A Spatio-Temporal Access Control Model Supporting
Delegation for Pervasive Computing Applications™

Indrakshi Ray and Manachai Toahchoodee

Department of Computer Science
Colorado State University
Fort Collins CO 80523-1873
{iray, toahchoo}@cs.colostate.edu

Abstract. The traditional access control models, such as Role-Based Access
Control (RBAC) and Bell-LaPadula (BLP), are not suitable for pervasive comput-
ing applications which typically lack well-defined security perimeters and where
all the entities and interactions are not known in advance. We propose an access
control model that handles such dynamic applications and uses environmental
contexts to determine whether a user can get access to some resource. Our model
is based on RBAC because it simplifies role management and is the de facto
access control model for commercial organizations. However, unlike RBAC, it
uses information from the environmental contexts to determine access decisions.
The model also supports delegation which is important for dynamic applications
where a user is unavailable and permissions may have to be transferred temporar-
ily to another user/role in order to complete a specific task. This model can be
used for any application where spatial and temporal information of a user and an
object must be taken into account before granting access or temporarily transfer-
ring access to another user.

1 Introduction

With the increase in the growth of wireless networks and sensor and mobile devices,
we are moving towards an era of pervasive computing. The growth of this technology
will spawn applications such as, the Aware Home [6] and CMU’s Aura [7], that will
make life easier for people. However, before such applications can be widely deployed,
it is important to ensure that no authorized users can access the resources of the appli-
cation and cause security and privacy breaches. Traditional access control models, such
as, Bell-LaPadula (BLP) and Role-Based Access Control (RBAC), do not work well
for pervasive computing applications because they do not have well-defined security
perimeters and all the users and resources are not known in advance. Moreover, they do
not take into account environmental factors, such as, location and time, while making
access decisions. Consequently, new access control models are needed for pervasive
computing applications.

In pervasive computing applications, the access decisions cannot be based solely on
the attributes of users and resources. For instance, we may want access to a computer be

* This work was supported in part by AFOSR under contract number FA9550-07-1-0042.

enabled when a user enters a room and it to be disabled when he leaves the room. Such
types of access control can only be provided if we take environmental contexts, such
as, time and location, into account before making access decisions. Thus, the access
control model for pervasive computing applications must allow for the specification
and checking of environmental conditions.

Pervasive computing applications are dynamic in nature and the set of users and re-
sources are not known in advance. It is possible that a user/role for doing a specific task
is temporarily unavailable and another user/role must be granted access during this time
to complete it. This necessitates that the model be able to support delegation. Moreover,
different types of delegation needs to be supported because of the unpredictability of
the application.

Researchers have proposed various access control models for pervasive computing
applications. Several works exist that focus on how RBAC can be extended to make it
context aware [6, 5, 15]. Other extensions to RBAC include the Temporal Role-Based
Access Control Model (TRBAC) [2] and the Generalized Temporal Role Based Access
Control Model (GTRBAC) [9]. Researchers have also extended RBAC to incorporate
spatial information [3, 14]. Incorporating both time and location in RBAC is also ad-
dressed by other researchers [1,4, 12, 16]. Location-based access control has been ad-
dressed in other works not pertaining to RBAC [7,8, 10, 13, 11, 17]. However, none of
these works focus on delegation which is a necessity in pervasive computing applica-
tions.

In this paper, we propose a formal access control model for pervasive computing ap-
plications. The model extends the one proposed in our earlier work [12]. Since RBAC
is policy-neutral, simplifies access management, and widely used by commercial appli-
cations, we base our work on it. We show how RBAC can be extended to incorporate
environmental contexts, such as time and location. We illustrate how each component
of RBAC is related with time and location and show how it is affected by them. We
also show how spatio-temporal information is used for making access decisions. We
also describe the different types of delegation that are supported by our model. Some of
these are constrained by temporal and spatial conditions. The correct behavior of this
model is formulated in terms of constraints that must be satisfied by any application
using this model.

2 Our Model

Representing Location

There are two types of locations: physical and logical. All users and objects are asso-
ciated with locations that correspond to the physical world. These are referred to as the
physical locations. A physical location PLoc; is a non-empty set of points {p;, pj,...,pn}
where a point py is represented by three co-ordinates. Physical locations are grouped
into symbolic representations that will be used by applications. We refer to these sym-
bolic representations as logical locations. Examples of logical locations are Fort Collins,
Colorado etc. A logical location is an abstract notion for one or more physical locations.
We assume the existence of two translation functions, m and m’, that convert from log-
ical locations to physical locations and vice-versa.

Although different kinds of relationships may exist between a pair of locations, here
we focus only on containment relation. A physical location ploc is said to be contained
in another physical location plocy, denoted as, ploc; C plocy, if the following condition
holds: Vp; € ploc;, p; € plocy. The location ploc; is called the contained location and
plocy is referred to as the containing or the enclosing location. A logical location /loc,,
is contained in /loc,, denoted as, lloc,, C lloc,, if and only if the physical location
corresponding to llocy, is contained within that of lloc,,, that is m'(lloc,,) C m'(llocy,).
We assume the existence of a logical location called universe that contains all other
locations. In the rest of the paper, we do not discuss physical locations any more. The
locations referred to are logical locations.

Representing Time

A time instant is one discrete point on the time line. The exact granularity of a time
instant will be application dependent. For instance, in some application a time instant
may be measured at the nanosecond level and in another one it may be specified at
the millisecond level. A time interval is a set of time instances. Example of an interval
is 9:00 a.m. to 3:00 p.m. on 25th December. Example of another interval is 9:00 a.m.
to 6:00 p.m. on Mondays to Fridays in the month of March. We use the notation ¢; €
d to mean that # is a time instance in the time interval d. A special case of relation
between two time intervals that we use is referred to as containment. A time interval tv;
is contained in another interval #v;, denoted as tv; C tv;, if the set of time instances in
1v; is a subset of those in tv;. We introduce a special time interval, which we refer to as
always, that includes all other time intervals.

Relationship of Core-RBAC entities with Location and Time

We discuss how the different entities of core RBAC, namely, Users, Roles, Sessions,
Permissions, Objects and Operations, are associated with location and time.
Users
We assume that each valid user carries a locating device which is able to track his lo-
cation. The location of a user changes with time. The relation UserLocation(u,t) gives
the location of the user at any given time instant ¢. Since a user can be associated with
only one location at any given point of time, we have the following constraint:
UserLocation(u,t) = l; AUserLocation(u,t) =1; < (; Cl;) vV (I; C L)
We define a similar function UserLocations(u,d) that gives the location of the user
during the time interval d. Note that, a single location can be associated with multiple
users at any given point of time.
Objects
Objects can be physical or logical. Example of a physical object is a computer. Files
are examples of logical objects. Physical objects have devices that transmit their lo-
cation information with the timestamp. Logical objects are stored in physical objects.
The location and timestamp of a logical object corresponds to the location and time of
the physical object containing the logical object. We assume that each object is asso-
ciated with one location at any given instant of time. Each location can be associated
with many objects. The function ObjLocation(o,t) takes as input an object o and a time
instance ¢ and returns the location associated with the object at time ¢. Similarly, the
function ObjLocations(o,d) takes as input an object o and time interval d and returns
the location associated with the object.

Roles

We have three types of relations with roles. These are user-role assignment, user-role
activation, and permission-role assignment. We begin by focusing on user-role assign-
ment. Often times, the assignment of user to roles is location and time dependent. For
instance, a person can be assigned the role of U.S. citizen only in certain designated
locations and at certain times only. To get the role of conference attendee, a person
must register at the conference location during specific time intervals. Thus, for a user
to be assigned a role, he must be in designated locations during specific time inter-
vals. In our model, a user must satisfy spatial and temporal constraints before roles can
be assigned. We capture this with the concept of role allocation. A role is said to be
allocated when it satisfies the temporal and spatial constraints needed for role assign-
ment. A role can be assigned once it has been allocated. RoleAllocLoc(r) gives the set
of locations where the role can be allocated. RoleAllocDur(r) gives the time interval
where the role can be allocated. Some role s can be allocated anywhere, in such cases
RoleAllocLoc(s) = universe. Similarly, if role p can be assigned at any time, we specify
RoleAllocDur(p) = always.

Some roles can be activated only if the user is in some specific locations. For in-
stance, the role of audience of a theater can be activated only if the user is in the theater
when the show is on. The role of conference attendee can be activated only if the user is
in the conference site while the conference is in session. In short, the user must satisfy
temporal and location constraints before a role can be activated. We borrow the concept
of role-enabling [2,9] to describe this. A role is said to be enabled if it satisfies the
temporal and location constraints needed to activate it. A role can be activated only if
it has been enabled. RoleEnableLoc(r) gives the location where role r can be activated
and RoleEnableDur(r) gives the time interval when the role can be activated.

The predicate UserRoleAssign(u,r,d,l) states that the user u is assigned to role r
during the time interval d and location /. For this predicate to hold, the location of the
user when the role was assigned must be in one of the locations where the role alloca-
tion can take place. Moreover, the time of role assignment must be in the interval when
role allocation can take place.

UserRoleAssign(u,r,d,l) =

(UserLocation(u,d) =)A (I C RoleAllocLoc(r)) A (d C RoleAllocDur(r))
The predicate UserRoleActivate(u,r,d,l) is true if the user u activated role r for the
interval d at location /. This predicate implies that the location of the user during the
role activation must be a subset of the allowable locations for the activated role and all
times instances when the role remains activated must belong to the duration when the
role can be activated and the role can be activated only if it is assigned.
UserRoleActivate(u,r,d,l) =

(I € RoleEnableLoc(r)) N(d C RoleEnableDur(r)) AUserRoleAssign(u,r,d,l)
The additional constraints imposed upon the model necessitates changing the precondi-
tions of the functions AssignRole and ActivateRole. The permission role assignment is
discussed later.
Sessions
In mobile computing or pervasive computing environments, we have different types
of sessions that can be initiated by the user. Some of these sessions can be location-

dependent, others not. Thus, sessions are classified into different types. Each instance
of a session is associated with some type of a session. The type of session instance s is
given by the function Type(s). The type of the session determines the allowable loca-
tion. The allowable location for a session type st is given by the function SessionLoc(st).
When a user u wants to create a session si, the location of the user for the entire du-
ration of the session must be contained within the location associated with the session.
The predicate SessionUser(u,s,d) indicates that a user u has initiated a session s for
duration d.

SessionUser(u,s,d) = (UserLocation(u,d) C SessionLoc(Type(s)))

Since sessions are associated with locations, not all roles can be activated within some
session. The predicate SessionRole(u,r,s,d, 1) states that user u initiates a session s and
activates a role for duration d and at location /.

SessionRole(u,r,s,d,l) = UserRoleActivate(u,r,d,l) Nl C SessionLoc(Type(s)))
Permissions

Our model also allows us to model real-world requirements where access decision is
contingent upon the time and location associated with the user and the object. For ex-
ample, a teller may access the bank confidential file if and only if he is in the bank
and the file location is the bank secure room and the access is granted only during the
working hours. Our model should be capable of expressing such requirements.

Permissions are associated with roles, objects, and operations. We associate three
additional entities with permission to deal with spatial and temporal constraints: user
location, object location, and time. We define three functions to retrieve the values of
these entities. PermRoleLoc(p,r) specifies the allowable locations that a user playing
the role r must be in for him to get permission p. PermObjLoc(p,0) specifies the al-
lowable locations that the object 0 must be in so that the user has permission to operate
on the object 0. PermDur(p) specifies the allowable time when the permission can be
invoked.

We define another predicate which we term PermRoleAcquire(p,rd,l). This predi-
cate is true if role r has permission p for duration d at location /. Note that, for this
predicate to be true, the time interval d must be contained in the duration where the
permission can be invoked and the role can be enabled. Similarly, the location / must be
contained in the places where the permission can be invoked and role can be enabled.
PermRoleAcquire(p,r,d,l) =

(I C (PermRoleLoc(p,r)NRoleEnableLoc(r))) A(d C (PermDur(p) NRoleEnableDur(p)))
The predicate PermU serAcquire(u,o0, p,d,l) means that user u can acquire the permis-
sion p on object o for duration d at location /. This is possible only when the permission
p is assigned some role » which can be activated during d and at location /, the user loca-
tion and object location match those specified in the permission, the duration d matches
that specified in the permission.
PermRoleAcquire(p,r,d,l) AUserRoleActivate(u,r,d,l)
A(Ob jectLocation(o,d) C PermOb jectLoc(p,0)) = PermUserAcquire(u,o0,p,d,l)

For lack of space, we do not discuss the impact of time and location on role-
hierarchy or separation of duty, but refer the interested reader to one of our earlier
paper [12].

Impact of Time and Location on Delegation

Many situations require the temporary transfer of access rights to accomplish a
given task. For example, in a pervasive computing application, a doctor may give cer-
tain privilege to a trained nurse, when he is taking a short break. In such situations,
the doctor can give a subset of his permissions to the nurse for a given period of time.
There are a number of different types of delegation. The entity that transfers his privi-
leges temporarily to another entity is often referred to as the delegator. The entity who
receives the privilege is known as the delegatee. The delegator (delegatee) can be either
an user or a role. Thus, we may have four types of delegations: user to user (U2U),
user to role (U2R), role to role (R2R), and role to user (R2U). System administrators
are responsible for overseeing delegation when the delegator is a role. Individual users
administer delegation when the delegator is an user. When a user is the delegator, he
can delegate a subset of permissions that he possesses by virtue of being assigned to
different roles. When a role is the delegator, he can delegate either a set of permissions
or he can delegate the entire role. We can therefore classify delegation on the basis of
role delegation or permission delegation. We identify the following types of delegation.
[U2U Unrestricted Permission Delegation] In this type of delegation, the delegatee
can invoke the delegator’s permissions at any time and at any place where the delegator
could invoke those permissions. The illness of the company president caused him to
delegate his email reading privilege to his secretary.

Let DelegateU2U _P,(u,v, Perm) be the predicate that allows user u to delegate the per-
missions in the set Perm to user v without any temporal or spatial constraints. This will
allow v to invoke the permissions at any time or at any place.
Vp € Perm,DelegateU2U _P,(u,v, Perm) A PermU serAcquire(u,o0,p,d,l) =
PermU serAcquire(v,0,p,d,l)
[U2U Time Restricted Permission Delegation] Here the delegator places time restric-
tions on when the delegatee can invoke the permissions. However, no special restric-
tions are placed with respect to location — the delegatee can invoke the permission at
any place that the delegator could do so. The professor can delegate his permission to
proctor an exam to the teaching assistant while he is on travel.
Let DelegateU2U _P,(u,v, Perm,d’) be the predicate that allows user u to delegate the
permissions in the set Perm to user v for the duration d’.
Vp € Perm,DelegateU2U _P;(u,v, Perm,d') A PermUserAcquire(u,o0,p,d,l) A(d' Cd)
= PermUserAcquire(v,0,p,d',l)
[U2U Location Restricted Permission Delegation] A delegator can place spatial re-
strictions on when the delegatee can invoke the permissions. However, the only tempo-
ral restriction is that the delegatee can invoke the permissions during the period when
the original permission is valid. The teaching assistant can delegate the permission re-
garding lab supervision to the lab operator only in the Computer Lab.
Let DelegateU?2U _P;(u,v, Perm,l') be the predicate that allows user u to delegate the
permissions in the set Perm to user v in the location ',
Vp € Perm,DelegateU2U _P,(u,v, Perm,l') A PermU serAcquire(u,o0, p,d,l) A(I' C)
= PermUserAcquire(v,0,p,d,!")
[U2U Time Location Restricted Permission Delegation] In this case, the delegator
imposes a limit on the time and the location where the delegatee can invoke the permis-

sion. A nurse can delegate his permission to oversee a patient while he is resting in his
room to a relative.
Let DelegateU2U _Py;(u,v,Perm,d’',I') be the predicate that allows user u to delegate
the permissions in the set Perm to user v in the location ' for the duration d’.
V'p € Perm,DelegateU2U _Py;(u,v, Perm,t',1') A PermUserAcquire(u, o0, p,d,!)

Ad Cd)A (' Cl) = PermUserAcquire(v,0,p,d’,l')
[U2U Unrestricted Role Delegation] Here the delegator delegates a role to the delega-
tee. The delegatee can activate the roles at any time and place where the delegator can
activate those roles. A manager before relocating can delegate his roles to his successor
in order to train him.
Let DelegateU2U _R,(u,v,r) be the predicate that allows user u to delegate his role r to
user v.
DelegateU2U R, (u,v,r) AUserRoleActivate(u,r,d,l) = UserRoleActivate(v,r,d,l)
[U2U Time Restricted Role Delegation] In this case, the delegator delegates a role
to the delegatee but the role can be activated only for a more limited duration than the
original role. A user can delegate his role as a teacher to a responsible student while he
is in a conference.
Let DelegateU2U _R,(u,v,r,d’) be the predicate that allows user u to delegate his role r
to user v for the duration d’.
DelegateU2U R, (u,v,r,d") AUserRoleActivate(u,r,d,l)\

(d' C RoleEnableDur(r)) A(d' C d) = UserRoleActivate(v,r,d',1)
[U2U Location Restricted Role Delegation]: In this case, the delegator delegates a
role to the delegatee but the role can be activated in more limited locations than the
original role. A student can delegate his lab supervision role to another student in a
designated portion of the lab only.
Let DelegateU2U R;(u,v,r,1') be the predicate that allows user u to delegate his role r
to user v in the location /'
Delegate R;(u,v,r,I') ANUserRoleActivate(u,r,d,l) A

(I' C RoleEnableLoc(r)) A(I' Cl) = UserRoleActivate(v,r,d,l")
[U2U Time Location Restricted Role Delegation] The delegator delegates the role,
but the delegatee can activate the role for a limited duration in limited places. A student
can delegate his lab supervision role to another student only in the lab when he leaves
the lab for emergency reasons.
Let DelegateU2U Ry (u,v,r,d',I') be the predicate that allows user u to delegate his
role r to user v in location I’ and time d’.
DelegateU2U Ry (u,v,r,d',I') ANUserRoleActivate(u,r,d,l) A(I' C RoleEnableLoc(r))A

(d' C RoleEnableDur(r)) A(d' Cd) A (' C1) = UserRoleActivate(v,r,d',l")
[R2R Unrestricted Permission Delegation] Here, all users assigned to the delegatee
role can invoke the delegator role’s permissions at any time and at any place where the
user of this delegator role could invoke those permissions. The Smart Home owner role
may delegate the permission to check the status of security sensors of the home to the
police officer role, so all police officers can detect the intruder at any time at any place.
Let DelegateR2R _P,(r1,r2,Perm) be the predicate that allows role r to delegate the
permissions in the set Perm to role r, without any temporal or spatial constraints. This
will allow users in the role r; to invoke the permissions at any time or at any place.

Vp € Perm,DelegateR2R P, (r1,r2, Perm)\ PermRoleAcquire(p,ri,d,)\

(d C RoleEnableDur(r2)) A(I C RoleEnableLoc(r2))

= PermRoleAcquire(p,ry,d,l)
[R2R Time Restricted Permission Delegation] The delegator role can place tempo-
ral restrictions on when the users of the delegatee role can invoke the permissions. No
special restrictions are placed with respect to location i.e. the delegatee role’s users can
invoke the permissions at any place that the delegator role’s users could do so. CS599
teacher role can grant the permission to access course materials to CS599 student role
for the specific semester.
Let DelegateR2R P;(ry,r2, Perm,d') be the predicate that allows role r; to delegate the
permissions in the set Perm to role r, for the duration d’.
V'p € Perm,DelegateR2R _P;(ry,ry,Perm,d') A (d' C d) PermRoleAcquire(p,ri,d,l) A

(I' COA (d' C RoleEnableDur(r3)) A (I C RoleEnableLoc(r2))

= PermRoleAcquire(p,r,d',1)
[R2R Location Restricted Permission Delegation] Here, the delegator role places
spatial constraints on where the users of the delegatee role can invoke the permissions.
No special temporal constraints are placed, that is, the delegatee role’s users can invoke
the permissions at any time that the delegator role’s users could do so. The librarian
role may grant the permission to checkout the book to the student role only at the self-
checkout station.
Let DelegateR2R _P;(r1,r2, Perm,l') be the predicate that allows role r; to delegate the
permissions in the set Perm to role r; in the location '
V'p € Perm,DelegateR2R _Py(ry,ry, Perm,I')\ PermRoleAcquire(p,ri,d,l)A

(d C RoleEnableDur(r2))A (I' C RoleEnableLoc(r)) A (I' C 1)

= PermRoleAcquire(p,ry,d,l')
[R2R Time Location Restricted Permission Delegation] Here the delegator role im-
poses a limit on the time and the location where the delegatee role’s users could invoke
the permissions. The daytime doctor role may delegate the permission to get his loca-
tion information to the nurse role only when he is in the hospital during the daytime.
Let DelegateR2R _Py(ry,r2,Perm,d’,l") be the predicate that allows role r; to delegate
the permissions in the set Perm to role r; in the location [’ for the duration d'.
Vp € Perm,DelegateR2R Py (ry,r2,Perm,d',I')A PermRoleAcquire(p,ri,d,l)A

(d' C RoleEnableDur(r2))A (I' C RoleEnableLoc(ry)) A(d' Cd) AN(I' C 1)

= PermRoleAcquire(p,ry,d',l')
[R2R Unrestricted Role Delegation] Here all users assigned to the delegatee role can
activate the delegator role at any time and at any place where the user of this delegator
role could activate the role. In the case of company reorganization, the manager role
can be delegated to the manager successor role in order to train him.
Let DelegateR2R R, (r1,r2) be the predicate that allows role r; to be delegated to role
.
DelegateR2R R, (r1,r2) AUserRoleActivate(u,rz,d,l) A (d C RoleEnableDur(r1))A

(I C RoleEnableLoc(r1)) = UserRoleActivate(u,ry,d, 1)
[R2R Time Restricted Role Delegation] Here, the delegator places temporal con-
straints on when the users of the delegatee role can activate the delegator role. No
special spatial constraints are placed i.e. the delegatee role’s users can activate the del-

egator role at any place that the delegator role’s users could do so. The permanent staff
role can be delegated to the contract staff role during the contract period.
Let DelegateR2R R;(r1,r2,d") be the predicate that allows role r; to be delegated to
role r, for the duration d’.
DelegateR2R R,(r1,r2,d") ANUserRoleActivate(u,ry,d', 1)\ (d C RoleEnableDur(ry)) A\
(I CRoleEnableLoc(r1)) AN(d' C d) = UserRoleActivate(u,ry,d',1)
[R2R Location Restricted Role Delegation] The delegator role can place spatial re-
strictions on where the users of the delegatee role can activate the delegator role. No
special restrictions are placed with respect to time i.e. the delegatee role’s users can
activate the delegator role at any time that the delegator role’s users could do so. The
researcher role can be delegated to the lab assistant role at the specific area of the lab.
Let DelegateR2R R;(ry,r2,1') be the predicate that allows role r; to be delegated to role
5 in the location /.
DelegateR2R R;(r1,r2,1") ANUserRoleActivate(u,r,d,l") A (d C RoleEnableDur(ri))A
(I C RoleEnableLoc(r1)) A(I' C1) = UserRoleActivate(u,ry,d,l")
[R2R Time Location Restricted Role Delegation] In this case, the delegator role im-
poses a limit on the time and the location where the delegatee role’s users could activate
the role. The full-time researcher role can be delegated to the part-time researcher role
only during the hiring period in the specific lab.
Let DelegateR2R R, (r1,72,d’,1") be the predicate that allows role | to be delegated to
role r; in the location !’ for the duration d’.
DelegateR2R Ry(r1,r2,d',I') AUserRoleActivate(u,ry,d',I') AN(d' Cd)A (' CI)A
(d C RoleEnableDur(r1)) A(I C RoleEnableLoc(ri))A(d' Cd)A (' CI)
= UserRoleActivate(u,ry,d',l")

3 Conclusion and Future Work

Traditional access control models which do not take into account environmental factors
before making access decisions may not be suitable for pervasive computing applica-
tions. Towards this end, we proposed a spatio-temporal role based access control model
that supports delegation. The behavior of the model is formalized using constraints.

An important work that we plan to do is the analysis of the model. We have pro-
posed many different constraints. We are interested in finding conflicts and redundan-
cies among the constraint specification. Such analysis is needed before our model can
be used for real world applications. We plan to investigate how to automate this analy-
sis. We also plan to implement our model. We need to investigate how to store location
and temporal information and how to automatically detect role allocation and enabling
using triggers.

References

1. Vijayalakshmi Atluri and Soon Ae Chun. A geotemporal role-based authorisation system.
International Journal of Information and Computer Security, 1(1/2):143-168, January 2007.

2. Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A Temporal Role-Based
Access Control Model. In Proceedings of the 5th ACM workshop on Role-Based Access
Control, pages 21-30, Berlin, Germany, July 2000. ACM Press.

10.

11.

12.

13.

14.

15.

16.

17.

. Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. GEO-RBAC:

a spatially aware RBAC. In Proceedings of the 10th ACM Symposium on Access Control
Models and Technologies, pages 29-37, Stockholm, Sweden, June 2005. ACM Press.

. Suroop Mohan Chandran and J. B. D. Joshi. LoT-RBAC: A Location and Time-Based RBAC

Model. In WISE, pages 361-375, 2005.

. Michael J. Covington, Prahlad Fogla, Zhiyuan Zhan, and Mustaque Ahamad. A Context-

Aware Security Architecture for Emerging Applications. In Proceedings of the Annual Com-
puter Security Applications Conference , pages 249-260, Las Vegas, NV, USA, December
2002.

. Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind Dey, Mustaque Ahamad,

and Gregory Abowd. Securing Context-Aware Applications Using Environment Roles. In
Proceedings of the 6th ACM Symposium on Access Control Models and Technologies, pages
10-20, Chantilly, VA, USA, May 2001.

. Urs Hengartner and Peter Steenkiste. Implementing Access Control to People Location In-

formation. In Proceeding of the 9th Symposium on Access Control Models and Technologies,
Yorktown Heights, New York, June 2004.

. R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebben, and J. Reitsma. Context

sensitive access control. In Proceedings of the 10th ACM Symposium on Access Control
Models and Technologies, pages 111-119, Stockholm, Sweden, 2005. ACM Press.

. James B.D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A Generalized Temporal

Role-Based Access Control Model. IEEE Transactions on Knowledge and Data Engineer-
ing, 17(1):4-23, 2005.

Ulf Leonhardt and Jeff Magee. Security Consideration for a Distributed Location Service.
Imperial College of Science, Technology and Medicine, London, UK, 1997.

Fang Pu, Daoqin Sun, Qiying Cao, Haibin Cai, and Fan Yang. Pervasive Computing Context
Access Control Based on UCONpc Model. In Intelligent Information Hiding and Multi-
media Signal Processing, 2006. IIH-MSP '06. International Conference on, pages 689—692,
December 2006.

I. Ray and M. Toahchoodee. A Spatio-Temporal Role-Based Access Control Model. In
Proceedings of the 21st Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, pages 211-226, Redondo Beach, CA, July 2007.

Indrakshi Ray and Mahendra Kumar. Towards a Location-Based Mandatory Access Control
Model. Computers & Security, 25(1), February 2006.

Indrakshi Ray, Mahendra Kumar, and Lijun Yu. LRBAC: A Location-Aware Role-Based
Access Control Model. In Proceedings of the 2nd International Conference on Information
Systems Security, pages 147-161, Kolkata, India, December 2006.

Geetanjali Sampemane, Prasad Naldurg, and Roy H. Campbell. Access Control for Active
Spaces. In Proceedings of the Annual Computer Security Applications Conference , pages
343-352, Las Vegas, NV, USA, December 2002.

Arjmand Samuel, Arif Ghafoor, and Elisa Bertino. A Framework for Specification and Verifi-
cation of Generalized Spatio-Temporal Role Based Access Control Model. Technical report,
Purdue University, February 2007. CERIAS TR 2007-08.

Hai Yu and Ee-Peng Lim. LTAM: A Location-Temporal Authorization Model. In Secure
Data Management, pages 172—-186, 2004.

