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Abstract. Privacy preservation in location based services (LBS) has
received extensive attention in recent years. One of the less explored
problems in this domain is associated with services that rely on contin-
uous updates from the mobile object. Cloaking algorithms designed to
hide user locations in single requests perform poorly in this scenario. The
historical k-anonymity property is therefore enforced to ensure that all
cloaking regions include at least k objects in common. However, the mo-
bility of the objects can easily render increasingly bigger cloaking regions
and degrade the quality of service. To this effect, this paper presents an
algorithm to efficiently enforce historical k-anonymity by partitioning
of an object’s cloaking region. We further enforce some degree of direc-
tional similarity in the k common peers in order to prevent an excessive
expansion of the cloaking region.
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1 Introduction

Application domains are potentially endless with location-tracking technology.
These applications deliver customized information based on the location of a mo-
bile object. The services can be classified into two types – snapshot LBS where
the current location of the mobile object is sufficient to deliver the service, and
continuous LBS where the mobile object must periodically communicate its
location as part of the service agreement. For example, a Pay-As-You-Drive in-
surance service must receive location updates from the mobile object to bill the
consumer accurately. A serious concern surrounding their acceptance is the po-
tential usage of the location data to infer sensitive personal information about
the mobile users. With access to the location data, sender anonymity can be
violated even without the capability to track a mobile object. We refer to this
class of adversaries as location-unaware adversaries. Such adversaries use exter-
nal information to perform attacks resulting in restricted space identification,
observation identification and location tracking [1].
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1.1 Motivation

Location obfuscation is one of the widely researched approaches to safeguard
location anonymity. This technique guarantees that the location data received
at the LBS provider can be associated back to more than one object – to at
least k objects under the location k-anonymity model [1]. For this, a cloaking

region is communicated to the service provider instead of the actual location.
A k-anonymous cloaking region contains at least k − 1 other mobile objects
besides the service user. However, this approach is not sufficient to preserve
privacy in a continuous LBS. In the continuous case, an object maintains an
ongoing session with the LBS, and successive cloaking regions may be correlated
to associate the session back to the object. Such session associations reveal
the trajectory of the involved object, and any sensitive information thereof.
Assuring that every cloaking region contains k objects is not sufficient since the
absence of an object in one of the regions eliminates the possibility that it is the
session owner. Performing such elimination is much easier for a location-aware

adversary who has the capability to monitor users. This class of adversaries
has exact location information on one or more objects and uses it to eliminate
possibilities and probabilistically associate the session to consistently existing
objects. It may seem that these attacks can be avoided by using a different
identifier for every cloaking region. However, location data can still be correlated
using techniques such as multi-target tracking [2]. Besides, the provider needs to
be able to distinguish updates from the same object in order to maintain service
quality [3].

Session association attacks can be avoided if it can be assured that every
cloaking region in a session contains k common objects. This is referred to as
historical k-anonymity [4]. However, as a result of the movement of objects, a
historically k-anonymous cloaking region is very likely to grow in size over time,
thereby deteriorating service quality. Without the proper strategies to control the
size of the cloaking region, historical k-anonymity is only a theoretical extension
of k-anonymity for continuous LBS. The work presented in this paper is the
first known attempt that identifies the issues in effectively enforcing historical
k-anonymity.

1.2 Related Work

While significant research has gone into algorithms that enforce k-anonymity
[1, 5, 6, 7], very few of them address historical k-anonymity. Gruteser and Liu
specifically investigate privacy issues in continuous LBS [8]. They introduce the
location inference problem where an adversary can infer supposedly hidden lo-
cations from prior or future location updates. Hoh and Gruteser propose a per-
turbation algorithm to cross paths of objects (by exchanging their pseudonyms)
when they are close to each other [9]. Kido et al. use false dummies to simulate
the movement of mobile nodes in order to hide the trace of an actual object [10].
Xu and Cai propose using historical traces of objects to derive a spatio-temporal
cloaking region that provides trajectory protection [11].
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Bettini et al. first introduced historical k-anonymity and proposed a spatio-
temporal generalization algorithm to enforce it [4]. The generalization algorithm
enlarges the area and time interval of the request to increase the uncertainty
about the real location, while including k common objects. The method fails to
account for mobility of the objects, without which the generalized area can easily
cross acceptable limits. Chow and Mokbel argue that spatial cloaking algorithms
should satisfy the k-sharing and memorization properties to be robust against
session associations [12]. Although the focus of their work is query privacy, the
two properties together imply historical k-anonymity. Their algorithm maintains
groups of objects based on the two properties, along with query types involved
with the objects. However, a query may not be equally significant at all locations
occupied by a group’s members. Xu and Cai propose an information theoretic
measure of anonymity for continuous LBS [13]. They define a k-anonymity area

as the cloaking region whose entropy is at least k. However, the algorithm is prone
to inversion attacks where an adversary uses knowledge of the anonymizing
algorithm to breach privacy. The most recent of algorithms in this domain is
ProvidentHider [14]. It uses a maximum perimeter constraint to ensure that
cloaking regions are not too large, and the starting set of objects is as big as
possible (to take care of leaving objects). This algorithm is later used in our
comparative study.

1.3 Contributions

The drawbacks present in the above algorithms point out three issues that must
be addressed before historical k-anonymity can be efficiently enforced. Our first
contribution in this paper is the identification of these issues, namely defunct

peers, diverging trajectories and locality of requests. Our second contribution is
an anonymization algorithm, called Continuous ANONymizer (CANON), that
implements explicit strategies to resolve each of the three identified issues. In
particular, we argue that a cloaking region should be determined using direction
information of the objects and show how this restricts the inferences that can be
made about the issuer of the request. Large cloaking regions are also avoided by
this process. Further, we propose using multiple cloaking regions while issuing a
query in order to maintain better service quality.

The remainder of the paper is organized as follows. Section 2 highlights the
issues related to historical k-anonymity. Our approach to resolve the issues, the
CANON algorithm, is presented in section 3. Section 4 details the experimental
setup and results from the comparative study. Finally, section 5 concludes the
paper.

2 System architecture

Figure 1 depicts our system consisting of three layers – (i) mobile objects, (ii) a
trusted anonymity server, and (iii) a continuous LBS provider. The trusted ano-
nymity server acts as a channel for any communication between mobile objects
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Fig. 1. Schematic of the system architecture.

and continuous LBS providers. A mobile object O initiates a service session by
registering itself with the anonymity server. The registration process includes the
exchange of current location information (O.loc) and service parameters signi-
fying the request to forward to the LBS provider, as well as the anonymity level
(O.k) to enforce while doing so. The anonymity server issues a pseudo-identifier
and uses it both as a session identifier (O.sid) with the mobile object and as an
object identifier when communicating with the LBS provider. A set of cloaking
regions is then generated for the requesting object and multiple range queries
are issued to the LBS provider for these regions. Communication between the
anonymity server and the LBS provider is always referenced using the object
identifier so that the LBS can maintain service continuity. The candidate re-
sults retrieved from the LBS provider are filtered at the anonymity server and
then communicated to the mobile object. Subsequent location updates from the
mobile object are handled in a similar fashion (with the pre-assigned session
identifier) until the anonymity level cannot be satisfied or the service session is
terminated. A request is suppressed (dropped) when the anonymity requirements
can no longer be met within the same service session. A new identifier is then
used if the mobile object re-issues the same request. We further assume that
an object does not change its service parameters during a session. A separate
session is started if a request with different service parameters is to be made.
Therefore, an object can have multiple sessions running at the same time, each
with a different session identifier.

2.1 Historical k-anonymity

The primary purpose of a cloaking region is to make a given mobile object O
indistinguishable from a set of other objects. This set of objects, including O,
forms the anonymity set of O. Objects in the anonymity set shall be referred to
as peers of O and denoted by O.peers. A cloaking region for O is usually char-
acterized by the minimum bounding rectangle (MBR) of the objects in O.peers.
Larger anonymity sets provide higher privacy, while at the same time can result
in reduced service quality owing to a larger MBR. Therefore, the cloaking region
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Fig. 2. Conventional k-anonymity and historical k-anonymity.

is typically required to achieve an acceptable balance between anonymity and
service quality.

As demonstrated in a number of prior works [5, 6, 7], achieving reasonable
levels of anonymity and service quality is not difficult in the case of a snap-
shot LBS. However, in our assumed architecture for a continuous LBS system,
maintaining the two properties is significantly difficult.

Consider the movement pattern of the objects depicted in figure 2. A 3-
anonymous MBR is computed for O1 during three consecutive location updates.
If O1’s requests at the three time instances are mutually independent from each
other (as in a snapshot LBS), then the privacy level of O1 is maintained at
3-anonymity across the different MBRs. However, when the same identifier is
associated with all the MBRs (as in a continuous LBS), it only requires an
adversary the knowledge of O1, O2 and O3’s positions at time t1, t2 and t3 to
infer that the requests are being issued by object O1. This is because O1 is the
only object common across the anonymity sets induced by the cloaking regions.
We refer to this as a case of full disclosure. Assuming that each object is equally
likely to be included in another object’s cloaking region, the probability of full
disclosure is unacceptably high.

Remark 1: Let A1, . . . , An be a sequence of anonymity sets corresponding to
n > 1 consecutive k-anonymous cloaking regions for a mobile object O, generated
from a collection of N mobile objects. Then, the probability that the intersection

of the anonymity sets Sn = ∩
i
Ai has at least p objects, p > 1, is

(

∏p−1

i=1

k−i
N−i

)n

.

Remark 2: If k ≤ N+1

2
then the probability of full disclosure is at least 3

4
. The

full disclosure risk is given as Dfull = Pr(|Sn| = 1) = Pr(|Sn| ≥ 1)− Pr(|Sn| ≥
2). Since intersection of the anonymity sets contain at least one object, we have
Pr(|Sn| ≥ 1) = 1. Hence, Dfull = 1 − ( k−1

N−1
)n. With k ≤ N+1

2
, or k−1

N−1
≤ 1

2
, we

have Dfull ≥ 1 − 1

2n
≥ 1 − 1

22 = 3

4
.

We also observe in figure 2 that it does not require knowledge on the objects’
locations at all three time instances in order to breach O1’s privacy. In fact,
location knowledge at time instances t1 and t2 is sufficient to lower O1’s privacy
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to 2-anonymity. This is referred to as a partial disclosure. Such disclosures occur
when the intersection of anonymity sets (corresponding to the same object)
contain less than the desired number of peers (the anonymity level k).

A straightforward extension of the conventional k-anonymity model that can
counter risks of full and partial disclosures in a continuous LBS is to ensure that
all anonymity sets within a service session contain at least k common objects.

Remark 3: Historical k-anonymity. Let A1, . . . , An be a sequence of ano-
nymity sets corresponding to the cloaking regions with the same identifier and
at time instants t1, . . . , tn, ti > tj for i > j, respectively. The anonymity set Ai

is then said to satisfy historical k-anonymity if |A1 ∩ . . . ∩ Ai| ≥ k.
In other words, the sequence of anonymity sets preserve historical k-anonymity

if all subsequent sets after A1 contain at least k same objects from A1. Figure
2 depicts how the cloaking regions should change over time in order to ensure
that object O1 always has historical 3-anonymity.

2.2 Implications

The privacy guarantees of historical k-anonymity in a continuous LBS is similar
to that of k-anonymity in a snapshot LBS. In addition, historical k-anonymity
also impedes session association attacks by location-aware adversaries. However,
maintaining acceptable levels of service can become increasingly difficult in case
of historical k-anonymity. We have identified three issues for consideration that
impact the practical usage of historical k-anonymity.

1) Defunct peers: A defunct peer in an anonymity set is an object that is
no longer registered with the anonymity server. As a result, it can no longer be
ascertained that a cloaking region includes the peer. If the first cloaking region
generated during a particular session contains exactly k objects, then every other
anonymity set in that session must contain the same k objects for it to be
historically k-anonymous. A defunct peer in this case does not allow subsequent
cloaking regions to satisfy historical k-anonymity and introduces possibilities of
partial disclosure.

2) Diverging peer trajectories: The trajectories of peers influence the
size of a cloaking region (satisfying historical k-anonymity) over time. Refer
to figure 2. The MBR for object O1 becomes increasingly larger owing to the
trajectory of object O3. Bigger cloaking regions have a negative impact on service
quality. In general, the more divergent the trajectories are, the worse is the effect.
Algorithms that use a maximum spatial resolution will not be able to facilitate
service continuity as spatial constraints will not be met.

3) Locality of requests: The significance of a particular service request
can often be correlated with the locality where it originated. For instance, let
us assume that the region shown in figure 2 corresponds to a urban locality.
Further, object O1 issues a request to periodically update itself with information
(availability, price, etc.) on the nearest parking garage. At time instance t1, an
adversary cannot infer which object (out of O1, O2 and O3) is the actual issuer
of the request. However, as O3 moves away from the urban locality (suspiciously
ignoring the high concentration of garages if it were the issuer), an adversary



Anonymity Sets in a Continuous LBS 7

Procedure 1 CANON(Object O)

Input: Mobile object O (includes all associated data).
Output: A set of peer groups (one of them includes O); null if request is suppressed

(cannot satisfy anonymity).
1: if (O.sid = null) then

2: O.peers = CreatePeerSet(O)
3: O.sid = new session identifier
4: else

5: remove defunct objects in O.peers

6: end if

7: if (|O.peers| < O.k) then

8: O.sid = null

9: return null

10: end if

11: peerGroups = PartitionPeerSet(O)
12: if (∃g ∈peerGroups such that |g| < 2) then

13: O.sid = null

14: return null

15: end if

16: return peerGroups

can infer that the issuer of the request is more likely to be O1 or O2. We say that
these two objects are still in the locality of the request. If historical k-anonymity
is continued to be enforced, O3 (and most likely O2 as well) will be positioned
in different localities, thereby allowing an adversary infer with high confidence
that O1 is the issuer of the request.

Note that these three issues are primarily applicable in the context of a
continuous LBS. Defunct peers is not an issue in snapshot LBS since the set of
peers can be decided on a per request basis. Further, since the same peers need
not be present in subsequent anonymity sets, their trajectories do not influence
the size of the next privacy preserving cloaking region. Differences in locality
also do not provide additional inferential power to an adversary. However, in a
continuous LBS, these three issues are direct residues of providing privacy by
historical k-anonymity.

3 The CANON Algorithm

CANON is an anonymization algorithm that enforces historical k-anonymity for
use with a continuous LBS. The algorithm defines explicit procedures to handle
each of the three potential issues identified in the previous section. An overview
of the algorithm is shown in Procedure 1.

CANON is initiated by the anonymity server whenever it receives a request
from a mobile object O. The algorithm starts by first checking if O has an open
session with respect to the current request. If it finds one then the set of peers
is updated by removing all defunct peers from the set. Otherwise, a peer set is
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generated for O through the procedure CreatePeerSet and a session identifier
is assigned. The newly generated (or updated) peer set must have at least O.k

objects in order to continue to the next step; otherwise the request is suppressed
and the session is terminated. Historical k-anonymity is ensured at the end of
Line 10 since at least k objects inserted into O.peers by CreatePeerSet are still
registered with the anonymity server. The next step is to divide the peer set into
groups over which the range queries will be issued. A peer group is defined as a
subset of O.peers. PartitionPeerSet divides O.peers into disjoint peer groups.
We shall often use the term “object’s peer group” to signify the group that
contains O. Each peer group defines a smaller cloaking region than that defined
by the entire peer set and reduces the impact of diverging trajectories on service
quality. The peer groups returned by CANON are used to issue multiple range
queries (one for each) with the same object identifier. Line 12 checks that each
peer group contains at least two objects in order to avoid the disclosure of exact
location information (of any object) to location-unaware adversaries.

All object agglomerations, namely into peer sets and then into peer groups,
are performed so that the reciprocity property is satisfied. This property states
that the inclusion of any two objects in a peer set (group) is independent of the
location of the object for which the peer set (groups) is being formed. Reciprocity
prevents inversion attacks where knowledge of the underlying anonymizing al-
gorithm can be used to identify the actual object. The Hilbert Cloak algorithm
[7] was first proposed in this context for the conventional k-anonymity model.
Hilbert Cloak orders the objects according to their Hilbert indices (index on a
space filling curve) and then groups them into buckets of size k. The peer set
of an object is the bucket that contains the object. The peer set is the same for
any object in the same bucket. Further, objects close to each other according
to their Hilbert indices also tend to generate smaller (not necessarily optimal)
cloaking regions. CreatePeerSet and PartitionPeerSet thus use Hilbert-sorted
lists to incorporate these properties.

3.1 Handling defunct peers

As mentioned earlier, defunct peers can influence the lifetime of a service ses-
sion by reducing the peer set size to below the limit that satisfies historical
k-anonymity. The resolution is to include more than k objects in the first peer
set. An indirect way to achieve this is to specify a maximum spatial boundary
around the requesting object’s location and then include all objects within that
boundary into the peer set. This is the method used in ProvidentHider. However,
this approach cannot account for the varying density of objects across time and
space. Using spatial boundaries also cannot account for the relative differences
in MBR sizes corresponding to varying anonymity requirements. For example,
an area of 1 km2 may be sufficient to have enough peers to satisfy a historical
2-anonymity requirement, but may not be so to satisfy a stronger requirement
(say historical 50-anonymity).

A more direct method to resolve the issue is to specify the desired peer set size
explicitly. This removes any dependency on how the objects are distributed and
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the area required to cover a reasonable number of them. We can specify the size
as a sufficiently big constant. However, this strategy favors objects with weaker
anonymity requirements as their peer sets are allowed a comparatively higher
number of peers to defunct. For instance, a constant peer set size of 20 would
allow the anonymizer to tolerate up to 18 defunct peers to preserve historical
2-anonymity, but only 5 defuncts to preserve historical 15-anonymity. Therefore,
the strategy adopted in CANON uses an oversize factor τ that relatively specifies
the number of extra peers that must be included in the peer set. The minimum
initial size of the peer set of an object O is equal to (1+τ)×O.k with this strategy.
We say “minimum” because other parameters introduced later can allow more
peers to be included. Use of an oversize factor prevents the problem associated
with constant peer set sizes. Note that since CANON partitions the peer set into
further groups before issuing a query, the area of the cloaking region defined by
the enlarged peer set has little or no influence on service quality. However, we
would still not want the area to expand extensively in order to curb the issue of
request locality.

3.2 Deciding a peer set

The CreatePeerSet procedure determines the initial peer set for an object. At
this point, we need to ensure that majority of the objects in the peer set are in
the locality of the request. We believe there are two requirements to address in
this regard.

1. Objects in the peer set should define an area where the request is equally

significant to all the peers.
2. Objects in the peer set should move so that the defined area does not expand

too much.

The first requirement will prohibit the inclusion of peers that are positioned
in a locality where the issued request is unlikely to be made. The second require-
ment addresses locality of requests in the dynamic scenario where the trajectories
of the peers could be such that they are positioned in very different localities
over time. Preventing the MBR of the peer set from expanding prohibits peers
from being too far away from each other. The first requirement can be fulfilled by
choosing peers according to the Hilbert Cloak algorithm. Peers chosen according
to Hilbert indices will induce a small MBR, thereby ensuring that they are more
likely to be in the same locality. However, a peer set generated by this process
cannot guarantee that the second requirement will be fulfilled for long. This is
because the neighbors of an object (according to Hilbert index) may be moving
in very different directions.

It is clear from the above observation that the direction of travel of the ob-
jects should be accounted for when selecting peers. The direction of travel is
calculated as a vector from the last known location of the object to its current
location, i.e. if O.loc1 = (x1, y1) and O.loc2 = (x2, y2) are the previously and
currently known positions of O respectively, then the direction of travel is given
as O.dir = O.loc2 −O.loc1 = (x2 − x1, y2 − y1). O.dir is set to (0, 1) (north) for
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Procedure 2 CreatePeerSet(Object O)

Input: Mobile object O (includes all associated data), and system globals τ , θ and
αfull.

Output: A set of peer objects (including O).
1: L = set of available mobile objects sorted by their Hilbert index
2: kof = (1 + τ) ×O.k ; P = φ

3: repeat

4: Lc = φ

5: for all (l ∈ L in order) do

6: if (|Lc| ≥ kof and AreaMBR(Lc ∪ {l})> αfull) then

7: break

8: end if

9: Lc = Lc ∪ {l}
10: end for

11: Pprev = P; f = 1;Opivot = first object in Lc

12: repeat

13: P = (fθ)-neighbors of Opivot in Lc

14: f = f + 1
15: until (|P| ≥ min(kof , |Lc|))
16: L = L − P
17: until (O ∈ P)
18: if (|P| < kof ) then

19: P = P ∪ Pprev

20: else if (|L| < kof ) then

21: P = P ∪ L
22: end if

23: return P

newly registered objects. A θ-neighborhood for O is then defined as the set of
all objects whose direction of travel is within an angular distance θ (say in de-
grees) from O.dir. Therefore, a 0◦-neighborhood means objects traveling in the
same direction, while a 180◦-neighborhood contains all objects. If all peers are
chosen within a 0◦-neighborhood then it is possible that the area defined by the
initial peer set will more or less remain constant over time. However, the initial
area itself could be very large due to the non-availability of such peers within a
close distance. On the other hand, using a 180◦-neighborhood essentially allows
all objects to be considered and hence the area can be kept small by includ-
ing close objects. Of course, the area may increase unwantedly over time. Peer
set generation is therefore guided by two system parameters in CANON - the
neighborhood step size θ and the full-MBR resolution αfull. The neighborhood
step size specifies the resolution at which the θ-neighborhood is incremented
to include dissimilar (in terms of travel direction) peers. The full-MBR reso-
lution specifies some area within which the issued request is equally likely to
have originated from any of the included objects, thereby making it difficult for
an adversary to eliminate peers based on position and request significance. For
small values of θ and some αfull, all objects in a peer set would ideally move



Anonymity Sets in a Continuous LBS 11

in a group, in and out of a locality. Procedure 2 outlines the pseudo-code of
CreatePeerSet. We assume the existence of a function AreaMBR that returns
the area of the minimum bounding rectangle of a set of objects.

CreatePeerSet first creates a sorted list L of all registered objects according
to their Hilbert indices. It then continues to divide them into buckets (starting
from the first one in the sorted list) until the one with O is found (Lines 3-17).
Every time a bucket is formed, L is updated by removing all objects in the bucket
from the list (Line 16). Lines 5-10 determine a set Lc of candidate objects that
can potentially form a bucket. Starting from the first available object in L, we
continue to include objects in Lc as long as the minimum peer set size (denoted
by kof and decided by the oversize factor) is not met, or the area of the MBR
of included objects is within the full-MBR resolution. Note that, as a result of
this condition (Line 6), the minimum required size of the peer set receives more
prominence than the resulting area. Hence, the full-MBR resolution is only a
guiding parameter and not a constraint. Next, Lines 12-15 select kof objects
from the candidate set to form a bucket. The first object in Lc is chosen as
a pivot and all objects in the θ-neighborhood of the pivot are included in the
bucket. If the bucket is not full up to its capacity (kof ) and more objects are
present in Lc, then the neighborhood is increased by the step size θ. By the end
of this process, the bucket would either contain kof objects or there are less than
kof objects in Lc. The latter is only possible when list L contains less than kof

objects, i.e. the last bucket is being created. Note that object O is not explicitly
used anywhere to decide the buckets, thereby guaranteeing reciprocity. Once the
bucket with O is found, two more checks are required (Lines 18-22). First, if O’s
bucket has less than kof objects (possible if it is the last one), then it is merged
with the previous bucket. Second, if the number of objects remaining in L is less
than kof (implying O’s bucket is second to last), then the remaining objects are
included into O’s bucket to maintain reciprocity.

CreatePeerSet uses θ-neighborhoods and the full-MBR resolution to balance
between dissimilar peers and the resulting MBR area. While the step size θ

allows incremental selection of dissimilar peers, αfull guides the extent of incre-
ment admissible to generate a localized peer set. Note that the creation of a peer
set is a one time procedure every service session. Hence, a good estimation of the
direction of travel is required to avoid diverging trajectories. One possibility is to
obtain destination points of objects and generate an average direction of travel.
An average direction can also be calculated based on the displacement vector of
the object from its starting position. One can also estimate a direction of travel
based on a set of last known locations. CANON uses an instantaneous direc-
tion vector. We believe this method performs reasonably well in road networks,
although the efficacy of other techniques remains to be determined.

3.3 Handling a large MBR

The full-MBR resolution parameter is used to control breaches related to re-
quest localities. Typical values are in the range of 10 to 50 km2. The parameter
is therefore not intended to help generate cloaking regions with small MBRs.
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Procedure 3 PartitionPeerSet(Object O)

Input: Mobile object O (includes all associated data) and system global αsub.
Output: A set of peer groups.
1: Sort objects in O.peers by their Hilbert index
2: peerGroups = φ

3: bucket = φ

4: for all (l ∈ O.peers in order) do

5: if (AreaMBR(bucket∪{l}) ≤ αsub) then

6: bucket = bucket∪{l}
7: else

8: peerGroups = peerGroups ∪ {bucket}
9: bucket = {l}

10: end if

11: end for

12: peerGroups = peerGroups ∪ {bucket}
13: return peerGroups

A continuous LBS would require a much finer resolution to deliver any reason-
able service. Further, depending on variations in velocity and the underlying
road network, some extent of expansion/contraction of the MBR is very likely.
The MBR of a peer set is therefore not a good candidate to issue the range
queries. Instead, the peer set is partitioned into multiple disjoint groups by Par-

titionPeerSet. Partitioning of the peer set eliminates empty spaces between peers
(introduced in the first place if trajectories diverge) and produces smaller MBRs
for the range queries [15]. This partitioning can be done either in a way such
that each peer group has a minimum number of objects or each peer group has
a maximum spatial resolution. The former approach cannot guarantee that the
resulting MBR will have an acceptable area. The latter method is adopted in
CANON where the maximum spatial resolution of a peer group is specified as the
sub-MBR resolution αsub. αsub is relatively much smaller than αfull. Procedure
3 outlines the partitioning method.

The partitioning is performed in a manner similar to Hilbert Cloak, with
the difference that each bucket now induces an area of at most αsub instead of
a fixed number of objects. Starting from the first object in the Hilbert-sorted
peer set, an object is added to a bucket as long as the sub-MBR resolution is
met (Line 6); otherwise the current bucket is a new peer group (Line 8) and the
next bucket is created (Line 9). Reciprocity is preserved as before. Note that the
pseudo-code in Procedure 3 does not handle the case when a peer group contains
only one object. Procedure 1 checks that such groups do not exist (safeguard
against location-unaware adversaries); otherwise the request is suppressed. How-
ever, the partitioning algorithm itself can relax the sub-MBR resolution when a
peer group with a single object is found. One possible modification is to merge
any peer group having a single object with the group generated prior to it. An-
other parameter-less technique is to create partitions that result in the minimum
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average peer group MBR with the constraint that each group must have at least
two objects. We have kept these possibilities open for future exploration.

4 Empirical Study

The experimental evaluation compares the performance of CANON with the
ProvidentHider algorithm. For every new request, ProvidentHider first groups
all available objects from a Hilbert-sorted list such that each bucket holds O.k

objects; more if adding them does not violate a maximum perimeter (Pmax)
constraint. The peer set of an object is the bucket that contains the object.
A range query is issued over the area covered by the objects in the peer set
only if the maximum perimeter constraint is satisfied; otherwise the request is
suppressed. Refer to [14] for full details on the algorithm. We measure a number
of statistics to evaluate the performance.

– service continuity: average number of requests served in a session
– service failures: percentage of suppressed requests
– safeguard against location-unaware adversaries: average size of the peer group

to which the issuing object belongs

4.1 Experimental setup

We have generated trace data using a simulator [6] that operates multiple mo-
bile objects based on real-world road network information available from the
National Mapping Division of the US Geological Survey. We have used an area
of approximately 168km2 in the Chamblee region of Georgia, USA for this study.
Three road types are identified based on the available data – expressway, arte-
rial and collector. Real traffic volume data is used to determine the number of
objects in the different road types [1].

The used traffic volume information (table 1) results in 8,558 objects with
34% on expressways, 8% on arterial roads and 58% on collector roads. The trace
data consists of multiple records spanning one hour of simulated time. A record
is made up of a time stamp, object number, x and y co-ordinates of object’s
location, and a status indicator. The status indicator signifies if the object is
registered to the anonymity server. An object’s status starts off randomly as be-
ing active or inactive. The object remains in the status for a time period drawn
from a normal distribution with mean 10 minutes and standard deviation 5 min-
utes. The status is randomly reset at the end of the period and a new time period
is assigned. The granularity of the data is maintained such that the Euclidean
distance between successive locations of the same object is approximately 100
meters. Each object has an associated k value drawn from the range [2, 50] by
using a Zipf distribution favoring higher values and with the exponent 0.6. The
trace data is sorted by the time stamp of records.

During evaluation, the first minute of records is used only for initialization.
Subsequently, the status of each record is used to determine if the object issues a
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Table 1. Mean speed, standard deviation and traffic volume on the three road types.

road type traffic volume mean speed standard deviation

expressway 2916.6 cars/hr 90 km/hr 20 km/hr

arterial 916.6 cars/hr 60 km/hr 15 km/hr

collector 250 cars/hr 50 km/hr 10 km/hr

request. Only an active object is considered for anonymization. If the object was
previously inactive or its prior request was suppressed, then it is assumed that a
new request has been issued. Otherwise, the object is continuing a service session.
The anonymizer is then called to determine the cloaking region(s), if possible.
The process continues until the object enters an inactive (defunct) state. Over
2,000,000 anonymization requests are generated during a pass of the entire trace
data.

Default values of other algorithm parameters are set as follows: τ = 0.0,
αfull = 25km2, αsub = 1km2, θ = 180◦ and Pmax = 5000m. A 5000m perimeter
constraint for ProvidentHider is approximately an area of 1.6km2. Compared to
that, αsub has a smaller default value. The precision is around 1000m (assuming
a square area) which serves reasonably well for a Pay-As-You-Drive insurance

service. The full-MBR resolution of 25km2 evaluates to a locality about 1

32

th
the

size of New York City. The entire map is assumed to be on a grid of 214 × 214

cells (a cell at every meter) while calculating the Hilbert indices [16]. Objects in
the same cell have the same Hilbert index.

4.2 Comparative performance

Figure 3a shows the average number of requests served in a session for differ-
ent anonymity requirements. ProvidentHider demonstrates poor performance for
higher k values, almost to the extent of one request per session. Comparatively,
CANON maintains much better service continuity. As mentioned earlier, using
a fixed area for varying anonymity requirements makes it difficult for Providen-

tHider to keep the peer set within the required size. The task is more difficult for
bigger peer sets as the algorithm does not consider the issue of diverging trajec-
tories. In fact, more than 50% of the requests are suppressed for k > 25 (figure
3b). CANON’s performance also seems to fluctuate depending on the oversize
factor. In general, a maximum peer set size slightly larger than the minimum
required (for example τ = 0.25) gives the best performance, while any further
increase degrades it. While a few extra peers is useful to handle defunct peers,
having a much larger peer set implies having objects over a larger area and of-
ten far away from each other (over time). Therefore, it is possible that some
peer groups are formed with a single object owing to the sub-MBR constraint.
Requests are then suppressed in the absence of a strategy to handle such peer
groups. This is also corroborated by the similar trend in request suppression.
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Fig. 3. Comparative performance of CANON with ProvidentHider (PH) for different
anonymity requirements (k) and oversize factors (τ). (a) Average number of requests
served in a session. (b) Percentage of requests suppressed.
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Fig. 4. Impact of different neighborhood step size θ on CANON. (a) Average number
of requests served in a session. (b) Average size of requesting object’s peer group.

4.3 Impact of parameters

Each parameter in CANON is intended to address a specific issue with the use of
historical k-anonymity. We performed some parametric studies to demonstrate
the consequences of varying these parameters. The neighborhood step size is
varied between 1◦ and 180◦, and performance is observed for three different
settings of the sub-MBR (αsub = 0.25, 1.0 and 4 km2) and full-MBR (αfull =
10, 25 and 50 km2) resolutions. Note that increasing/decreasing the full-MBR
resolution will have no impact on peer sets if the required number of objects is
always present within a small area. We therefore use a neighborhood step size
of 15◦ while observing the impact of αfull. All parameters other than the ones
mentioned take their default values.

Neighborhood step size θ Performance in terms of service continuity does
not differ a lot for varying step size (figure 4a). Some differences are observed
for lower ranges of k (2− 15) where larger step sizes show a better performance.
Differences are more prominent in terms of peer group size where a bigger neigh-
borhood improves the safeguard against location-unaware adversaries (figure 4b).
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Fig. 5. Impact of spatial resolution parameters on CANON – top: sub-MBR area
αsub and bottom: full-MBR area αfull with θ = 15◦. (a) Average number of requests
served in a session. (b) Average size of requesting object’s peer group. (c) Percentage
of suppressed requests.

This behavior is expected since bigger neighborhood sizes allow the inclusion of
more dissimilar peers, thereby inducing bigger peer groups due to the possibly
close proximity of objects. The statistic of interest is the size of the MBR area
defined by the objects in the peer set. We found that this area remains almost
constant for the smaller step sizes, specifically for the more frequently requested
anonymity levels (higher k), implying that the objects in a peer set move to-
gether as a group. Further, the area increases by more than two folds (across
different anonymity requirements) when direction of travel is ignored (θ = 180◦).

Sub-MBR resolution αsub Smaller sub-MBR resolutions mean higher preci-
sion in the range queries. However, they also mean higher chances of smaller peer
groups, often ones with a single object. With reference to figure 5 (top row), a
smaller αsub results in a higher rate of failures, inducing shorter service sessions.
Services requiring high location precision will therefore fail to provide longer
service continuity. An object’s peer group size is also comparatively smaller.
Improvements in service continuity is more prominent for weaker anonymity re-
quirements as αsub is increased. However, improvements in peer group size is
more noticeable in higher k values. In effect, finding a suitably balanced αsub

can help achieve good overall performance. αsub is decided by the service require-
ments in most cases. Nonetheless, depending on how stringent the requirement
is, both privacy (from location-unaware adversaries) and service quality may
have scope for improvement.

Full-MBR resolution αfull The full-MBR resolution is observed to have lit-
tle or no influence on the average number of requests served in a session (figure
5 bottom row). However, larger areas tend to have higher percentage of failures.
A possible explanation is as follows. A larger area with a small step size means
similar objects are preferred over the proximity of objects. As a result, a peer set
includes objects distributed far apart. This leads to the suppression of requests
when the sub-MBR constraint is imposed on the formation of peer groups. Ob-
jects far apart cannot be grouped without violating the constraint. This also
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results in a comparatively smaller peer group size. On the other hand, a smaller
area allows inclusion of close proximity objects at the expense of similarity. The
sub-MBR constraint is therefore easier to meet and suppression rate is lower.

4.4 Summary

The following points summarize the results from the experimental study.

– CANON has a superior performance compared to ProvidentHider in main-
taining longer service sessions across a wide range of anonymity requirements.
More requests are also successfully anonymized by CANON.

– Including a small number of extra objects in a peer set is advantageous in
handling defunct peers. However, extremely large peer sets can be detrimental.

– Use of direction information during the formation of a peer set does help avoid
peers drifting away from each other over time. Choice of a too small neigh-
borhood affects service quality, but is not necessary to balance performance
across different measures.

– Performance is better with larger sub-MBR resolutions. However, performance
in high precision services may be improved with a good strategy to relax the
constraint.

– Service continuity is marginally different for different full-MBR resolutions.
However, failure to serve new requests is much lower with smaller resolutions.

5 Conclusions

Owing to the limitations of k-anonymity in a continuous LBS, an extended notion
called historical k-anonymity has been recently proposed for privacy preservation
in such services. However, all known methods of enforcing historical k-anonymity
significantly affects the quality of service. In this paper, we identified the factors
that contribute towards deteriorated service quality and suggested resolutions.
We proposed the CANON algorithm that delivers reasonably good service qual-
ity across different anonymity requirements. The algorithm uses tunable param-
eters to adjust the size of a peer set, trajectories of peers and cloaking regions
over which range queries are issued. Immediate future work includes optimizing
the performance of CANON in terms of better usage of directional informa-
tion. We believe this optimization is crucial in order to have similar performance
across all levels of anonymity requirements. Merging location anonymity and
query privacy in a continuous LBS is a natural extension of this work.
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