
Building Security Requirement Patterns for Increased Effectiveness Early in
the Development Process

Dan Matheson1 Indrakshi Ray1 Indrajit Ray1 Siv Hilde Houmb2

1Colorado State University
Computer Science Department

{matheson, iray, indrajit}@cs.colostate.edu
2Norwegian University of Science and Technology

Computer Science Department
sivhoumb@idi.nt

Abstract

This paper explores the representation of security
concerns and their interactions appropriate for a
Model Driven Development approach. The focus is on
the representation of the security concerns early in the
development process and as abstract forms easily
related to the security aspects of the solution
requirements, but in a manner that allows for the
controlled refinement into a solution. This approach
uses UML as a rigorous mechanism to represent the
early security concerns and their families of solutions.
The security concerns are represented as sets of
patterns in UML. Stereotypes and tagged values are
used as a mechanism to support requirement
traceability during solution development. The
traceability mechanisms along with common concepts
provide a basis for verifying the adherence of the
solution to the requirements. The rigorous nature of
UML allows for automatic analysis of imprecise
specification earlier in the development process.

1. Introduction

Security features in a system may often interact to
give rise to undesirable behavior. Consider, for
example, the problems arising from the conflict between
confidentiality of data and security-auditing of actions.
Confidentiality requires that certain data remain hidden
from certain users while security-auditing may require
that such data be made available to these users. Such
conflict often arises from the different requirements that
are produced by different people. Additionally, in the

solution development process, the creation of the code
for these capabilities is done by different engineers. A
good design needs to strike the proper balance between
them so that sensitive data does not appear in a log file
as a result of poor communication between the
development engineers.

In this work we investigate the problem of suitably
representing security concerns in the software
development process such that their interactions can be
properly identified and analyzed. Ideally, this should be
accomplished early in the software development
process so that the overall complexity and cost of the
development is reduced. The approach we propose is to
use models to represent the various security concerns
and then use a Model Driven Development (MDD)
process such as Aspect-Oriented Modeling (AOM) to
create the solution. Since models can exist at various
levels of abstraction, we can build a set of related
security models, which constitute a development
pattern for solving a security concern. Expressing the
security requirements in a modeling language as early as
possible makes the tracking and refinement into a
solution easier.

2. Security Concerns

Phrases in requirements like “access is limited to
second level managers and up” or from regulatory
sources like “employee compensation data must be
transmitted to the IRS intact” are sources of security
concerns. Several categories of security concerns need
to be identified if they are to be handled effectively. The
following list covers most commercial software design
situations:

· Identification and Authentication

· Authorization and Access Control
· Data Integrity
· Confidentiality or Data Privacy
· Auditing
· Data Authenticity
· Survivability
· Non-repudiation

The categories provide an organization framework
for the security concern models and a more precise set
of terms for expression of the requirements.

Security Concern Relationships

The security concerns are not independent of each
other. By organizing the concerns into categories we
are more easily able to represent the relationships
between them. There are structural relationships such
as depends and used by, and there are behavioral
relationships like conflicts. The relationships can be
modeled and therefore checked during the model
refinement of solution development.

Security Domain Concepts

Starting with the main categories of security
concerns we can begin to refine the terms. The
refinement results in concepts emerging that were
previously hidden by abstraction. For example, session
emerges from authentication refinements and auditing
refinements. We can create a graphical structure of the
related terms as a starting point for discovering
patterns.

Figure 1 shows how concepts can emerge. Session
emerges as a concept needed to support Identification
and Authentication. The same term, Identification, can
emerge as a second order concept to support Session.

Figure 1 Emerging Security Concepts

The emergent domain concepts that appear during
refinement allow another way to relate the security
concerns. With respect to the requirements the common
domain concepts should be used in a consistent way
across the solution.

The domain concepts involved in a solution will also
vary across different engineering realizations. Early in
the design process one can use the number and
complexity of the domain concepts associated with a
particular solution to make cost estimates. Figure 2
shows a first order view of shared solution concepts.

Figure 2 Shared Security Concepts

The domain concepts are entities that will need to be
realized in a solution. We can model them as classes in
UML to represent the concepts and bring them into the
solution design. The informal relationships expressed as
lines in Figures 1 and 2 can be modeled as associations
in the UML.

4. Security Aspect UML Definitions

The representation in UML of the security concerns
is first done as class models. As we are focused on the
representation of requirements and the early stages of
the design, the UML classes have no attributes or
methods. The mere presence of an artifact in the class
model registers the existence of a requirement.

From an AOM support perspective as well as for
capturing domain knowledge we wish to create a set of
security domain patterns as UML models at various
levels of abstraction. The patterns will exist as class
models.

The patterns we are creating are used for several
purposes. The first purpose is a starting point for a
design to fulfill a specific security concern. The second
purpose is as a definition for analysis tools to use when
checking the results of a refinement or AOM
composition action. A third purpose for an AOM
approach is to determine the best order of composition.

The dependency type relationship is used to
construct a more complete security solution pattern that
matches to a higher level expression of a security
concern. For example, our security concern is

Identification + Authentication

Session ProofIdentifier

Identification (2nd)

«requires»

«concept»
«concept»

«concept»

Integrity (2nd)

Access Control (2nd)

Integrity (2nd) Integrity (2nd) Confidentiality (2nd)
«requires» «requires»«requires»

Uniqueness

Authorization

Access Control List RBAC Capability

Concern

Engineering
Refinement

Subjects Objects

Sessions Roles Privileges

Domain
Concepts

«refines» «refines»«refines»

«depends»

«depends»

Subjects

Concern

Domain
Concepts

Objects

Roles Groups Aliases

«applies to»

Identification

confidentiality. We construct an abstract model of the
concern that captures the primary concepts of
maintaining confidentiality. We know that supporting
concepts of user identification and authentication are
key to achieving that goal. The more complete
confidentiality model will have the dependency
relationship to the identity model created.

An AOM composition tool can use the extended
solution model as directives for ordering the aspect
composition with the primary model. An analysis tool
can refer to the confidentiality concern solution model
as an extended specification to be tested against.

UML Mechanisms

Several UML mechanisms will be used in the models
of security concerns to organize and track the model
entities through the MDD refinement process.

One stereotype on classes will be used to track the
category of the security concern. This provides a basis
for identifying commonalities as models are refined. It
can also help in the development of consistency checks.
The stereotype will follow the refinement so that the
more concrete entities retain the stereotype of the
abstract parent. The stereotype embodies a category
constraint on the refinement.

A stereotype for domain concepts will also be used.
This stereotype will follow refinements in the same
manner as the concern category stereotype listed
earlier. The purpose of this stereotype is to trace the
realization of a security requirement concern to the
detailed classes that implement this aspect of the
solution.

The AOM approach composes several models
together to create a solution at some level of
abstraction. The models composed should be at
approximately the same level of abstraction or the result
is likely to be wrong. We use a tagged value to track
the refinement level of a model. If the levels differ by
too much, then we are combining models with different
levels of precision which can produce a nonsense result.

The composition of models also results in the
combining of stereotypes in a result class. This supports
the traceability back to the original requirements. It can
also be used by analysis tools to check for consistency,
conflicts and completeness.

There are several stereotypes that are used on
associations in our security models

The security_dependency stereotype is used to
indicate that one security concern is dependent on
another security concern. For example, authorization is
dependent on identity. Any realization of authorization

must be accompanied by a realization of identity or
there is a design error in the model.

The applies_to stereotype is used to relate domain
concepts to a security concern and assists in
completeness analysis of a design.. For example, the
domain concepts of subject, object and privileges apply
to the authorization security concern.

The security_refiinement stereotype is used to
indicate a realization of a concept. This type of
association is a link between different levels of
abstraction. The level is indicated by the
security_abstraction_level tagged value.

Authentication Models

We have developed models of each of the security
concerns. This section shows part of one example for
the authentication concern. Space limitations prevent us
from showing all models of all the concerns.

The UML diagram in Figure 3 shows part of the
model for the authentication concern. This UML class
diagram focuses on the supporting concepts for
authentication. The «authentication» stereotype in each
class is used to provide a classification mechanism.

The supporting domain concept classes have a
stereotype of «domain_concept». This gives us another
axis of categorization and linkage across models.

The classes are connected by an association with an
«applies_to» stereotype. One reads this as an Identity
domain concept applies to the Authentication concern.
The stereotype on the association gives us the
possibility of defining rules to be used during analysis.
For example, if a solution realization for authentication
does not have elements of all four domain concepts,
then the realization is defective.

Figure 4 shows a class model of a refinement
structure. Each level in the refinement structure is
indicated by the integer type tagged value
security_abstraction_level. The refinements in this
structure reflect a decision to realize the authentication
concern via a specific mechanism.

The «authentication» stereotype in each class is used
to provide a classification mechanism to group these
realizations of the concern. There is a different
stereotype on the association in this class model. The
semantics we give to the «security_refinement»
stereotype are those of greater precision of realization
of a security concern. This might seem similar to the
object-oriented generalization / specialization concepts,
but it is different in that we are creating sub-categories
of realizations.

Figure 3 Authentication Concepts UML Model

Figure 4 Authentication Refinement

Realization

A repository for holding the models is being
developed. This gives a source for the analysis tools
and a place for the developer to find this information.
The repository will be used to hold the models
developed in an AOM approach. Product Data
Management (PDM) [39] concepts from the discrete
manufacturing industries are being used as the basis for
the repository. The component structuring,
classification and organization techniques are directly
applicable to the situation described here. Dan has over
10 years experience with the construction and use of
PDM applications.

5. Conclusions

In this paper we have described an approach for
transitioning an imprecise text-based specification of
security requirements into a set of patterns expressed in
the semi-formal UML notation. The UML expression
of the security concerns and their refinements provide a
basis for better communication between the design
engineer and programmers realizing the design.

We are currently working on a set of tools
supporting the different aspects of the AOM program.
The tool support covers AOM composition tools,
model analysis tools and a repository to manage the
models and their evolutions.

The patterns presented in this work are preliminary
and further research is needed to establish a stable set
of security patterns at various levels of abstraction.

