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Abstract—Location obfuscation using cloaking regions pre-
serves location anonymity by hiding the true user among a
set of other equally likely users. Furthermore, a cloaking
region should also guarantee that the type of queries issued
by users within the region are mutually diverse enough. The
first requirement is fulfilled by satisfying location k-anonymity
while the second one is ensured by satisfying query ℓ-diversity.
However, these two models are not sufficient to prevent the
association of queries to users when the service depends on
continuous location updates. Successive cloaking regions for
a user may be k-anonymous and query ℓ-diverse but still
be prone to correlation attacks. In this paper, we provide a
formal analysis of the privacy risks involved in a continuous
location-based service, and show how continuous queries can
invalidate the privacy guarantees provided by k-anonymity
and ℓ-diversity. Drawing upon the principle of m-invariance
in database privacy, we show how query m-invariance can
provide location and query privacy in continuous services.

Keywords-query privacy, continuous location-based services

I. INTRODUCTION

Technological advances in location tracking and its grow-

ing embedment in mobile devices have opened up a new

spectrum of on-demand services. These services deliver

customized information based on the location of a mobile

object. A location-based service (LBS) may simply provide

information on the nearest gas station, perform targeted

marketing by location-based advertising, or enhance emer-

gency response services, among others. Application domains

are potentially endless with location-tracking technology.

However, a serious concern surrounding their acceptance is

the potential usage of the location data to infer sensitive

personal information on the mobile users.

Privacy in location-based services has been studied from

two different perspectives – location anonymity and query

privacy. Location anonymity is related to the disclosure of

exact locations that a user has visited. This knowledge can

in turn reveal personal lifestyles, places of frequent visits, or

even the medical problems of the involved user. With access

to exact location data, sender anonymity can be violated

without the capability to track a mobile user. Location obfus-

cation is therefore one of the widely researched approaches

to safeguard location anonymity. This technique guarantees

that the location data received at the LBS provider can be

associated back to more than one object – to at least k
objects under the location k-anonymity model [1]. For this,

a cloaking region is communicated to the service provider

instead of the actual location. A k-anonymous cloaking

region contains at least k − 1 other mobile users besides

the service user.

Query privacy is related to the disclosure of sensitive

information in the query itself and its association to a user.

Consider a marketing agency such as CellFire R© that delivers

mobile coupons to users based on their location and category

of interest. The retail partners sponsoring such an agency

are spread out across multiple categories, ranging from ap-

parels, groceries, automotives, entertainment, electronics to

insurance, telecommunication, marketing and fitness. Each

category in itself can be sub-divided; apparels, for example,

can be divided into men’s, women’s or children’s. Users

therefore use service attribute identifiers that specify their

interest category. More often than not, a user’s service

attribute value is considered sensitive since it directly re-

veals personal preferences (or requirements) of the user.

Addressing the sensitivity is more important in a service

like GoogleTM Adwords that can perform location-based

marketing on virtually any area of interest. Query privacy

is therefore an essential requirement. It has a more direct

impact on user privacy than location anonymity.

A. Motivation

Preservation of query privacy in a LBS is similar to

protection against attribute disclosures in data privacy. A

typical principle used in this context is query ℓ-diversity [2].
A cloaking region conforming to query ℓ-diversity contains

users with at least ℓ “well-represented” service attribute

values. One way of enforcing the principle is to ascertain

that there are users with at least ℓ distinct interest categories.
Henceforth, any reference to query ℓ-diversity implies this

particular enforcement. Query ℓ-diversity ensures that a user

cannot be linked to less than ℓ distinct service attribute val-

ues, thereby preventing homogeneity attacks [3]. However,

this approach is not sufficient to prevent query disclosures

in a continuous location-based service.

A continuous LBS is one to which users issue recurrent

queries over a period of time. Each query is accompanied
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time user set service attribute values

t1 {U1, U2, U3} {a, b, c}
t2 {U1, U2, U4} {a, b, d}
t3 {U1, U3, U4} {a, c, d}

Table I: Successive query 3-diverse cloaking regions.

by current location information in order to obtain updated

results. An example is a mobile user cruising through an

urban locality and repeatedly using a marketing service to

find the real estates on sale in the neighborhood. In an

attempt to maintain privacy, the continuous LBS in this case

receives a sequence of cloaking regions corresponding to

the recurrent queries. Let us assume that the set of users

inside the cloaking regions and their service attribute values

are as shown in Table I. All cloaking regions generated

for the involved user are query 3-diverse and location 3-
anonymous. However, given the information that the three

cloaking regions are generated for the same user repeatedly

inquiring about a particular category of interest, it is evident

that the attribute value of interest is ‘a’. Further, U1 being the

only user common in all the cloaking regions, an adversary

infers that U1 has an interest in the category ‘a’. This

form of disclosure occurs because existing models providing

query privacy do not consider the possibility of correlating

consecutive sets of service attribute values generated during

the recurrent use of a LBS. New techniques are therefore

required to ensure that users of continuous location-based

services are well protected from threats originating from

query disclosures.

B. Related Work

While significant research has gone into algorithms that

enforce location anonymity [1], [4], [5], [6], very few of

them address the problem in the context of a continuous

LBS. Gruteser and Liu specifically investigate privacy issues

in continuous LBS [7]. They argue that privacy in continuous

LBS applications can be situation dependent, hence pressing

the requirement for sensitive and insensitive areas. Hoh and

Gruteser propose a perturbation algorithm to cross paths

of users (by exchanging their pseudonyms) when they are

close to each other [8]. However, these approaches rely

on the exchange of exact location information with the

LBS. Bettini et al. first introduced historical k-anonymity
as an extension of k-anonymity to a continuous LBS [9].

They propose a spatio-temporal generalization algorithm to

compute cloaking regions that always contain at least k fixed

users. Xu and Cai propose an information theoretic measure

of anonymity in continuous LBS [10]. They define a k-
anonymity area as the cloaking region whose entropy is at

least k. However, the algorithm is prone to inversion attacks

where an adversary uses knowledge of the anonymizing

algorithm to breach privacy. The most recent of algorithms

to enforce historical k-anonymity is ProvidentHider [11].

However, none of these algorithms consider query privacy.

Chow and Mokbel argue that spatial cloaking algorithms

should satisfy the k-sharing and memorization properties to

be robust against service attribute associations [12]. Query

privacy is preserved by ensuring that more than one user

in the cloaked region is interested in the same service

attribute value as the issuer. We later refer to this as

many-to-one queries. Given the restriction that the cloaking

region must memorize and maintain a fixed set of users,

the size of the induced cloaking region becomes an issue

with this technique. Riboni et al. argue that an adversary

may derive an association between a user and a service

attribute value based on the distribution of service attribute

values in the cloaking regions generated for the user [13].

Therefore, they propose generalizing service attribute values

so that the distance between the distribution of service

attribute values in cloaking regions for the user and that

in regions generated for other users is below a threshold.

Besides the fact that generalizing service attributes adversely

affects service quality, it is also not clear if performing

such generalizations can prevent disclosures emerging from

correlations in consecutive cloaking regions. The t-closeness
model [14] on which their algorithm is based upon is itself

known to be sensitive to the distance metric.

C. Contributions

This paper presents the first formal analysis of privacy

attacks leading to query disclosures in a continuous LBS.

We explicitly characterize the privacy threats under con-

sideration and state the background knowledge required to

execute the underlying attacks. We model the attacks that

can lead to query disclosures and formally show how a

technique such as query ℓ-diversity fails to provide query

privacy in a continuous LBS. While the threats analyzed here

are new in the context of location-based services, similar

problems have been explored for privacy protection during

the re-publication of dynamic microdata. The principal of m-

invariance [15] is of particular interest here because of the

similarity in privacy issues it helps resolve and those present

in a continuous LBS. Drawing upon the privacy guarantees

of m-invariance, we formulate the principle of query m-

invariance and show how it can be used to control the

amount of risk present in the use of a continuous LBS. We

further propose a cloaking algorithm to efficiently enforce

the principle. The algorithm uses a partitioning scheme

of the query m-invariant user set so that service quality

is not severely affected due to the privacy requirements.

We supplement all analysis with extensive experimental

validation.

The remainder of the paper is organized as follows.

Section II presents the system architecture and highlights

the requirement for query m-invariance. The cloaking al-

gorithm is presented in Section III. Section IV details the
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experimental setup and results from the comparative study.

Finally, Section V concludes the paper.

II. PREVENTING QUERY DISCLOSURES

Formal evaluation of privacy attacks and preservation

techniques is difficult without explicitly stating the extent

of an adversary’s knowledge. Earlier studies have identified

two attack categories – identity inferencing (association of a

user with the location(s) it has visited) and query association

(inference of the sensitive attribute(s) involved in a user’s

request).

The extent of success while executing attacks in these cat-

egories is decided by the adversary’s background knowledge.

In this study, we assume that the adversary’s background

knowledge is in terms of location information of one or more

users. Based on the availability of location information, we

categorize the adversaries into two types.

(i) Location-unaware adversaries: This type of adversary

does not posses knowledge of exact user locations. However,

identity inferencing by such adversaries is possible when

the revealed location data corresponds to a private address

(restricted space identification) or can be associated to a user

based on observed evidence (observation identification). If

the location data is from a continuous LBS, then trajectories

can also be linked to a user. Location k-anonymity prevents

such inferencing by cloaking the exact location data inside

a bounding box containing at least k users. However, a

k-anonymous cloaking region can implicitly reveal service

attributes if all users in it specify the same (or similar)

values. Query ℓ-diversity prevents such attacks by ensuring

that a cloaking region contains users with at least ℓ distinct

attribute values.

(ii) Location-aware adversaries: This type of adversary

has exact location information on one or more users, and

possibly at multiple time instances. User identities are there-

fore assumed to be known to the adversary. Hence, exact

location data may be communicated to the LBS. However,

location-aware adversaries cannot infer service attributes

from the location knowledge as long as every location

communicated to the LBS is query ℓ-diverse. In other words,

a service request should involve a set of ℓ distinct attribute

values (one of which is the real one) for every location

update. Note that one cannot dismiss the absence of location-

unaware adversaries in a given setting. Hence, cloaking

regions are still used instead of exact locations.

A continuous LBS introduces other threats in the presence

of location-aware adversaries. Given that both types of

adversaries may be present, a LBS may adopt one of the

following two methods to prevent query association.

(a) Many-to-one queries: In this method, a k-anonymous

cloaking region communicated to the LBS is associated

with a single service attribute (the one belonging to the

actual user). Therefore, there are at least k potential users

who may be the owner of the service attribute. However, if

only one user is common across all the cloaking regions,

then the attribute value must be associated with that user.

Therefore, a stronger requirement, often called historical

k-anonymity [9], is enforced where every cloaking region

must invariably contain a set of k fixed users. However,

historical k-anonymity can lead to large cloaking regions if

the invariant users move away from each other over time.

(b) Many-to-many queries: In this method, a cloaking

region is communicated to the LBS with a set of service

attribute values (ones belonging to the users inside the

region). Query association is prevented here by enforcing

query ℓ-diversity in the set of attribute values. However, as

highlighted in Section I-A, query ℓ-diversity is not sufficient

in a continuous LBS.

Our focus in this paper is in the second strategy of

prevention. We shall discuss the system architecture in

accordance with this strategy and then show how query m-

invariance eliminates the issues with query ℓ-diversity in a

continuous LBS.

A. System architecture

Fig. 1 depicts our system consisting of interactions be-

tween three layers – (i) mobile users, (ii) a trusted anonymity

server, and (iii) a continuous LBS provider. The trusted

anonymity server acts as a channel for any communication

between mobile users and continuous LBS providers. All

privacy guarantees are therefore enforced at the trusted

anonymity server. A mobile user U initiates a service session

by registering itself with the anonymity server. The regis-

tration process includes the exchange of current location

information and service parameters. The service parameters

collectively signify a service attribute value (U .S) for use

with the LBS, as well as the anonymity level to enforce while

generating the requests. The service attribute is considered

sensitive information whose disclosure results in a privacy

breach. The anonymity server generates a set of cloaking

regions A1, . . . , An and a set S of service attribute values

for the requesting user. The user is present in one of these

regions. Multiple range queries are then issued to the LBS

provider for each of these regions, denoted as (Ai, S) in

the figure. The LBS generates the results for each query

such that a user anywhere in the cloaking region Ai with

an interest in any of the values in S is served. A candidate

result set is formed by merging all results from the multiple

range queries. The anonymity server then filters the result

set and communicates the accurate result to the mobile

user. A request is suppressed (dropped) when the anonymity

requirements cannot be met. The mobile user periodically

updates its location with the anonymity server and receives

updated results. The user unregisters and terminates the

session when the service is no longer required. We assume

that a user does not change its service attribute value during

a session. A separate session is started if a request with

different service parameters is to be made. Therefore, a user
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Figure 1: Schematic of the system architecture.

can have multiple sessions running at the same time. Without

any loss of generality, we assume that every user has a single

running session at most.

B. Query associations in a continuous LBS

The purpose of a cloaking region is to make a given

mobile user U indistinguishable from a set of other users.

This set of users, including U , forms the anonymity set of U .
For the purpose of range queries, a cloaking region for U is

usually characterized by the minimum bounding rectangle

(MBR) of the users in its anonymity set. The area of a

cloaking region depends on the size of the anonymity set, as

well as the time instance. Given a cloaking region R at time

t, we shall use the notation Users(R, t) to signify the set

of users inside R at time instance t. Our system architecture

uses multiple cloaking regions A1, . . . , An while serving a

single request. The requirement for this is discussed later.

In the following discussion, the cloaking region of a user is

the MBR of the set of users that appear in at least one Ai.

Definition 1: (Session Profile) Let R1, . . . , Rn be the

cloaking regions of a user U at time instances t1, . . . tn
respectively during a particular session, where ti > tj for

i > j. Let S1, . . . , Sn be the set of service attribute values of

users in the successive anonymity sets of U at different time

instances, i.e. Si = {u.S|u ∈ Users(Ri, ti)}. The session

profile of U is then the set SP (U) = ∪n
i=1({ti}×{Ri}×Si).

An entry in a session profile is therefore of the form

〈t,R,S〉. For an e ∈ SP (U), we shall use e.t, e.R and e.S
to denote the corresponding terms. We shall also refer to U
as the owner of the session profile. Consider the movement

of the users shown in Fig. 2. Let us assume that a session for

U lasted for three time stamps t1, t2 and t3, during which

the 2-diverse cloaking regions R1, R2 and R3 are generated.

Note that users other than U may terminate their session

while U ’s session is in progress. As a result, their service

attribute value may change during U ’s session. Table IIa lists

the session profile of U w.r.t. this session.

Ideally, no knowledge on the owner of the session is

required to form a session profile. A continuous LBS can

improve service quality if successive requests from the same

user can be distinguished from others [16]. Hence, the
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Figure 2: Example showing movement of users during a

particular session registered to U . Values within the circles

signify service attribute values of the users. Each cloaking

region generated for U is 2-diverse and 3-anonymous.

t R S

1 t1 R1 a

2 t1 R1 b

3 t1 R1 c

4 t2 R2 a

5 t2 R2 b

6 t3 R3 a

7 t3 R3 b

(a) SP (U)

t x y u

1 t1 5.1 2.3 Alice

2 t1 6.4 1.8 Bob

3 t2 5.8 3.6 Alice

4 t2 6.9 3.5 Bob

5 t3 5.9 5.8 Alice

6 t3 9.2 5.5 Bob

(b) BK(U)

Table II: Session profile SP (U) and background knowledge

BK(U) used during a query association attack on U .

anonymity server typically maintains some session identifier

with the continuous LBS. All cloaking regions with the same

identifier belong to the same user. This information, along

with the request logs (time stamp and attribute values) accu-

mulated at the LBS, is sufficient to build the session profile.

The objective is to accurately associate a service attribute

value to the owner of the profile. Note that, under a location-

aware adversary model, identification of the owner of the

profile implies a successful query association only when the

anonymity server uses the many-to-one system of querying

the LBS. In a many-to-many system, the adversary will still

have to associate one of the many attribute values to the

owner. Next, we formally state the background knowledge

of the location-aware adversary that can be used to link the

owner to its service attribute value.

Definition 2: (Background Knowledge) The background

knowledge of an adversary is a set BK of tuples of the form

〈t, x, y, u〉 which implies that the user u is known to have

been at the location (x, y) at time instance t.

We shall only consider a subset of the background knowl-

edge possessed by an adversary. This subset corresponds to

the information that is relevant to perform a query associa-

tion along with the data in a session profile. Given a session

profile SP (U), the background knowledge corresponding

to the session is given as BK(U) = {b ∈ BK|i ∈
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BK(U) SP (U)

1: Alice 2: b

2: Bob 2: b

3: Alice 5: b

4: Bob 5: b

5: Alice 6: a

6: Bob 7: b

(a)

BK(U) SP (U)

1: Alice 1: a

2: Bob 2: b

3: Alice 4: a

4: Bob 5: b

5: Alice 6: a

6: Bob 7: b

BK(U) SP (U)

1: Alice 1: a

2: Bob 1: a

3: Alice 4: a

4: Bob 4: a

5: Alice 6: a

6: Bob 6: a

BK(U) SP (U)

1: Alice 2: b

2: Bob 2: b

3: Alice 5: b

4: Bob 5: b

5: Alice 7: b

6: Bob 7: b

BK(U) SP (U)

1: Alice 2: b

2: Bob 1: a

3: Alice 5: b

4: Bob 4: a

5: Alice 7: b

6: Bob 6: a

(b)

Table III: Associating service attribute values using query association attacks. (a) Condition 2c in Def. 3 not met for Alice.

(b) All possible query association attacks w.r.t. Table II.

{1, . . . , n}, b.u ∈ ∩
i
Users(Ri, ti), b.t = ti}. We make the

worst case assumption that the adversary is aware of the

location of every user present in the cloaking regions of

U at all time instances when the queries are issued. In

other words, for every ti when a query is issued, there

exists | ∩
i

Users(Ri, ti)| entries in BK(U). These entries

correspond to the users that are present in all the cloaking

regions generated during a session, and can potentially be

the owner of the session. Table IIb lists the background

knowledge used for U . The cloaking regions contain two

potential owners, complete location information on whom is

listed in BK(U). Background knowledge associates users

to locations while a session profile associates locations to

service attribute values. The adversary relates the location

data in BK(U) and SP (U) to link users to attribute values.

We call this a query association attack.

Definition 3: (Query Association Attack) Given a session

profile SP (U) and the background knowledge BK(U), a
query association attack on user U is a mapping f :
BK(U) → SP (U) such that

1) every b ∈ BK(U) is mapped to exactly one e ∈
SP (U),

2) every b ∈ BK(U) with f(b) = e satisfies

a) (b.x, b.y) is inside e.R
b) b.t = e.t
c) for all b′ ∈ {bo ∈ BK(U)|bo.u = b.u},

f(b′).S = e.S.

The first condition states that a user can be associated with

only one attribute value in a given time instance. The second

condition prohibits the adversary from arbitrarily mapping

tuples between BK(U) and SP (U). Conditions 2a and 2b

state that a user must be inside the cloaking region (and

at the specific time instance) corresponding to the entry to

which it is mapped to. Condition 2c requires that a user

be associated with a single attribute value across all time

instances. This condition forms the basis for a successful

attack since it is known that the owner of the session profile

will always have the same service attribute value within the

session. Consider the mapping between BK(U) and SP (U)
shown in Table IIIa. This mapping associates Alice with the

value ‘b’ at time t1 (1 → 2) and t2 (3 → 5), but with ‘a’ at

time t3 (5 → 6). If Alice is the owner of the profile, then she

must be associated with the same value at all time instances.

In other words, the mapping fails to satisfy condition 2c and

is not considered a possible query association attack. The

mappings shown in Table IIIb are the only possible query

association attacks in this case. Privacy is then measured

as the probability that a query association attack accurately

associates a user with its service attribute value.

Definition 4: (Disclosure Risk) Given a session profile

SP (U), let QAA(U) be the set of all possible query asso-

ciation attacks on user U . Consider the subset QAAb(U)
of query association attacks that accurately identifies the

service attribute value of U , i.e. given b ∈ BK(U) with

b.u = U , QAAb(U) = {f ∈ QAA(U)|∀b, f(b).S = U .S}.
The disclosure risk for U is the fraction of query association

attacks on U that accurately maps it with its service attribute

value, given as DR(U) = |QAAb(U)|
|QAA(U| .

With reference to Table IIIb, we have |QAA(U)| = 4,
out of which two mappings accurately associate U (i.e.

Alice) with the service attribute value used by her during the

session (i.e. ‘a’). Therefore, |QAAb(U)| = 2 and disclosure

risk of Alice is 0.5.
Theorem 1: Let R1, . . . , Rn be the cloaking regions of

a user U at time instances t1, . . . tn respectively during a

particular session, where ti > tj for i > j. Let S1, . . . , Sn

be the set of service attribute values of users in the suc-

cessive anonymity sets of U at different time instances, i.e.

Si = {u.S|u ∈ Users(Ri, ti)}. The disclosure risk of U is

1.0 if | ∩
i

Si| = 1.

Proof: Let f : BK(U) → SP (U) be any query

association attack. Consider a tuple b ∈ BK(U) such

that b.u = U and let f(b) = e. Hence, for any tuple

b′ ∈ BK(U) with b′.u = U , we have f(b′).S = e.S
(from Def. 3, condition 2c). Note that e.S is the service

attribute value that the adversary has associated with U
under the attack f . We show that e.S is in fact U .S for

any f , and hence all possible query association attacks

accurately associate U with its service attribute value, i.e.

QAA(U) = QAAb(U) =⇒ DR(U) = 1.0.
By definition of BK(U), every b′ has a different time

stamp (b′.t) and is therefore mapped to a different f(b′).
Further, only one cloaking region is associated with a time
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stamp in a session profile. Hence, every f(b′) has a different
cloaking region depending on the time stamp. Since there is

a b′ for t1, . . . , tn, there is a f(b′) for every t1, . . . , tn. Si is

the set of service attribute values associated to users in the

cloaking region at time ti. Therefore, any Si includes the

value f(b′).S = e.S, implying e.S ∈ ∩
i
Si. Also, e.S must

be the only element in ∩
i
Si as the size of this set is given

to be one. Given that U belongs to all cloaking regions in

the session profile and U .S is the parameter with which it

issues its query, U .S must also be in ∩
i
Si. This gives us

e.S = U .S.

C. Query m-invariance

Theorem 1 underlines why location k-anonymity and

query ℓ-diversity are not sufficient to prevent query asso-

ciation attacks. Location k-anonymity only guarantees that

the number of users in every cloaking region is at least k.
However, the same users may not be present across all the

cloaking regions, thereby requiring a much smaller BK(U).
Historical k-anonymity guarantees that background knowl-

edge must be available on at least k users. Nonetheless,

query association attacks can still reveal the service attribute

value if only one such value is consistently present across

all queries. Query ℓ-diversity guarantees that there are at

least ℓ distinct values in every query, but does not try to

invariably maintain the same set of values across queries.

The requirement for such an invariant property motivates us

to consider the principle of query m-invariance.

Definition 5: (Query m-Invariance) Let R1, . . . , Rn be

the cloaking regions of a user U at time instances t1, . . . tn
respectively during a particular session, where ti > tj for

i > j. A cloaking region Rj is query m-invariant if | ∩j
i=1

Si| ≥ m where Si = {u.S|u ∈ Users(Ri, ti)}.

Query m-invariance implicitly implies location m-

anonymity and query m-diversity. The principle draws upon

the observation that the number of possible query association

attacks will increase if a user can be associated with more

number of service attribute values. However, this would

require multiple values to be present at all time stamps in

the session profile. Query m-invariance guarantees that the

number of such values is not less than m. With reference to

Fig. 2, there are two values (‘a’ and ‘b’) that are invariably

present across all cloaking regions. The disclosure risk in

this case is 1
2 . In general, the following theorem provides

the upper bound on the disclosure risk for query m-invariant

cloaking regions.

Theorem 2: Let R1, . . . , Rn be query m-invariant cloak-

ing regions of a user U at time instances t1, . . . tn respec-

tively during a particular session, where ti > tj for i > j.
The disclosure risk of U is then at most 1

m
.

Proof: Since U is present inside every Ri; 1 ≤ i ≤
n, BK(U) contains a tuple for U at each time instance

t1, . . . , tn. Let b1, . . . , bn denote these tuples, i.e. bi.u = U

and bi.t = ti, for 1 ≤ i ≤ n. Given a query association

attack f : BK(U) → SP (U), we have f(b1).S = . . . =
f(bn).S by Def. 3, condition 2c. Consider an arbitrary bk.

Note that if f maps bk such that f(bk).S = U .S, then every

bi; i 6= k will also be mapped such that f(bi).S = U .S. By
definition, such a query association attack then belongs to

QAAb(U). Hence, we need a count of the number of attacks

that map an arbitrarily chosen bk in {b1, . . . , bn} to a session

entry such that f(bk).S = U .S.
Since bk.u must be associated with the same service

attribute value at all time stamps, it must be one that is

present in all Si, for 1 ≤ i ≤ n. Let p = | ∩
i

Si|. Further,

let q be the number of users in ∩
i
Users(Ri, ti). The same

users are present in BK(U) at time stamp tk. The function

f associates the q users with one of the p service attribute

values. This can be done in pq ways, out of which pq−1

is the number of ways where a particular user is fixed to a

specific value. Hence pq−1

pq = 1
p
is the fraction of attacks that

associate bk.u (or U) with a particular value in ∩
i
Si (which

can be U .S since it belongs to all Si). Since all cloaking

regions are query m-invariant, we have p ≥ m, implying

that the fraction is at most 1
m
.

Note that, by symmetry, any user in ∩
i
Users(Ri, ti) has

a disclosure risk of at most 1
m
. Further, the number of

users in ∩
i
Users(Ri, ti) does not affect the disclosure risk

as far as query association attacks are concerned. There

is no restriction on the size of common users set (as

in historical k-anonymity) since, under the location-aware

adversary model, user identities are already assumed to be

known. As far as location aware-adversaries are concerned,

it is sufficient to have k-anonymous cloaking regions.

III. A CLOAKING ALGORITHM

A trivial implementation of query m-invariance is to

randomly decide m distinct service attribute values (one of

them must be the user’s attribute value) and use it as the

invariant set of values (we call it S in Fig. 1) across all

cloaking regions in the session. However, this implementa-

tion is vulnerable to other inference attacks. Consider the

user U who consistently uses the service attribute value ‘a’.
Hence, the set S in all sessions belonging to U will have

‘a’. Given that other values in S will be generated randomly,

an adversary can observe that the value ‘a’ is present with

a high frequency in the set S across all sessions whenever

user U is in the common users set. This allows the adversary

make a highly confident association between U and ‘a’.
The method to prevent such inference attacks is to preserve

reciprocity in the set S, i.e. the set S should be the same

no matter which user in ∩
i
Users(Ri, ti) is the owner of the

session. Ideally, such a set is {u.S|u ∈ ∩
i
Users(Ri, ti)}.

However, forming this set is not possible without clairvoyant

knowledge about the users that will be present in every
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Procedure 1 m-InvariantCloak(User U)
Require: Mobile user U .
Ensure: A set of peer groups (one of them includes U).
1: L = set of available mobile users sorted by their Hilbert index
2: Dprev = φ;D = φ
3: if (U .invSet = φ) then
4: D = m-DiverseCloak(L,U)
5: params = U .invSet = {u.S|u ∈ D}
6: else
7: repeat
8: Dprev = D;D = φ; params = φ
9: for all (l ∈ L in order) do
10: D = D ∪ {l}
11: params = params ∪ {l.S}
12: if (|params ∩ U .invSet| = U .m) then
13: break
14: end if
15: end for
16: L = L −D
17: until (U ∈ D)
18: end if
19: if (|params ∩ U .invSet| < U .m) then
20: if (Dprev = φ) then
21: return null
22: else
23: D = Dprev ∪ D
24: end if
25: end if
26: U .invSet = U .invSet ∩ {u.S|u ∈ D}
27: return PartitionSet(D)

cloaking region generated in the session.

A. m-InvariantCloak

Our approach considers a m-diverse set of users in the

first time stamp t1 and uses their service attribute values

as the set S. In successive instances, the cloaking region is

adjusted so that each value in S is the service attribute value

of at least one user inside the region. All cloaking regions

then have users with service attribute values in S, thereby
making ∩

i
Si equal to S. Since the first cloaking region is

m-diverse, S has at least m elements and every cloaking

region is query m-invariant. Further, reciprocity in the user

set is preserved by using Hilbert Cloak [6] to determine the

anonymity sets. Procedure 1 outlines this approach.

m-InvariantCloak starts with a list L of all registered users

sorted by their Hilbert index. For every registered user U , it
maintains – (i) a set of service attribute values (U .invSet)
that has invariably been present in every cloaking region

generated for U in the current session, (ii) the anonymity

requirement (U .m) for U and (iii) the service attribute

value (U .S) used by U in the current session. The set

of users in the first cloaking region is generated by m-

DiverseCloak (Lines 3-5). This function returns a m-diverse

set of users using the Hilbert Cloak algorithm. Hilbert Cloak

partitions the set of users into buckets such that each bucket

is m-diverse. Starting from the first user in L, users are

successively put into the same bucket until m-diversity is

satisfied, upon which a new bucket is created. The algorithm

returns the set of users in the bucket that contains U . The
invariant set for U is the set of service attribute values of

the returned users (Line 5). For subsequent cloaking requests

in the same session, the buckets are formed such that each

contains U .m service attribute values from U .invSet (Lines
7-17). New buckets are formed until the one with U is found.

Note that if U is in the last bucket, then there may be less

than U .m distinct attribute values in it. In such a case, U’s
bucket is merged with the previous one (Line 23) if it exists;

otherwise the request must be suppressed (Line 21). Request

suppression is not likely as long as U .m is not higher than

the number of possible service attribute values. Once the

bucket of U is decided, its invariant set is updated. The

update is required because the first invariant set may contain

more than U .m diverse values out of which only U .m fixed

values are to be retained from the second instance onwards.

The merging of buckets is the only reason why an invariant

set may have more than U .m elements.

Users in the set D at the end of Line 25 can be used

to issue point queries along with the service attribute set

U .invSet. This will be a case of one-to-many queries. As

mentioned earlier, we discourage such queries because of

the possible presence of location-unaware adversaries. m-

InvariantCloak therefore partitions D into peer groups. A

peer group is a subset of D. Each user must appear in exactly

one peer group. PartitionSet performs this partitioning.

B. Balancing service quality and identity disclosure risk

The objective of PartitionSet is to partition a m-invariant

user set into peer groups. Every group then defines its

own minimum bounding rectangle (called a sub-MBR) over

which a range query is issued. Results to such a query are

formed such that any user anywhere inside the rectangle is

served. The two extremes of forming the partitions are as

follows.

(i) All users in one group: This option provides the

best protection against location-unaware adversaries as a

single cloaking region containing all users in D is formed.

However, a large cloaking region may be generated resulting

in a large candidate result set.

(ii) Every user in its own group: This option provides the

best service quality as exact location information is available

to the LBS to compute the result set. However, the method

provides no protection from location-unaware adversaries.

The partitioning method should therefore find the right

balance between service quality and identity disclosure risks.

We use a method based on maximum spatial resolution

to form the peer groups. This resolution, denoted by α,
specifies the maximum area of a cloaking region that is

considered acceptable for quality purposes. Procedure 2

outlines the PartitionSet algorithm. We assume the existence

101



Procedure 2 PartitionSet(Set L)
Require: A set L of users and system global α.
Ensure: A set of peer groups.
1: Sort objects in L by their Hilbert index
2: peerGroups = φ
3: bucket = φ
4: for all (l ∈ L in order) do
5: if (AreaMBR(bucket∪{l}) ≤ α or |bucket| < 2) then
6: bucket = bucket∪{l}
7: else
8: peerGroups = peerGroups ∪ {bucket}
9: bucket = {l}
10: end if
11: end for
12: if (|bucket| < 2) then
13: remove last bucket entered into peerGroups and merge it

with bucket
14: end if
15: peerGroups = peerGroups ∪ {bucket}
16: return peerGroups

of a function AreaMBR that returns the area of the minimum

bounding rectangle of a set of users.

PartitionSet begins with a Hilbert-sorted list of users to

partition. The partitioning is performed in a manner similar

to Hilbert Cloak, with the difference that each bucket must

include at least 2 users, and induces an area of at most α
if more than 2 users are to be included. If the last group

has less than 2 users then it is merged with the group

formed prior to it (Lines 12-14). The partitioning can also be

performed so that every group has a fixed number of users.

We avoid this approach since user densities vary across time

and space, as a result of which, the area of cloaking regions

may be beyond acceptable levels. Note that the invariant set

of service attribute values is not changed by the partitioning

scheme. In fact, the same set is used for the range queries

corresponding to each cloaking region. Hence the following

theorem holds.

Theorem 3: Let G1, . . . , Gn be the peer groups returned

by m-InvariantCloak for a mobile user U . With reference

to the system architecture in Section II-A, we define S =
{g.S|g ∈ ∪

i
Gi} and Ai = the minimum bounding rectangle

of users in Gi. The anonymity server then preserves query

m-invariance for U .

IV. EMPIRICAL STUDY

The empirical study compares the effectiveness of location

k-anonymity, query ℓ-diversity and query m-invariance in

limiting the privacy risks in a continuous LBS. Hilbert Cloak

is used to create the location k-anonymous and query ℓ-
diverse cloaking regions, while m-InvariantCloak is used for

query m-invariance. The cloaking region returned by Hilbert

Cloak for k-anonymity and ℓ-diversity is partitioned similar

to as in Procedure 2. The following statistics are used to

evaluate the performance.

• safeguard against query disclosures: number of vulner-

able sessions extracted using Theorem 1.

• service quality: area of a sub-MBR.

• safeguard against location-unaware adversaries: num-

ber of users inside a sub-MBR.

• anonymization time: time required to compute a privacy

preserving cloaking region.

A. Experimental setup

We have generated trace data using a simulator [5] that

operates multiple mobile objects based on real-world road

network information available from the National Mapping

Division of the US Geological Survey. We have used an

area of approximately 168 km2 in the Chamblee region of

Georgia, USA for this study. Three road types are identified

based on the available data – expressway, arterial and

collector. Real traffic volume data is used to determine the

number of mobile users in the different road types [1]. Refer

to [5] for details on the simulator.

road type traffic volume mean speed standard deviation

expressway 2916.6 cars/hr 90 km/hr 20 km/hr

arterial 916.6 cars/hr 60 km/hr 15 km/hr

collector 250 cars/hr 50 km/hr 10 km/hr

Table IV: Mean speed, standard deviation and traffic volume

on the three road types used.

The used traffic volume information (Table IV) results

in 8,558 users with 34% on expressways, 8% on arterial

roads and 58% on collector roads. The trace data consists

of multiple records spanning one hour of simulated time.

A record is made up of a time stamp, user identifier, and

x and y co-ordinates of the user’s location. Duration of a

session for a user is determined from a normal distribution

with mean 10 minutes and standard deviation 5 minutes.

A new duration is assigned at the end of a session. The

granularity of the data is maintained such that the Euclidean

distance between successive locations of the same user is

approximately 100 meters. Each user has an associated

k/ℓ/m value drawn from the range [2, 50] by using a Zipf

distribution favoring higher values. Service attribute values

are assigned from a set of 100 values using another Zipf

distribution. Both distributions have an exponent of 0.6. The
trace data is sorted by the time stamp of records.

During evaluation, the first minute of records is used

for initialization. Subsequently, every request is considered

for anonymization. The session duration time is used to

determine if a request is a new one or a continuing one.

The anonymizer is then called to determine the cloaking

region(s), if possible. The process continues until the session

ends; a new session is started when the user issues the

next request. A new service attribute value is assigned to

a user at the beginning of every session. Over 4,000,000

anonymization requests are generated during a pass of the

entire trace data.
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Figure 3: Comparative performance of location k-anonymity, query ℓ-diversity and query m-invariance.

The default spatial resolution is set to α = 0.0625 km2.

The precision is around 250 m (assuming a square area)

with this setting. A service such as location-based marketing

typically does not require such high precision. The entire

map is assumed to be on a grid of 214 × 214 cells (a

cell at every meter) while calculating the Hilbert indices

[17]. Objects in the same cell have the same Hilbert index.

All simulation results are obtained on an Intel Core2Duo

2x1.86Ghz machine with 2GB memory and running Fedora

10.

B. Simulation results

Fig. 3 compares the effectiveness of location k-anonymity,

query ℓ-diversity and query m-invariance. Query m-

invariance is most effective in preventing query association

attacks (Fig. 3a). Query ℓ-diversity can prevent query dis-

closures in more number of sessions compared to location

k-anonymity. This is anticipated since ℓ-diverse cloaking

regions are required to have at least ℓ distinct service at-

tribute values. The invariance property in query m-invariance

further prevents the possibility of only one attribute value be-

ing common across the cloaking regions. Both k-anonymity

and ℓ-diversity have almost 100% vulnerability for weaker

anonymity requirements. In general, the fewer the number

of service attribute values in the first cloaking region, the

higher are the chances of not having any of those values

in subsequently generated regions. However, by definition,

such chances are reduced to zero in the query m-invariance

model.

We also observe that query ℓ-diversity manages to reduce

the number of vulnerable sessions to impressive lows for

cases with higher anonymity requirements. This is not

unlikely since the probability of a particular value being

in a subset of all possible attribute values is higher when

larger subsets are to be formed. However, the performance

is not indicative of similar behavior. Query m-invariance

guarantees that the invariant set has a size of at least m. On

the other hand, the low percentage of vulnerable sessions

with query ℓ-diversity only means that the invariant set is

not of size one. The actual size of the set can very well be

less than ℓ. Hence, the disclosure risk is not guaranteed to

be less than 1
ℓ
.

Sub-MBR areas are typically smaller with k-anonymity

and ℓ-diversity (Fig. 3b). Query m-invariance generates

comparatively larger areas for weaker anonymity require-

ments. This is because the users that satisfy the invariant set

requirement may often be far away from each other. This

is specifically true if the invariant set has values that are

not frequently requested. Nevertheless, the sub-MBR area is

within the spatial resolution, implying that peer groups could

be formed without violating the spatial constraint (the ‘or’

condition in Line 5 of Procedure 2). Further, the service

quality is consistent across all anonymity requirements.

Fig. 3c illustrates the average time required to anonymize

a request. The query m-invariance requirement does not

impose any significant overhead in terms of computation

time.

Fig. 4a depicts the impact of α on service quality. A

very small spatial resolution (such as α = 0.0025 km2)

is difficult to satisfy irrespective of the anonymity level

required. Given that each peer group must contain at least

2 users, the spatial constraint is easily violated and the sub-

MBR area is consequently larger than specified. The area is

large enough to accommodate 2 users. Fig. 4b corroborates

this observation since the average number of users inside

a sub-MBR is 2 for such an α. A cloaking region of

0.0025km2 resolves to a precision of around 50m, often not

required in a LBS. The resolution has a direct impact on the

number of users in a peer group. Larger resolutions allow

more users to be included in a group, thereby providing

stronger protection from location-unaware adversaries. Note

that a 2-invariant cloaking region can potentially contain a

large number of users. This is specifically true when most

users are inclined towards specific service attribute values.

As a result, a cloaking region that contains 2 distinct attribute

values essentially contains multiple users having the same

value. A peer group with 45 users on the average (in the

case of α = 1.0 km2) is therefore not surprising for a weak

requirement such as 2-invariance. A reasonable α such as the

default value sufficiently maintains a good balance between
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Figure 4: Impact of spatial resolution α.

service quality and identity disclosure risks.

V. CONCLUSIONS

Identity and query privacy must be adequately guaranteed

before location-based services can be deployed on a large

scale. Assuming a location-aware adversary model, we have

provided a formal analysis to show that service attributes risk

disclosure if the privacy model does not guarantee that an

invariant set of attribute values is present in all cloaking re-

gions generated for a continuous LBS. We therefore propose

using the principle of query m-invariance where all cloaking

regions are required to contain users with a fixed set of

service attribute values. We have shown that this requirement

limits the involved risk, which in itself can be controlled by

the parameter m. We further propose a cloaking algorithm

to enforce the principle and have shown its effectiveness

compared to location k-anonymity and query ℓ-diversity.
Results on trace data generated on a real-world road network

show that query m-invariance can be enforced without

significantly affecting service quality or imposing compu-

tational overhead. Future work can be directed towards

understanding the risks from query association attacks under

alternative forms of background knowledge. Specifically, we

are interested in exploring the privacy guarantees required to

tackle adversaries with limited knowledge on user locations.
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