on the values of the other objects in the database. Preconditions involve reading objects,
and postconditions may involve reading and writing objects. Thus we de�ne multilevel transactions
as follows:

De�nition 1 [Multilevel Transaction] A multilevel transaction Ti is a set of read and write
operations in which conicting operations [BHG87] are related by the partial order �i .

A read or write operation in a multilevel transaction is associated with a security level. The
security level of a write operation must be equal to the level of the object it writes. The security
level of a read operation must dominate the level of the object it reads. A range of security levels
is associated with a multilevel transaction. Each operation in the multilevel transaction must lie
within this range. The user's clearance level at a particular session must dominate the range of the
multilevel transaction submitted by the user in that session.

To prevent direct violations of the usual mandatory access control policy [BL75] by a multilevel
transaction, we follow other authors [CM92, CJ93, SBJN96] and decompose each multilevel transac-
tion into a set of sections, where each section is associated with a single security level. Each section
is also speci�ed with preconditions and postconditions. To keep our model simple, we assume that
a transaction has at most one section at any security level. Each write operation in a multilevel
transaction is associated with exactly one section, but a single read operation in the multilevel
transaction may appear in multiple sections. Let the function L map database objects and sections
to security levels. We require a section Sij of multilevel transaction Ti to obey the simple security
property and the restricted ?-property [San93] :

1. A section Sij with L(Sij) = C may read a database object x if L(x) � C .

2. A section Sij with L(Sij) = C may write a database object x if L(x) = C .

Based on this we de�ne transaction decomposition.

De�nition 2 [Transaction Decomposition] A multilevel transaction Ti is decomposed into a set
of sections fSi1;Si2; : : : ;Sing such that

1. conicting operations in section Sij are related by the partial order �ij ,

2. orderings of conicting operations speci�ed in a section honor the orderings of conicting
operations speci�ed in the transaction, that is, �ij��i , and

3. each write operation in Ti appears in exactly one section and each read operation in Ti appears
in at least one section.

To avoid timing channels, it is necessary to order the sections in a way consistent with the
security poset structure (low to high order), as the following example illustrates. Consider three
levels: L (Low) , M (Medium) , and H (High); two objects: x (L) , y (M); and one transaction:
wL[x] rH [x] rH [y] rM [x] wM [y]. In this example, the ordering of sections is L, H, M, and the
medium section is delayed until the high section completes. The medium section can detect when
the low section completes. The high section can modulate its execution time, thereby covertly

8

passing information to the medium section. However given a transaction decomposed according to
De�nition 2 it may not always be possible to execute the sections in a low to high order, and at the
same time respect the ordering relation �i .

Note that this problem has been solved by Costich and Jajodia [CJ93], and Smith et al. [SBJN96].
Our solution, which is based on that of Smith's [SBJN96], is presented next.

3.1 Ordering Sections in a Transaction

Before we show how to order the sections in a transaction according to the security poset structure,
we need the notion of dependencies developed by Blaustein et al. [BJMN93]. A dependency exists
between two sections if they contain conicting operations. There can be two types of dependen-
cies between sections of a transaction, depending on the ordering of operations in the underlying
multilevel transaction.

1. H-L Dependency (High to Low Dependency) { A high section of Ti reads x , a low section of
Ti writes x , and in the multilevel transaction Ti , ri [x]�i wi [x]

2. L-H Dependency (Low to High Dependency) { A high section of Ti reads x , a low section of
Ti writes x , and in the multilevel transaction Ti , wi [x]�i ri [x]

We adopt a caching technique [SBJN96] as the mechanism to correctly treat the H-L and L-
H dependencies. The cache is local to the transaction; it is visible only to sections of a single
transaction. The cache consists of a number of objects called cached objects. For all practical
purposes cached objects are treated as database objects. Note that a cached object is accessed
only by sections of a single transaction. In accordance with security requirements, a high section
can read the cached objects written by the low section but not vice-versa. The cache is used by
the transaction as long as it is active; once a transaction completes the cache associated with the
transaction can be discarded.

The following algorithm shows how we treat the L-H and H-L dependencies using the cache. A
section which writes a database object x writes the old value and the new value of x in the cache.
In other words, two new cached objects, ox and nx , are created for each write x operation. From
the database perspective, the objects x , ox , nx are distinct. The old value, new value of x are
copied into ox , nx respectively. In the original transaction if there is a L-H dependency involving x ,
the read x operation in the high section is transformed into read nx . If there is a H-L dependency
involving x , the read x operation in the high section is converted to a read ox operation and this
read ox operation is moved after write x operation of the low section.

The caching technique converts the read operations on database objects to read operations on
cached objects. The caching technique can eliminate all H-L dependencies. Once all the H-L
dependencies are eliminated, the only dependencies that exist between sections of a transaction are
the L-H dependencies. With only L-H dependencies remaining, it is possible to order the sections
of a transaction low �rst.

De�nition 3 [Partial Order �i On Sections In Transaction Ti] Let �i be a partial order
de�ned on the sections of transaction Ti . For any two sections Sij ,Sik of transaction Ti , Sij �i Sik
if all operations of section Sij precede any operation of Sik .

Next we de�ne what it means for a transaction to be in canonical form. Informally a transaction
is in canonical form if its sections are ordered according to the security poset structure.

9

De�nition 4 [Canonical Form] A transaction Ti is in canonical form if for all j ; k , Sij �i Sik i�
L(Sij) < L(Sik).

The importance of the methods for treating H-L and L-H dependencies is that any multilevel
transaction can be converted to canonical form and securely executed with the Low-First algorithm.
In prior work, this transformation yielded only ML-atomicity [BJMN93]; our result is to achieve
semantic atomicity, where either all or none of the sections are executed.

The sections of the decomposed transactions for the mission database are shown in �gure 2. The
Respond transaction is decomposed into a secret section R1 and a top secret section R2. Similarly
the Cancel transaction is decomposed into sections C1 and C2 where level of C1 is secret and that
of C2 is top secret. For each of these transactions, the secret level section must be executed before
the top secret level section is executed; thus Respond and Cancel transactions are in the canonical
form. The Report transaction is composed of a single top secret section.

After a section has been executed, the original integrity constraints may no longer be satis�ed.
For this reason, we generalize the integrity constraints; these generalized constraints are satis�ed
before and after the execution of each section [AJR95]. The process of discovering appropriate
generalized integrity constraints is outside the scope of this paper. For the seminal discussion of this
topic in the context of concurrent execution of programs, see Owicki and Gries [OG76].

The generalized constraint for the mission database is given in the constraint part of the schema
DecomposedMission. Notice the use of auxiliary variables, R1ax , R2ax , C1ax , C2ax , in the gener-
alized constraint. The auxiliary variables are of type bagResource. (A bag, also known as multi-set,
is like a set except that the number of occurrences of each object in the bag is signi�cant.) All these
variables are initialized to the empty bag. A resource r? whose status is changed to Busy in section
R1 is included in the bag R1ax in section R1. Finally when the resource is assigned to the threat in
section R2, it is added to the bag R2ax . Thus the expression dom(R1ax [- R2ax) gives the resources
whose status have been changed to Busy but which have not yet been assigned to threats, that is,
resources which are in the process of being assigned. Similarly, the expression dom(C1ax [- C2ax)
gives the resources with status Idle but which are still assigned to threats, that is, resources that are
in the process of being cancelled. Note that the auxiliary variables are introduced for the purpose
of analysis and can be omitted from the implementation. The DecomposedMission includes the
schemas MissionSecret and MissionTopSecret . MissionSecret de�nes the secret level objects and
the constraints de�ned on the secret level objects. Similarly, MissionTopSecret de�nes top secret
level objects and constraints involving top secret level objects.

Note that additional preconditions are introduced in sections R2,C1, Report1. The precondition
in R2 ensures that the integrity constraint, each resource can be assigned to at most one threat, is
not violated. The precondition in C1 ensures that the assignment of a busy resource is canceled.
The preconditions in Report1 ensure that no inconsistencies are displayed to the user by ensuring
that there are no Respond transactions that have executed R1 but not R2 and that there are no
Cancel transactions that have executed C1 but not C2.

After showing how transactions in an example can be decomposed, we are now ready to de�ne
our notion of correctness.

4 Semantic Correctness

In our model we use semantic correctness, rather than serializability, as the correctness criterion.
In this section we develop the notion of semantic correctness by giving a set of properties which
ensures that the application does not behave in an undesirable and unexpected way. The �rst two

10

MissionSecret

STATUS : Resource 7! Status

R1ax ;C1ax : bagResource

MissionTopSecret

ASSIGN : Resource 7! Threat

R2ax ;C2ax : bagResource

DecomposedMission

MissionSecret

MissionTopSecret

dom(STATUS B fBusyg)[
dom(C1ax [- C2ax)
= domASSIGN [dom(R1ax [- R2ax)

R1
�DecomposedMission

�MissionTopSecret

r? : Resource

STATUS (r?) = Idle

STATUS 0 = STATUS � fr? 7! Busyg
R1ax 0 = R1ax] [[r?]]
C1ax 0 = C1ax

C1
�DecomposedMission

�MissionTopSecret

r? : Resource

STATUS (r?) = Busy

STATUS 0 = STATUS � fr? 7! Idleg
C1ax 0 = C1ax] [[r?]]
R1ax 0 = R1ax

R2
�DecomposedMission

�MissionSecret

t? : Threat
r? : Resource

r? 62 domASSIGN

ASSIGN 0 = ASSIGN [fr? 7! t?g
R2ax 0 = R2ax] [[r?]]
C2ax 0 = C2ax

C2
�DecomposedMission

�MissionSecret

r? : Resource

r? 2 domASSIGN

ASSIGN 0 = fr?g �CASSIGN

R2ax 0 = R2ax
C2ax 0 = C2ax] [[r?]]

Report1
�DecomposedMission

currentstatus ! : Resource 7! Status

currentassignments ! : Resource 7! Threat

R1ax = R2ax
C1ax = C2ax
currentstatus ! = STATUS

currentassignments ! = ASSIGN

Figure 2: Decomposed Mission Database

11

properties, namely, the composition property and the isolation atomicity property, describes the
behavior of the transaction when it is executed in isolation and without interference from any other
transaction. The last three properties, namely, semantic atomicity property, consistent execution
property and sensitive transaction isolation property, consider the behavior of the transaction when
the transaction is not executed in isolation, that is, when sections of one transaction are interleaved
with those of another. Note that the last three properties substitute for the atomicity, consistency
and isolation properties of the standard transaction processing model.

4.1 Composition Property

The composition property ensures that the transformation applied to the original transaction does
not change the semantics of the transaction when considered by itself. In other words, the com-
position property formally veri�es that executing the sections in an order that is consistent with
the canonical ordering changes the database objects in the same way as changed by the original
transaction.

[Composition Property] A multilevel transaction satis�es the composition property if for any
given consistent state of the database, executing the sequence of sections on the consistent state is
equivalent to executing the original transaction on the same state.

Formally the composition property is stated as follows:

Let I denote the original integrity constraints; Ti denote the original transaction and Si1,Si2,
: : :,Sin denote the corresponding sections. The before state and after state of the auxiliary variables
are represented by aux , aux 0 respectively.

A transaction Ti is said to have the composition property when

I ^ (Si1 o

9 Si2 : : :
o

9 Sin) n (aux ; aux
0), Ti

The above expression is written in Z. The left hand side represents the state formed by the
sequential execution of the sections on a consistent state and the auxiliary variables suppressed from
the resulting state. The right hand side represents state resulting from the execution of the original
transaction Ti . The , stands for equivalence. The proofs that the decomposed transactions in the
mission database have the composition property are shown in Appendix A.

4.2 Isolation Atomicity Property

When sections of a transaction are executed sequentially on a consistent database state, it may not
be possible to complete the transaction. This may happen if the precondition of some dominating
section is not satis�ed after the execution of some dominated section. The isolation atomicity
property ensures that such a situation is avoided; if a transaction has been partially executed then
it will be possible to complete the transaction.

[Isolation Atomicity Property] A multilevel transaction satis�es the isolation atomicity prop-
erty if for any given consistent state of the database, satisfaction of the precondition of the least{

section implies the satisfaction of the preconditions of all sections. If the transaction has no least
section, then the precondition for the transaction is that the database is in a consistent state.

Formally the isolation atomicity property is stated as follows:

{A section in a multilevel transaction is the least section if its class is dominated by the classes of all other sections

in the transaction. Note that a transaction may not have a least section. For example, consider a transaction with

three sections, two mutually incomparable and another that dominates the �rst two.

12

Let I denote the original integrity constraints; Ti denote the original transaction and Si1,Si2,
: : :,Sin denote the corresponding sections.

If Si1 is the least section, the transaction satis�es the isolation atomicity when

preSi1 ^ I) pre(Si1 o

9 Si2. . .Sin)

The above expression is written in Z. The left hand side of the) represents the state satisfying
the precondition of the least section Si1 and the original integrity constraints. The right hand side
denotes the state satisfying the precondition of the composition of the sections.

In cases where a transaction does not have a least section, the transaction is said to have isolation
atomicity when

I) pre(Si1 o

9 Si2. . .Sin)

There are many examples of transactions not having isolation atomicity. For example, in the
mission database, suppose we enforce a new requirement that each threat can be assigned to at
most one resource. In other words, suppose we require ASSIGN to be injective. Then an additional
precondition, namely, t? 62 ranASSIGN , must be added to the the second section of the Respond
transaction. As a result, this modi�ed Respond transaction will not have isolation atomicity. How-
ever, in the original mission example we have no such requirement and as it turns out all transactions
have isolation atomicity { the proofs are given in Appendix A.

Isolation atomicity is a necessary property if transactions are to be executed by algorithms
based on serializability. For such algorithms, if a transaction lacks isolation atomicity, then it may
never complete, thus violating the atomicity requirement. To build on the example of the previous
paragraph where ASSIGN is assumed to be injective, suppose that R1 executes successfully, but
threat t? is already associated with some resource in ASSIGN . Then R2 cannot complete. Note
that in our model transactions are not executed in isolation and we are able to relax the isolation
atomicity requirement. Completion of the transactions is guaranteed by the semantic atomicity
property discussed in Section 4.4.

The next three properties we discuss are de�ned over histories. Before describing these properties
we need the notion of histories.

4.3 Semantic Histories

So far we have considered what happens if transactions are executed in isolation, that is, without
interference from other transactions. However sections of di�erent transactions are allowed to inter-
leave. It is necessary to ensure that each section of a multilevel transaction has preconditions that
are strong enough to ensure that the section is correct when confronted with an intermediate state
left by the partial execution of some other multilevel transaction. If the section generates output in
addition to accessing the database, it is necessary to ensure that the output appears to be generated
from a consistent state even if the section executes on an intermediate state. Finally, the integrity
constraints must be restored upon the completion of all transactions. To ensure these properties,
we develop the notion of a semantic history.

De�nition 5 [Sectionwise Serial One Version History] A sectionwise serial one version history
H de�ned over a set of multilevel transactions T = fT

1
;T

2
; : : : ;Tmg is a sequence of sections with

the ordering relation �H such that,

1. for each Ti 2 T, a section of Ti either appears exactly once in H or does not appear at all,

13

2. for any two sections Sij , Sik of some Ti 2 T, Sij �H Sik in H if Sik 6�i Sij in canonical form
of Ti ,

3. if Sik 2 H , then Sij 2 H , for all sections Sij such that Sij �i Sik in canonical form of Ti .

Condition (1) ensures that every section of a transaction occurs at most once in a sectionwise
serial one version history. Condition (2) ensures that the order of the sections in canonical form
of a transaction is preserved in a sectionwise serial one version history. Condition (3) ensures that
for every section Sik in a sectionwise serial one version history, all the sections that precede Sik
in canonical form of Ti are present in the sectionwise serial one version history. Note that in a
sectionwise serial one version history H if Sij �H Skl , then all operations of Sij must precede any
operation of Skl . Also note that �H is a total order.

A sectionwise serial one version history lists the sequence of steps in the history; it does not give
any information about the state of the database in which the section is being executed. To reason
about correct and incorrect interleavings, we need to know the states associated with a history. This
motivates us to introduce the notion of semantic history which not only lists the sequence of sections
forming the history, but also conveys information regarding the state of the database before and
after the execution of each section in the history.

De�nition 6 [Partial Semantic History] A partial semantic history H is a sectionwise serial one
version history that is bound to

1. an initial state, and

2. the states resulting from the execution of each section in H .

Note that a semantic history H is associated with a sectionwise serial one version history. When
we deal with the syntactic aspects of H , we refer to it as a sectionwise serial one version history;
when we are interested in the semantic information { the states associated with the history H { we
refer to it as a semantic history.

De�nition 7 [Complete Execution] An execution of a transaction Ti = Si1;Si2; : : : ;Sin in a
sectionwise serial one version history H is a complete execution if all n sections of Ti appear in H .

De�nition 8 [Complete Semantic History] A partial semantic history H over T is a complete
semantic history if the execution of each Ti in T is complete.

In the following we identify three necessary properties which allowable semantic histories should
possess.

4.4 Semantic Atomicity Property

When transactions have been broken up into sections, the interleavings of sections may lead to
deadlock (that is, a state from which we cannot complete some partially executed transaction). The
semantic atomicity property ensures that deadlock is avoided; if a transaction has been partially
executed, then it can eventually complete.

[Semantic Atomicity] Every partial semantic history H is a pre�x of some complete semantic
history.k

kGarcia-Molina [GM83] has a slightly di�erent de�nition of semantic atomicity, in that he allows for compensating

steps. Compensation is problematic from the security perspective, so we omit it here.

14

Semantic atomicity guarantees that it is possible to complete any partial semantic history. Other
transactions may have to be initiated to complete the history. The transactions that have to be
initiated in order to complete a partial semantic history may be initiated by the system or by the
user. When a transaction is being initiated by the system, we must ensure that no low section is
being triggered to complete a high section of any transaction. When a transaction is being initiated
by a user, the constraints are looser since users are trusted up to their clearance. For instance,
reconsider the injective ASSIGN example discussed earlier at the point where R1 had executed but
R2 was blocked because the desired threat t? was already associated with some resource. A user
could initiate a Cancel transaction to disassociate threat t? from its current resource, at which point
the R2 section of the Reserve transaction could �nish.

4.5 Consistent Execution Property

An important property of databases is consistency. When transactions have been decomposed
into sections, and sections of di�erent transactions are allowed to interleave, the database must
be restored to a consistent state after all the transactions complete. We capture this requirement as
the consistent execution property.

[Consistent Execution Property] If a complete semantic history is executed in a consistent
state, then the �nal state resulting from the execution of the history is also consistent.

4.6 Sensitive Transaction Isolation Property

When a transaction has partially executed (that is, some but not all of its sections have committed)
the database may be in an inconsistent state; sections of other transactions may be exposed to this
inconsistency. In some cases this is problematic. For example, some transactions output data to
users; these transactions are called sensitive transactions [GM83]. Sensitive transactions should not
output any inconsistent data.

[Sensitive Transaction Isolation Property] All output data produced by a sensitive trans-
action Ti appears to be generated from a consistent state, even though Ti may be executing in an
inconsistent state.

In our model, we ensure the sensitive transaction isolation property by construction. There are
two aspects to such a construction. First, for each sensitive transaction, we compute the subset of
the original integrity constraints, I , relevant to the calculation of any outputs. This subset of I
must be implied by the preconditions of the section or sections that generate the outputs. Second,
as pointed out by Rastogi, Korth, and Silberschatz [RKS95], if outputs are generated by multiple
sections, interleavings between these sections must be controlled to ensure that outputs from later
sections are consistent with outputs from earlier sections.

After de�ning the necessary properties of a semantic history we now proceed to de�ne what it
means for a semantic history to be correct.

De�nition 9 [Correct Semantic History] A semantic history is correct if it has the following
three properties

1. semantic atomicity property,

2. consistent execution property, and

3. sensitive transaction isolation property.

15

The application developer must prove that all semantic histories generated from the application
are correct. If the properties cannot be proved, the speci�cation must be revised. Appendix A
shows how the proof obligations corresponding to the above three properties can be discharged for
the mission database. These proof obligations have been discharged using hand analysis. However
for real world complex applications it is desirable to automate as much as possible the veri�cation
of the properties.

In theory one could use some theorem prover designed for the Z speci�cation language to discharge
the necessary proof obligations. We decided not to adopt this approach for two reasons. Firstly,
Z does not have a trace-based semantics and does not allow for the speci�cation of the necessary
properties. Secondly, theorem proving is di�cult, tedious and time consuming; consequently, even
with the state-of-the-art theorem provers, such as the PVS [ORS92], only small applications can be
veri�ed. This motivated us to look at an alternative automated approach known as model checking
to get assurance of the properties. Model checking has been used successfully to verify hardware
circuits; only recently researchers [AG93, WVF96] are advocating this approach to check software.

Fundamental to model checking is its reliance on �nite state machines. A model checker requires
the system being veri�ed be represented as a �nite state machine, and the properties be represented
as temporal formulae. The model checker then performs an exhaustive search of the state space to see
whether the properties hold. Since software systems, in general, are in�nite state machines, the model
checker cannot directly verify software systems. To solve this problem, researchers [WVF96, Jac96]
propose developing �nite state abstractions of the software system which can be veri�ed by model
checkers. In Appendix B we describe how we develop a �nite model of the mission application which
we verify using the SMV model checker [McM92, CGL94].

Once we prove the necessary properties for a given application, we get the assurance that all
semantic histories generated from the application are correct. Note that semantic histories are
sectionwise serial one version histories in which sections of transactions are executed serially. The
following section describes the notion of correctness when sections are executed concurrently.

5 Concurrent Executions

In the previous section we have outlined the correctness criterion for semantic histories. Note that
in semantic histories, which are sectionwise serial one version histories, the sections are executed
serially. To improve the throughput, sections of one transaction must be executed concurrently
with those of another transaction. Our eventual aim is to get a concurrency control mechanism in
which sections need not be executed atomically, but the read, write operations of one section can be
interleaved with those of another. In this section we describe our notion of correctness in the face
of concurrent execution of sections. From now on we focus on complete histories and use the word
history to refer to a complete history. We begin by giving a de�nition of history.

De�nition 10 [History]A historyH de�ned over a set of multilevel transactionsT= fT
1
;T

2
; : : : ;Tmg,

where each transaction Ti has been decomposed into in sections, is a partial order with ordering
relation �H where:

1. H = [m
i=1

[in
j=1

Sij ;

2. �H � [m
i=1

�ij ; and

3. for any two conicting operations p; q 2 H , either p �H q or q �H p.

16

Condition (1) says that the execution represented by H involves precisely the operations of the
sections of T

1
, T

2
, : : :, Tm . Condition (2) says that the H honors all conict orderings speci�ed

within each section. Condition (3) says that every pair of conicting operations are ordered in H .

All the de�nitions of the histories given so far assume that there is only one version of a data
item in the database. These histories represent the order of execution of operations as viewed by
the user. However, if the underlying database is a multiversion database, the system's view of
histories will be di�erent from the user's view. In a multiversion database, for each data item x ,
we denote the versions of x by xim ,xjr ,: : :, where xim , xjr are the versions written by section Sim ,
Sjr respectively. For each read and write operation, the system must translate the operation into
an equivalent operation on some version of the data item. Let h denote the translation function.
For a read operation rij [x], h determines the version of x to be read; that is, if h(rij [x]) = xpq , then
the value of xpq will be returned by the read operation. For a write operation wij [x], h determines
the version of x that will be created; h(wij [x]) = xij then it means the write operation creates the
version xij . To represent the system's view of the execution of operations we de�ne a multiversion
history.

De�nition 11 [Multiversion History] A multiversion history H de�ned over a set of multilevel
transactionsT = fT

1
;T

2
; : : : ;Tmg, where each transaction Ti has been decomposed into in sections,

is a partial order with ordering relation �H where:

1. H = h([m
i=1

[in
j=1

Sij);

2. for each Sij and all operations pij , qij in Sij , if pij �ij qij , then h(pij)�H h(qij);

3. if h(rij [x]) = rij [xkl], then wkl [xkl]�H rij [xkl]; and

4. if wij [x]�ij rij [x], then h(rij [x]) = rij [xij].

Condition (1) states that the multiversion history contains the translations of the operations in
each section. Condition (2) states that the multiversion history preserves all the operation orderings
speci�ed by the sections. Condition (3) states that a section cannot read a version before it has
been created. Condition (4) states that if a section writes a data item and subsequently reads it,
then it must read the version written by itself.

Our objective is to characterize multiversion histories that are equivalent to sectionwise serial
one version histories. For this we need the notion of equivalence of histories; this de�nition is similar
to the one given by Bernstein et al. [BHG87]. Before de�ning equivalence we need the notion of
reads from relationship.

De�nition 12 [Sij reads x from Skl] For a one version history, Sij reads x from Skl if wkl [x]�H

rij [x] and there is no wmn [x] such that wkl [x]�H wmn [x]�H rij [x]. For a multiversion history, Sij
reads x from Skl if the operation rij [xkl] is present in the history.

De�nition 13 [Equivalence of Histories] Two histories H and H 0 are said to be equivalent, if
they are de�ned over the same sections and have the same reads from relationship. Two multiversion
histories H

1
and H

2
are equivalent if they have the same operations.

Next we de�ne what it means for a multiversion history to be sectionwise serial.

De�nition 14 [Sectionwise Serial Multiversion History] A multiversion history is sectionwise
serial if for every two sections Sij and Skl that appear in H , either all of Sij 's operations precede all
of Skl 's or vice versa. When all of Sij 's operation precede all of Skl 's operation, Sij is said to precede
Skl .

17

However not all sectionwise serial multiversion histories are equivalent to sectionwise serial one
version histories; this is exactly the same issue as in ordinary multiversion databases [BHG87]. The
following de�nition characterizes those sectionwise serial multiversion histories which are equivalent
to sectionwise serial one version histories.

De�nition 15 [One-Copy Sectionwise Serial Multiversion History] A sectionwise serial mul-
tiversion history H is one-copy sectionwise serial multiversion history if

1. for all ij ; kl , and x , if Sij reads x from Skl , then either ij = kl or Skl is the last section preceding
Sij that writes into any version of x .

2. if Sij precedes Sim in H , then Sim does not precede Sij in the canonical form of Ti .

Finally we de�ne a one-copy sectionwise serializable multiversion history in which sections may
not be executed serially, but the e�ect of the history is the same as a one-copy sectionwise serial
history.

De�nition 16 [One-Copy Sectionwise Serializable Multiversion History] A one-copy sec-
tionwise serializable multiversion history is one that is equivalent to a one-copy sectionwise serial
multiversion history.

In the following section we describe an algorithmwhich generates one-copy sectionwise serializable
histories.

6 Concurrency Control Algorithm

Our algorithm is based on the algorithm by Costich and Jajodia [CJ93] and it is for a kernelized
architecture. The scheduler is divided into two parts: trusted global scheduler which controls the
proper sequencing of sections of a transaction, and untrusted local schedulers at each security level
which are responsible for scheduling the database operations of a section.

Global scheduler: The decomposed transactions are submitted to the global scheduler. The
global scheduler is ready to dispatch a section Sij to the local scheduler when all the sections of Ti

at levels dominated by L(Sij) have completed execution. When Sij is ready to be dispatched, the
global scheduler generates a unique timestamp for Sij , denoted by ts(Sij), and then submits Sij to
the local scheduler at level L(Sij).

Local Scheduler: Our algorithm assumes that all the read sets and write sets of a section are
known in advance. The local scheduler does not execute section Sij until all sections, at dominated
levels with earlier timestamps whose write sets have a non-null intersection with the read set of Sij ,
have committed. The local scheduler then processes the read operations as follows: each rij [x] is
translated into rij [xkl] where xkl is the version written by section Skl and Skl is the section with the
highest timestamp not greater than ts(Sij) which writes into any version of x . The local scheduler
processes write operation as follows: each wij [x] is translated into wij [xij]. The local scheduler after
completing the section successfully or unsuccessfully informs the global scheduler.

6.1 Proof of Correctness

Theorem 1 A history H generated by the concurrency control algorithm is a one-copy sectionwise
serializable history.

18

Proof: Apply the following transformation on the history H : arrange the operations to get a
sectionwise serial historyHs . The order of sections inHs must be the same as the timestamp ordering.
Now we will show that Hs is a one-copy sectionwise serial history. For this we must show two things:
(i) if there is an operation rij [xkl] in Hs , then wkl [xkl] is the last operation preceding rij [xkl] that
writes into any version of x , and (ii) Hs preserves the canonical ordering of the transaction. We prove
(i) by contradiction. Suppose wij [xkl] is not the last operation preceding rij [xkl] to write into any
version of x . In other words, assume there is another operation say wmn [xmn] which is the last write
operation preceding rij [xkl] that writes a version of x . This means that ts(Skl) < ts(Smn) < ts(Sij).
This is not possible because in the algorithm the scheduler translated rij [x] into rij [xkl] implies that
Skl is the section with the highest timestamp not greater than ts(Sij) that writes into any version of
x . Thus we arrive at a contradiction. This means that if Sij reads x from Skl , Skl is the last section
preceding Sij that writes any version of x { thus (i) is satis�ed. For (ii) the proof is as follows. In the
algorithm, the global scheduler assigns a unique timestamp to a section and dispatches the section
to the local scheduler only after the dominated sections of the same transaction have committed.
Hence in a transaction, a section at a dominating level has a higher timestamp than a section at the
dominated level. So in Hs , the section at dominated level will appear before section at dominating
level. Thus Hs preserves the canonical ordering of a transaction. Since Hs satis�es (i) and (ii), it is
a one-copy sectionwise serial history. Since H and Hs are composed of the same operations they are
equivalent; therefore H is a one-copy sectionwise serializable history. 2

6.2 Informal Proof of Security

Having proved that our algorithm generates one-copy sectionwise serializable histories, we now pro-
ceed to prove informally that our algorithm is secure. For proving security we must show the
following: (i) there is no direct illegal information ow from dominating to the dominated levels,
and (ii) our algorithm does not introduce any covert channels.

The multilevel transactions are decomposed into single-level sections. Sections of a transaction
are allowed to read objects at dominated levels and write objects at their own level. Thus we enforce
the simple security and the restricted *-property of the Bell-Lapadula model [San93]; hence there is
no direct information ow from the dominating level to the dominated level.

The proof that our algorithm does not introduce any covert channel proceeds in two parts: (a) no
operation at the dominated level is delayed because of some operation at the dominating level, (b)
no section at dominated level is aborted because of some section at dominating level. First we show
that no operation in a dominated section is delayed by any operation in the dominating section. Let
Sij be the dominated section and Skl be the dominating section. If an operation in Sij is delayed
because of some operation in Skl , then Sij and Skl must be accessing some common data item where
Sij writes the data item and Skl reads it. For i = k , the proof is trivial: according to the algorithm
the dominating section of a transaction is initiated only after the dominated section commits - thus
an operation in Skl cannot delay one in Sij . For i 6= k , the proof is as follows. Since Sij and Skl
are distinct, either ts(Sij) < ts(Skl) or ts(Skl) < ts(Sij). If ts(Sij) < ts(Skl), the algorithm will not
begin executing Skl until Sij has committed; thus an operation in Sij cannot be delayed by one in
Skl . If ts(Skl) < ts(Sij), section Skl will not access any version of any data item written by Sij and
no operation in Sij will be delayed because of an operation in Skl .

Next we show that our algorithm does not abort a dominated section because of some operation
in the dominating section. Let Sij be the dominated section and Skl be the dominating section.
For i = k , the proof is trivial, as the dominated sections of a transaction are committed before the
initiation of the dominating sections. For i 6= k , we must show that Sij is not aborted because of Skl .
For this let us consider the section aborts that may occur for concurrency control reasons. Note that

19

in timestamp based algorithm if a section Sij with a smaller timestamp tries to write a data item
after another section Skl with a larger timestamp has already read the data item, section Sij will
be aborted. In our algorithm this possibility is avoided by requiring sections with later timestamps
to wait until all sections, at dominated levels whose write sets have a non-null intersection with the
read set of the dominating section, have completed execution. In other words, in our algorithm if
Skl has a larger timestamp than Sij , Skl will not be initiated until Sij completes and Sij will not be
aborted for concurrency control reasons.

7 Conclusion

Our contribution in this paper is the development of a semantic-based transaction processing model
for processing multilevel transactions. We have provided the application developer the conceptual
tools necessary to reason about systems in which transactions that ideally should be treated as
atomic { for reasons of analysis { must instead be treated as a composition of sections { for reasons
of security. The developer begins with a speci�cation produced via standard formal methods, de-
composes some transactions in the speci�cation into single-level sections, and assesses the properties
of the resulting system. The formal analysis at each step of this process provides assurance that the
resulting system possesses the desired properties.

Some advantages of the semantic approach are that isolation atomicity { required for algorithms
based on syntactic approach [CJ93, CM92] { is not required, that more concurrency among sections is
allowed, and that the underlying mechanism need not preserve serialization orders between security
levels. The cost of semantic concurrency control is that the set of transactions in an application must
be analyzed o�-line to ensure the set of properties. However, this is a one-time cost incurred during
the speci�cation stage of an application, and not a performance penalty that must be endured during
every execution. For ensuring the properties, proof obligations must be generated and discharged. A
signi�cant challenge of our model is the di�culty of discharging the proof obligations. Towards this
end, in Appendix B we have shown how the SMV model checker [McM92, CGL94] can be used for
analyzing applications of interest. Applications in which the proof obligation associated with some
necessary property cannot be successfully discharged must be revised. Revising the applications
without changing their semantics may not be easy, but at least the developer is aware of the precise
trade o�s between atomicity, consistency, isolation and security.

References

[AAS93] D. Agrawal, A. El Abbadi, and A. K. Singh. Consistency and orderability: Semantics-
based correctness criteria for databases. ACM Transactions on Database Systems,
18(3):460{486, September 1993.

[AG93] J. M. Atlee and J. D. Gannon. State-based model checking of event driven systems
requirements. IEEE Transactions on Software Engineering, 19(1):13{23, January 1993.

[AJR95] P. Ammann, S. Jajodia, and I. Ray. Using formal methods to reason about semantics-
based decomposition of transactions. In Proceedings of the International Conference on

Very Large Databases, pages 218{227, Zurich, Switzerland, September 1995.

[AJR96] P. Ammann, S. Jajodia, and I. Ray. Ensuring atomicity of multilevel transactions. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 74{84, Oakland,
CA, May 1996.

20

[AJR97] P. Ammann, S. Jajodia, and I. Ray. Applying formal methods to semantic-based decom-
position of transactions. ACM Transactions on Database Systems, 22(2):215{254, June
1997.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

[BJMN93] B. T. Blaustein, S. Jajodia, C. D. McCollum, and L. Notargiacomo. A model of atom-
icity for multilevel transactions. In Proceedings of the IEEE Symposium on Research in

Security and Privacy, pages 120{134, Oakland, CA, May 1993.

[BL75] D. E. Bell and L. J. LaPadula. Secure computer system: Uni�ed exposition and multics
interpretation. Technical Report MTR-2997, The MITRE Corporation, Bedford, MA,
July 1975.

[BL96] A. Bernstein and P. Lewis. High performance transaction systems using transaction
semantics. Distributed and Parallel Databases, 4(1):25{47, 1996.

[CGL94] E. M. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-state concurrent
systems. In A Decade of Concurrency { Reections and Perspectives. Springer Verlag,
1994. Lecture Notes in Computer Science 803.

[CJ93] O. Costich and S. Jajodia. Maintaining multilevel transaction atomicity in multilevel
secure database systems with kernelized architecture. In B.M. Thuraisingham and C.E.
Landwehr, editors, Database Security VI: Status and Prospects, pages 249{265. North-
Holland, Amsterdam, 1993.

[CM92] O. Costich and J. McDermott. A multilevel transaction problem for multilevel secure
database system and its solution for the replicated architecture. In Proceedings of the

IEEE Symposium on Research in Security and Privacy, pages 192{203, Oakland, CA,
May 1992.

[F�O89] A. A. Farrag and M. T. �Ozsu. Using semantic knowledge of transactions to increase
concurrency. ACM Transactions on Database Systems, 14(4):503{525, December 1989.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed
database. ACM Transactions on Database Systems, 8(2):186{213, June 1983.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM-SIGMOD International

Conference on Management of Data, pages 249{259, San Francisco, CA, 1987.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco, CA, 1993.

[Jac96] D. Jackson. Niptick: A checkable speci�cation language. In Proceedings of the Workshop

on Formal Methods in Software Practice, San Diego, CA, January 1996.

[KS94] H. F. Korth and G. Speegle. Formal aspects of concurrency control in long-duration
transaction systems using the NT/PV model. ACM Transactions on Database Systems,
19(3):492{535, September 1994.

[McM92] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1992.

21

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic ap-
proach. Communications of the ACM, 19(5):279{285, May 1976.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system. In Deepak
Kapur, editor, Proceedings of the International Conference on Automated Deduction,
pages 748{752, Saratoga, NY, June 1992.

[RKS95] R. Rastogi, H. F. Korth, and A. Silberchatz. Exploiting transaction semantics in multi-
database systems. In Proceedings of the International Conference on Distributed Com-

puting Systems, pages 101{109, Vancouver, Canada, June 1995.

[San93] R. S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9{19, Novem-
ber 1993.

[SBJN96] K. P. Smith, B. T. Blaustein, S. Jajodia, and L. Notargiacomo. Correctness criteria for
multilevel secure transactions. IEEE Transactions on Knowledge and Data Engineering,
8(1):32{45, February 1996.

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual, Second Edition. Prentice-Hall,
Englewood Cli�s, NJ, 1992.

[WVF96] J. M. Wing and M. Vazari-Farahani. A case study in model checking software systems.
Technical Report CMU-CS-96-124, Carnegie Mellon University, Pittsburgh, PA, April
1996. To appear in Science of Computer Programming.

Appendix A { Veri�cation of the Mission Decomposition

In this appendix we show how the properties can be proved manually for the decomposition of the
transactions in the mission database. Note that the speci�cations of the decomposed transactions
are given in Figure 2.

Composition Property

Proof Obligations:

(a) Mission ^ (R1 o
9
R2) n (R1ax ;R1ax 0;C1ax ;C1ax 0), Respond � � � (i)

(b) Mission ^ (C1 o
9 C2) n (R1ax ;R1ax 0;C1ax ;C1ax 0), Cancel � � � (ii)

Proof of (a):

The left hand side of (i) evaluates to

Mission ^ (R1 o
9
R2) n (R1ax ;R1ax 0;C1ax ;C1ax 0)

�Mission

t? : Threat
r? : Resource

STATUS (r?) = Idle

STATUS 0 = STATUS � fr? 7! Busyg
ASSIGN 0 = ASSIGN [fr? 7! t?g

The predicate part of the schema is equivalent to the Respond schema given in Figure 1; hence
the two schemas are equivalent.

Using similar arguments we can prove (b).

22

Isolation Atomicity Property

Proof Obligations:

(a) preR1 ^ Mission , pre(R1 o
9 R2) � � � (i)

(b) preC1 ^ Mission , pre(C1 o
9 C2) � � � (ii)

Proof of (a):

The precondition schemas PreR1, Pre(R1 o
9
R2), which formally compute the preconditions for

R1, (R1 o
9 R2) are given below.

PreR1
DecomposedMission

9 r? : Resource �
STATUS (r?) = Idle

Pre(R1 o

9 R2)
DecomposedMission

9 r? : Resource �
STATUS (r?) = Idle ^
r? 62 domASSIGN

The left hand side of (i) evaluates to

Mission ^ PreR1
DecomposedMission

dom(STATUS B Busy) = domASSIGN ^
9 r? : Resource �
STATUS (r?) = Idle

To prove (a) we must show that the constraint r? 62 domASSIGN in the schema Pre(R1 o
9 R2)

can be derived from the constraints of the schema Mission ^ PreR1. Below we show how this
can be done: Since a resource can be either Busy or Idle, we can write STATUS (r?) = Idle ,
STATUS (r?) 6= Busy . When the integrity constraint dom(STATUS B Busy) = domASSIGN is
satis�ed, STATUS (r?) 6= Busy , r? 62 domASSIGN .

Proof of (b):

The precondition schemas PreC1 and Pre(C1 o
9
C2) which formally compute the preconditions

of C1 and C1 o
9 C2 are given below.

PreC1
DecomposedMission

r? : Resource

STATUS (r?) = Busy

Pre(C1 o
9 C2)

DecomposedMission

r? : Resource

STATUS (r?) = Busy

r? 2 domASSIGN

When the constraints in Mission and PreC1 are satis�ed, STATUS (r?) = Busy) r? 2
domASSIGN , and (b) is proved.

Semantic Atomicity Property

Proof Obligation:

Every correct partial semantic history containing one or more incomplete Respond or Cancel
transaction is a pre�x of a correct complete semantic history.

23

Proof:

The proof that the mission database has the semantic atomicity property proceeds by induction.
In the mission example the transactions Respond and Cancel are decomposed into multiple sections.
We refer to a transaction that has completed one or more but not all the sections as an incomplete
transaction. Suppose we have n incomplete Respond and Cancel transactions. We show how an
incomplete Respond or Cancel transaction can be completed, thereby decreasing the number of
incomplete transactions by at least one. By repeated applications of our argument, it is possible to
reduce the number of incomplete Respond or Cancel transactions to zero, at which point the history
is a complete correct multilevel semantic history.

Consider an incomplete Respond transaction. If the Respond transaction has completed step R1,
the preconditions of the next step R2 may or may not be satis�ed. Suppose the precondition of
the step R2 is not satis�ed; this occurs only when a step C1 executes before the step R1, and the
step C2 has not yet executed, and both the Respond and the Cancel transactions are executing on
the same resource. In such a case, the precondition of the step C2 will be satis�ed which can be
executed. Moreover the postcondition of the step C2 will establish the precondition of step R2 which
can now execute. In this way the Respond transaction can be completed. Using similar arguments,
it can be shown how a Cancel transaction may be completed.

Consistent Execution Property

Proof Obligation:

For any complete semantic history H , if the initial state satis�es the constraints listed in schema
Mission, then the �nal state also satis�es the those constraints.

Proof:

The database is in a consistent state when all the integrity constraints are satis�ed. In the
example, the database will be in a consistent state when dom(STATUSBBusy) = domASSIGN . In
other words, the database will be in a consistent state when dom(R1ax [- R2ax) = ? ^ dom(C1ax [-

C2ax) = ?.

Let gR1ax , gR2ax , gC1ax , gC2ax be the values of the variables in the initial state of the history. In
the initial state when no transactions have been executed the database is in a consistent state and
the following relation holds: dom((gR1ax [- gR2ax) = ? ^ (gC1ax [- gC2ax)) = ?.

Let dR1ax , dR2ax , dC1ax , dC2ax be the values of the variables at the end of the complete history.
Note that the variable R1ax is updated in section R1 and variable R2ax is updated similarly in
section R2. Hence, when all the Reserve transactions have completed execution, the variables
R1ax and R2ax are changed in the same way. Therefore, at the end of the complete history,
dom((dR1ax [- dR2ax) = dom((gR1ax [- gR2ax)

Similarly when all Cancel transactions have completed execution, dom((dC1ax[- dC2ax) = dom((gC1ax[-

gC2ax)

Thus at the end of the complete history, dom((dR1ax [- dR2ax) = ? ^ (dC1ax [- dC2ax)) = ?.
Therefore when all transactions have completed execution, the database is in a consistent state.

Sensitive Transaction Isolation Property

Proof Obligation:

The Report transaction outputs consistent data.

24

Proof:

The sensitive transaction isolation property is achieved by construction.

Consider the Report transaction. We compute the subset of the original invariants that must
hold as a precondition for Report . For this case all the state variables in Mission are involved in
the computation of outputs of Report . Thus all the original invariants of Mission must be satis�ed
for Report to generate consistent output. In other words, the original invariant dom(STATUS B
fBusyg) = dom(ASSIGN) must be included as an explicit precondition for Report1. Instead of
including such a complex precondition for Report , we include the more simpler precondition R1ax =
R2ax ^ C1ax = C2ax . We do this because simple preconditions are evaluated faster than complex
ones. Note that (R1ax = R2ax ^ C1ax = C2ax) ensures that the original invariant dom(STATUSB
fBusyg) = domASSIGN will be satis�ed.

For the mission database we have no transactions in which outputs are generated in multiple
steps. Thus the problem of outputs from later steps not being consistent with outputs from earlier
steps does not arise in this example.

Appendix B { Automated Veri�cation of the Mission Decom-

position

In this appendix we show how we can automatically verify the mission decomposition. We use the
SMV model checker [McM92, CGL94] for the automated analysis. The model checker cannot directly
verify the mission decomposition as the speci�cation does not represent a �nite state machine. To
solve this problem, we developed a �nite state abstraction which can be veri�ed by the model checker.
In the following paragraphs we describe briey the SMV model checker, the �nite state abstraction
of the mission database, the speci�cation of the properties, the input and the output produced by
the model checker.

The SMV Model Checker

The input to the symbolic model checker is a SMV program. The program contains declarations of
state variables, the initial states of the variables, the transition relations that changes the state of
the variables and the speci�cation of the properties to be veri�ed. A variable can be of the following
types: boolean, scalar and �xed arrays. The SMV init and next functions de�ne the initial value
and the next-state value for a state variable. The next functions are usually speci�ed with the case
expression. A case expression returns the �rst expression on the right hand side of the colon (:), such
that the corresponding condition on the left hand side is true. The properties to be veri�ed must be
speci�ed as Computational Tree Logic (CTL) formulae. A CTL formula is a boolean expression, an
existential (E) path formula, a universal (A) path formula, or the application of standard boolean
operators to CTL formulae. A path formula is the application of the temporal operators next (X),
eventually (F), or globally (G), to a CTL formula.

The SMV produces as output the result of verifying the properties. For each property, it either
displays the result that the property holds, or it produces a counterexample illustrating the violation
of the property.

Finite State Abstraction of the Mission Database

In the following paragraphs we describe a very simple �nite model of the mission database.

25

State Variables

The �nite model has two resources and three possible threats. The ids of the two resources are
1 and 2 respectively. The variable status gives the status information of each resource; status is
speci�ed as a �xed array. status[x] gives the status of resource x { the status of resource x can take
on two values: 0 (indicating that resource x is Idle) or 1 (indicating that resource x is Busy). rr,
cr denote the respective resource input to the Respond and Cancel transaction. When the input is
Respond (Cancel), rr (cr) equals 1 or 2; at other times it is equal to 0. The input must be passed
as parameters from one step to another. rp (cp) denotes the parameter that must be passed from
section R1 (C1) to R2 (C2). rp is speci�ed as a �xed array; if x is an input parameter that must be
passed from section R1 to R2, rp[x] equals 1, otherwise it is 0. cp is speci�ed similarly. The three
possible threats are denoted by a, b and c; the threat input to the Respond transaction, denoted by
rt, can take on any of these three values. The variable assign which stores the assignment of resource
to threat information is speci�ed as a �xed array. assign[x] denotes the threat to which resource x is
assigned. When resource x is not assigned to any threat, the value of assign[x] is n.

The auxiliary variables r1ax, r2ax, c1ax, c2ax are speci�ed as �xed arrays. r1ax[x] gives the
number of times section R1 has executed with resource x as its input. r1ax[x] can take on any values
in the range 0 to 3. r2ax[x] denotes the the number of times section R2 has executed with resource
x as its input. c1ax, c2ax are speci�ed similarly.

We have one variable inputwhich enumerates all possible types of sections in the mission database.
To ensure that the range of the auxiliary variable does not limit the number of sections that can
be executed in the �nite state model, we introduce a dummy section known as AuxInit. AuxInit

decrements the value of the auxiliary variables in the �nite state model but does not alter the
database objects. The other sections are responsible for changing the auxiliary variables and the
database objects.

To verify the sensitive transaction isolation property we need a ag variable, ReportJustExecuted,
that indicates whether ReportD has been executed.

State Initialization

The initial state of each variable is speci�ed by the init function. In the initial state when no
transaction has executed r1ax[x] is set to 0; similarly, all other auxiliary variables are assigned to 0.
Since all resources are idle in the initial state and no resource is assigned to any threat, status[x] and
assign[x] are assigned the values 0 and n respectively. Initially no ReportD has been executed, and
so ReportJustExecuted is initialized to N.

State Transformation

The value of the variable is changed according to the next function. The next function is speci�ed by
a case expression. Each step which updates a state variable contribute at least one case statement
in the expression. The left hand side of the colon (:) is an expression which is conjunction of the
following: (i) the name of the step activating the state change, (ii) the preconditions of the step,
(iii) if no direct assignment is made to the variable, extra preconditions to check that the variable
lies within the speci�ed range, (iv) a precondition to check that the counter variable is within the
speci�ed range. The right hand side of the colon (:) speci�es how the variable must be updated if
the left hand expression is satis�ed. The last statement in the case expression speci�es the default
value of the variable in case none of the previous cases have been satis�ed. The left hand side of the
last case statement is 1; if the state variable represents a ag variable the right hand side equals N,
otherwise the right hand side speci�es the current value of the variable.

26

The initialization and state transformation of the variable status[1] is given below.

init(status[1]) := 0;

next(status[1]) := case

(input = R1) & (rr = 1) & (status[1] = 0) & (r1ax[1] < maxaux) : 1;

(input = C1) & (cr = 1) & (status[1] = 1) & (c1ax[1] < maxaux) : 0;

1 : status[1];

esac;

Specifying the Generalized Integrity Constraints and Properties in CTL

Generalized Integrity Constraints

The generalized integrity constraints must be satis�ed by all states of the model and so they are
speci�ed as invariants. Below we describe how each generalized integrity constraint is mapped to
the corresponding CTL formula.

(i) Each resource can be either busy or idle. The de�nition of status as a �xed array ensures
this constraint; the variable status[x] denoting the status of rooms x allows status[x] to take only one
value: 0 or 1.

(ii) Each resource can be assigned to at most one threat. The de�nition of assign as a �xed array
takes care of this constraint; assign[x] can take only one value which means that at most one guest
can be assigned to a room.

(iii) The set of resources with status busy and the set of resources whose assignment has been
canceled equals the set of resources assigned to threats together with the set of resources whose
status has been changed to busy but which are not yet assigned to threats.

SPEC AG((status[1] | (c1ax[1] - c2ax[1] > 0)) <->

(!(assign[1] = n) | (r1ax[1] - r2ax[1] > 0)))

SPEC AG((status[2] | (c1ax[2] - c2ax[2] > 0)) <->

(!(assign[2] = n) | (r1ax[2] - r2ax[2] > 0)))

Semantic Atomicity Property

The semantic atomicity property ensures that when a transaction has been partially executed, then it
will eventually complete. Semantic atomicity involves showing that in any state, if the preconditions
of R2 or C2 are not satis�ed, then in that state there are no outstanding incomplete Respond or
Cancel transactions. The corresponding CTL formula is given below.

SPEC AG(!((rp[1] & (assign[1] = n) & (r1ax[1] > r2ax[1]) & (r2ax[1] < maxaux))

| (rp[2] & (assign[2] = n) & (r1ax[2] > r2ax[2]) & (r2ax[2] < maxaux))) &

!((cp[1] & !(assign[1] = n) & (c1ax[1] > c2ax[1]) & (c2ax[1] < maxaux)) |

(cp[2] & !(assign[2] = n) & (c1ax[2] > c2ax[2]) & (c2ax[2] < maxaux)))

-> (r1ax[1] = r2ax[1]) & (r1ax[2] = r2ax[2]) &

(c1ax[1] = c2ax[1]) & (c1ax[2] = c2ax[2]))

In the next section we show the input that was presented to the SMV model checker.

27

Consistent Execution Property

The consistent execution property requires the original integrity constraints (speci�ed in Section 2.1)
to hold after the completion of all transactions. Note that the �rst two invariants speci�ed in Section
7 correspond to the original integrity constraints and they hold in every state in the decomposed
speci�cation. Only the last invariant (iii) corresponds to a generalized integrity constraint. Thus for
the consistent execution property we need to show that when all the Respond and Cancel transactions
complete, the original integrity constraints corresponding to only item (iii) is satis�ed.

Before specifying the consistent execution property we need to show the speci�cation of the
original integrity constraints corresponding to item (iii). This is as follows:

(iii) The set of resources with status Busy equals the set of resources assigned to threats. The
CTL formula is:

SPEC AG(status[1] <-> !(assign[1] = n))

SPEC AG(status[2] <-> !(assign[2] = n))

When all Respond transactions complete, the following conditions hold: (i) r1ax[1] = r2ax[1], (ii)
r1ax[2] = r2ax[2], (iii) c1ax[1] = c2ax[1], and (iv) c1ax[2] = c2ax[2].

The speci�cation of the consistent execution property in CTL is given below.

SPEC AG(((r1ax[1] = r2ax[1]) & (r1ax[2] = r2ax[2]) & (c1ax[1] = c2ax[1])

& (c1ax[2] = c2ax[2])) ->

((status[1] <-> !(assign[1] = n)) &

(status[2] <-> !(assign[2] = n))))

Sensitive Transaction Isolation Property

The sensitive transaction isolation property involves verifying that transactionReport is not executed
when there are any incomplete Respond or Cancel transaction. The CTL formula shown below
speci�es this property.

SPEC AG((!(r1ax[1] = r2ax[1]) | !(r1ax[2] = r2ax[2]) |

!(c1ax[1] = c2ax[1]) | !(c1ax[2] = c2ax[2]))

-> (ReportJustExecuted = N))

Input to the SMV Model Checker

MODULE main

VAR

input : {R1,R2,C1,C2,ReportD,AuxInit};

status : array 1..2 of boolean;

assign : array 1..2 of {a,b,c,n};

r1ax :array 1..2 of 0..3;

r2ax :array 1..2 of 0..3;

c1ax :array 1..2 of 0..3;

c2ax :array 1..2 of 0..3;

rr : {0,1,2} ;

28

cr : {0,1,2} ;

rp : array 1..2 of boolean;

cp : array 1..2 of boolean;

rt : {a,b,c} ;

ReportJustExecuted : {Y,N};

SPEC AG((status[1] | (c1ax[1] - c2ax[1] > 0)) <->

(!(assign[1] = n) | (r1ax[1] - r2ax[1] > 0)))

SPEC AG((status[2] | (c1ax[2] - c2ax[2] > 0)) <->

(!(assign[2] = n) | (r1ax[2] - r2ax[2] > 0)))

SPEC AG(((r1ax[1] = r2ax[1]) & (r1ax[2] = r2ax[2]) & (c1ax[1] = c2ax[1])

& (c1ax[2] = c2ax[2])) ->

((status[1] <-> !(assign[1] = n)) & (status[2] <-> !(assign[2] = n))))

SPEC AG((!(r1ax[1] = r2ax[1]) | !(r1ax[2] = r2ax[2]) |

!(c1ax[1] = c2ax[1]) | !(c1ax[2] = c2ax[2])) -> (ReportJustExecuted = N))

SPEC AG(!((rp[1] & (assign[1] = n) & (r1ax[1] > r2ax[1]) & (r2ax[1] < maxaux))

| (rp[2] & (assign[2] = n) & (r1ax[2] > r2ax[2]) & (r2ax[2] < maxaux))) &

!((cp[1] & !(assign[1] = n) & (c1ax[1] > c2ax[1]) & (c2ax[1] < maxaux))

| (cp[2] & !(assign[2] = n) & (c1ax[2] > c2ax[2]) & (c2ax[2] < maxaux)))

-> (r1ax[1] = r2ax[1]) & (r1ax[2] = r2ax[2]) & (c1ax[1] = c2ax[1]) &

(c1ax[2] = c2ax[2]))

DEFINE

maxaux := 3;

ASSIGN

init(status[1]) := 0;

next(status[1]) := case

(input = R1) & (rr = 1) & (status[1] = 0) & (r1ax[1] < maxaux) : 1;

(input = C1) & (cr = 1) & (status[1] = 1) & (c1ax[1] < maxaux) : 0;

1 : status[1];

esac;

init(status[2]) := 0;

next(status[2]) := case

(input = R1) & (rr = 2) & (status[2] = 0) & (r1ax[2] < maxaux) : 1;

(input = C1) & (cr = 2) & (status[2] = 1) & (c1ax[2] < maxaux) : 0;

1 : status[2];

esac;

init(r1ax[1]) := 0;

next(r1ax[1]) := case

(input = R1) & (rr=1) & (status[1] = 0) & (r1ax[1] < maxaux) : r1ax[1] + 1;

(input = AuxInit) & (r1ax[1] >= r2ax[1]) : r1ax[1] - r2ax[1];

1: r1ax[1] ;

29

esac;

init(r1ax[2]) := 0;

next(r1ax[2]) := case

(input = R1) & (rr=2) & (status[2] = 0) & (r1ax[2] < maxaux) : r1ax[2] + 1;

(input = AuxInit) & (r1ax[2] >= r2ax[2]) : r1ax[2] - r2ax[2];

1: r1ax[2] ;

esac;

init(c1ax[1]) := 0;

next(c1ax[1]) := case

(input = C1) & (cr=1) & (status[1] = 1) & (c1ax[1] < maxaux) : c1ax[1] + 1;

(input = AuxInit) & (c1ax[1] >= c2ax[1]) : c1ax[1] - c2ax[1];

1 : c1ax[1];

esac;

init(c1ax[2]) := 0;

next(c1ax[2]) := case

(input = C1) & (cr=2) & (status[2] = 1) & (c1ax[2] < maxaux) : c1ax[2] + 1;

(input = AuxInit) & (c1ax[2] >= c2ax[2]) : c1ax[2] - c2ax[2];

1 : c1ax[2];

esac;

init(r2ax[1]) := 0;

next(r2ax[1]) := case

(input = R2) & rp[1] & (assign[1] = n) & (r1ax[1] > r2ax[1]) &

(r2ax[1] < maxaux) : r2ax[1] + 1;

(input = AuxInit) : 0;

1: r2ax[1] ;

esac;

init(r2ax[2]) := 0;

next(r2ax[2]) := case

(input = R2) & rp[2] & (assign[2] = n) & (r1ax[2] > r2ax[2])

& (r2ax[2] < maxaux) : r2ax[2] + 1;

(input = AuxInit) : 0;

1: r2ax[2];

esac;

init(c2ax[1]) := 0;

next(c2ax[1]) := case

(input = C2) & !(cp[1] = 0) & !(assign[1] = n) & (c1ax[1] > c2ax[1])

& (c2ax[1] < maxaux) : c2ax[1] + 1;

(input = AuxInit) : 0;

1 : c2ax[1];

esac;

init(c2ax[2]) := 0;

next(c2ax[2]) := case

30

(input = C2) & !(cp[2] = 0) & !(assign[2] = n) & (c1ax[2] > c2ax[2])

& (c2ax[2] < maxaux) : c2ax[2] + 1;

(input = AuxInit) : 0;

1 : c2ax[2];

esac;

init(assign[1]) := n;

next(assign[1]) := case

(input = R2) & rp[1] & (assign[1] = n) & (r1ax[1] > r2ax[1]) &

(r2ax[1] < maxaux) : rt;

(input = C2) & cp[1] & !(assign[1] = n) & (c1ax[1] > c2ax[1])

& (c2ax[1] < maxaux) : n;

1 : assign[1];

esac;

init(assign[2]) := n;

next(assign[2]) := case

(input = R2) & rp[2] & (assign[2] = n) & (r1ax[2] > r2ax[2])

& (r2ax[2] < maxaux) : rt;

(input = C2) & cp[2] & !(assign[2] = n) & (c1ax[2] > c2ax[2])

& (c2ax[2] < maxaux) : n;

1 : assign[2];

esac;

init(ReportJustExecuted) := N;

next(ReportJustExecuted) := case

(input = ReportD) & (r1ax[1] = r2ax[1]) & (r1ax[2] = r2ax[2])

& (c1ax[1] = c2ax[1]) & (c1ax[2] = c2ax[2]) : Y ;

1 : N;

esac;

init(rr) := 0;

next(rr) := case

(input = R1) : {1,2};

1 : 0;

esac;

init(cr) := 0;

next(cr) := case

(input = R1) : {1,2};

1 : 0;

esac;

init(rp[1]) := 0;

next(rp[1]) := case

(input = R1) & (rr=1) & (status[1] = 0) & (r1ax[1] < maxaux) : 1;

(input = R2) & (rp[1]) & (assign[1] = n) & (r1ax[1] > r2ax[1]) &

(r2ax[1] < maxaux) : (!(r1ax[1] - r2ax[1] - 1 = 0));

1 : rp[1];

31

esac;

init(rp[2]) := 0;

next(rp[2]) := case

(input = R1) & (rr=2) & (status[2] = 0) & (r1ax[2] < maxaux) : 1;

(input = R2) & (rp[2]) & (assign[2] = n) & (r1ax[2] > r2ax[2]) &

(r2ax[2] < maxaux) : (!(r1ax[2] - r2ax[2] - 1 = 0));

1 : rp[2];

esac;

init(cp[1]) := 0;

next(cp[1]) := case

(input = C1) & (cr=1) & (status[1] = 1) & (c1ax[1] < maxaux) : 1;

(input = C2) & (cp[1]) & !(assign[1] = n) & (c1ax[1] > c2ax[1]) &

(c2ax[1] < maxaux) : (!(c1ax[1] - c2ax[1] - 1 = 0));

1 : cp[1];

esac;

init(cp[2]) := 0;

next(cp[2]) := case

(input = C1) & (cr=2) & (status[2] = 1) & (c1ax[2] < maxaux) : 1;

(input = C2) & (cp[2]) & !(assign[2] = n) & (c1ax[2] > c2ax[2]) &

(c2ax[2] < maxaux) : (!(c1ax[2] - c2ax[2] - 1 = 0));

1 : cp[2];

esac;

The output produced by executing the SMV model checker on this input is presented next.

7.1 Output Produced by the SMV Model Checker

-- specification AG (status[1] | c1ax[1] - c2ax[1] > 0 <-... is true

-- specification AG (status[2] | c1ax[2] - c2ax[2] > 0 <-... is true

-- specification AG (r1ax[1] = r2ax[1] & r1ax[2] = r2ax[2... is true

-- specification AG (!r1ax[1] = r2ax[1] | !r1ax[2] = r2ax... is true

-- specification AG (!(rp[1] & assign[1] = n & r1ax[1] > ... is true

resources used:

user time: 30.1833 s, system time: 0.35 s

BDD nodes allocated: 54881

Bytes allocated: 1703936

BDD nodes representing transition relation: 5098 + 1

32

