
Secure Personal Data Servers: a Vision Paper
Tristan Allard*,**, Nicolas Anciaux*, Luc Bouganim*, Yanli Guo*, Lionel Le Folgoc*,

Benjamin Nguyen*,**, Philippe Pucheral*,**, Indrajit Ray***, Indrakshi Ray***, Shaoyi Yin*
* INRIA Rocquencourt
Le Chesnay, France

<Fname.Lname>@inria.fr

** PRISM Laboratory
Univ. of Versailles, France

<Fname.Lname>@prism.uvsq.fr

*** Colorado State University
Fort Collins, CO, USA

{indrajit,iray}@cs.colostate.edu

ABSTRACT
An increasing amount of personal data is automatically gathered
and stored on servers by administrations, hospitals, insurance
companies, etc. Citizen themselves often count on internet
companies to store their data and make them reliable and highly
available through the internet. However, these benefits must be
weighed against privacy risks incurred by centralization. This
paper suggests a radically different way of considering the
management of personal data. It builds upon the emergence of new
portable and secure devices combining the security of smart cards
and the storage capacity of NAND Flash chips. By embedding a
full-fledged Personal Data Server in such devices, user control of
how her sensitive data is shared by others (by whom, for how long,
according to which rule, for which purpose) can be fully
reestablished and convincingly enforced. To give sense to this
vision, Personal Data Servers must be able to interoperate with
external servers and must provide traditional database services like
durability, availability, query facilities, transactions. This paper
proposes an initial design for the Personal Data Server approach,
identifies the main technical challenges associated with it and
sketches preliminary solutions. We expect that this paper will open
exciting perspectives for future database research.

1. INTRODUCTION
The number of information systems continuously gathering
personal data on servers is escalating at a tremendous pace.
Electronic Health Record systems used today in most advanced
countries, vehicle tracking systems used to compute insurance
premium, and soon carbon tax, travelers tracking systems used by
public transportation companies, systems implementing e-
administration procedures (scholarship folders, identity cards,
social security covers, pension funds, income taxes, …) are
illustrative but not exclusive examples. Citizens have no way to
opt-out of these applications because governments, public agencies
or companies that regulate our daily life require them.
In the meantime, administrations and companies deliver an
increasing amount of digitized personal data to the user (salary
forms, insurance forms, invoices, phone call sheets, banking
statements, etc). Primary copies of this data are kept by the
information system that produced the data and secondary copies
are delivered to the user for her personal use. While nothing
dictates this, these secondary copies often also end up in servers
for user’s convenience. Indeed, the user expects her data to be
resilient to failure, available through the internet 24/7 and easily
manageable (i.e., organized, queryable, sharable). Many internet
companies provide precisely this service to everyone, sometimes for
free, and without requiring any computer expertise from the end user.
All these situations put together result in accumulating a complete
digital history of citizens in servers. The benefits of centralizing
personal data are unquestionable in terms of data completeness,
failure resiliency, high availability and even consistency of
security policies. But these benefits must be weighed carefully

against the privacy risks of centralization. There are many
examples of privacy violations arising from negligence, abusive
use, internal attacks, external attacks, and even the most secured
servers are not spared. Annex B gives recent examples of large
scale privacy violations.
This paper draws a radically different vision of the management of
personal data. This vision builds upon the emergence of new
hardware devices called Secure Portable Tokens (SPT for short).
Whatever their form factor (SIM card, secure USB stick, wireless
secure dongle), SPTs combine the tamper resistance of smart card
microcontrollers with the storage capacity of NAND Flash chips.
This unprecedented conjunction of portability, secure processing
and Gigabytes-sized storage holds the promise of a real
breakthrough in the secure management of personal data. The idea
promoted in this paper is to embed in such devices software
components capable of acquiring, storing and managing personal
data. However, our approach does not amount to a simple secure
repository of personal documents. The ambition is, first, to allow
the development of new, powerful, user-centric applications and to
serve data requests from existing server-based applications
managing personal data, thus requiring a well organized,
structured, consistent and queryable representation of these
documents1. Second, we want to provide the user with a friendly
control over the sharing conditions related to her data and with
tangible guarantees about the enforcement of these conditions.
These two objectives lead to the definition of a real secure and
portable Personal Data Server (PDS for short)2. With appropriate
infrastructure, PDSs enable the vision depicted by Figure 1. Bob’s
personal data, delivered by different sources, is sent to his PDS
which can then serve data requests from private applications (serving
Bob’s interest), secure multi-actors applications (accessed through
actors’ PDS) and external applications. Bob’s PDS can also take part
in secure global processing.

Personal
data

Hospital

Doctor’s office

My bank

My employer

My telco Private
application

Secure
multi-actors
application

Secure
global queries

External
application

e.g., epidemiological study

e.g., medical care

Doctor

Nurse

e.g., budget optimization

e.g., financial help

Bob

Personal
data

Hospital

Doctor’s office

My bank

My employer

My telco Private
application

Secure
multi-actors
application

Secure
global queries

External
application

e.g., epidemiological study

e.g., medical care

Doctor

Nurse

e.g., budget optimization

e.g., financial help

Bob
Figure 1. The Personal Data Server approach

1 Simple document repositories, even if they integrate keyword search
facilities cannot meet these requirements. The lack of data structure has
been considered as one of the major reasons (with security) that
explain the failure of the first French national EHR System [15].
2 PDS has no connection with the Personal Server notion of [23].

What can be precisely expected from a PDS is the following:
• To provide the main functionalities of a database engine, namely

data description and structuring (schema management), access
control management, query facilities, and transactional properties.

• To be interoperable (1) with existing data sources to allow the
acquisition (and rendering) of personal data, and (2) with other
PDSs to allow secure data sharing protocols among them.

• To reestablish the control of the user on how her personal data
is shared with others (what data, with whom, for how long, for
which purpose). In other words, a PDS must give the ability to
enforce privacy principles (e.g., consent, limited collection,
limited retention, audit) [3] for all data it stores and for all data
it accesses from other PDSs.

• To inherit the portability and tamper-resistance of the device
embedding it, thereby providing disconnected facilities and an
enforcement of security rules stronger, yet more flexible, than
those of a traditional server.

Converting the PDS vision into reality introduces important
challenges. First, the SPT, central element of the approach,
exhibits strong hardware constraints. Traditional core database
techniques (storage and indexing, query and transaction
processing) need to be fully revisited to design an embedded
database engine that provides acceptable performance. Second, to
enforce security rules in a PDS-based information system, atypical
distributed protocols combining a large number of highly secure
but low power PDSs with a powerful but unsecured server
infrastructure must be devised. Third, the PDS approach aims at
helping every individual to better protect her privacy. The way to
control how data is shared and protected must therefore be highly
intuitive and simple. Our hope is that this paper will open various
and exciting research directions for the database community.
The rest of the paper is organized as follows. Section 2 presents the
characteristics of a SPT and derives from it the problem statement
associated with the implementation of the PDS vision. Section 3
illustrates the PDS vision through different scenarios. We sketch
out an initial design for the PDS architecture in Section 4, present a
set of technical challenges in Sections 5 to 7 and provide concluding
remarks in Section 8. Additional material is provided in Annex
(preliminary prototypes prefiguring the PDS vision and protocols) to
further convince the reader that the PDS vision is not pure utopia.

2. PROBLEM STATEMENT
We introduce the hardware characteristics of SPT, then present the
hypothesis related to the security of PDSs and of the infrastructure
surrounding them and finally state the problem related to the
implementation of the PDS approach.
Hardware characteristics of Secure Portable Tokens: SPTs appear
today in a wide variety of form factors ranging from SIM cards to
various forms of pluggable secure tokens. Whatever the form factor,
SPTs share several hardware commonalities. Their microcontroller is
typically equipped with a 32 bit RISC processor (clocked at about 50
MHz today), memory modules composed of ROM, static RAM
(about 64KB), a small internal stable storage (about 1MB of NOR
Flash) and security modules providing the tamper-resistance. The
microcontroller is connected by a bus to a large external mass storage
(Gigabytes of NAND Flash). However, this mass storage does not
benefit from the microcontroller tamper resistance. SPTs can
communicate with the outside world through various standards (e.g.,
USB2.0, Bluetooth, 802.11). Figure 2 shows typical examples of
SPTs but this paper makes no assumption on the form factor.

Hardware progresses are fairly slow in the secure chip domain
because the size of the market (billions of units), and the requirement
for high tamper-resistance leads to adopting cheap and proven
technologies [13]. Nonetheless, SPT manufacturers forecast a regular
increase of the CPU power, stable storage capacity and the support of
high communication throughputs (up to 480 Mb/s). RAM will
unfortunately remain a scarce resource in the foreseeable future due
to its poor density. Indeed, the smaller the silicon die, the more
difficult it is to snoop or tamper with its processing, but RAM
competes with CPU, ROM and NOR in the same silicon die.
In summary, a SPT can be seen as a low power but very cheap (a
few dollars), highly portable, highly secure computer with
reasonable storage capacity for personal use.

FLASH
(GB size)
FLASH
(GB size)

RAM

FLASH
NOR

CPU Crypto
RAM

FLASH
NOR

FLASH
NOR

CPU Crypto

PDS generic code

Relational DBMS

Operating System

Certified Encrypted

Personal
Database

SIM card Smart USB token Contactless token Smart Badge
Figure 2: Secure Portable Token and embedded PDS

Hypothesis on the PDS security: the level of trust which can be put
in the PDS comes from the following factors:
1. The PDS software inherits the tamper resistance of the SPT

making hardware and side-channel attacks highly difficult.
2. The basic software (operating system, database engine and PDS

generic tools), called hereafter PDS core, can be certified
according to the Common Criteria, making software attacks
also highly difficult.

3. The PDS core can be made auto-administered thanks to its
simplicity, in contrast to its traditional multi-user server
counterpart. Hence, DBA attacks are also precluded.

4. Compared to a traditional server, the ratio Cost/Benefit of an
attack is increased by observations 1 and 2 and by the fact that a
successful attack compromises only the data of a single individual.

5. Even the PDS holder cannot directly access the data stored
locally. After authentication (e.g., by a pin code), she only gets
the data according to her privileges.

Unfortunately, a PDS cannot provide all the required database
functionalities (e.g., durability, if the PDS is lost or destroyed,
availability when the PDS is disconnected, global queries
involving data from several PDSs) without resorting to external
servers, called hereafter Supporting Servers.
Hypothesis on Supporting Servers: we assume that Supporting
Servers are Honest but Curious, a common assumption regarding
Storage Service Providers. This means that they correctly provide
the services that are expected from them (typically serve store,
retrieve, and delete data requests) but they may try to breach
confidentiality of any data that is stored locally.
Therefore, implementing the PDS approach requires solving the
problem stated below:
• To implement the PDS core tackling the SPT hardware constraints.
• To implement the traditional functions of a central server

(durability, availability, global queries) in a secure way using
Honest but Curious Supporting Servers.

• To provide the user with intuitive tools and underlying
mechanisms helping her to control how her personal data is shared.

The next two sections assume that the problem stated above can be
solved. Then Section 5, 6 and 7 discuss the technical challenges
associated to each dimension of this problem.

3. MOTIVATING EXAMPLES
3.1 Healthcare scenario
Alice carries her electronic healthcare folder (along with other
information) on a PDS. She has an account on e-Store, a
Supporting Server provider. She downloaded in her PDS, from the
Ministry of Health, a predefined healthcare database schema, an
application to exploit it, and an access control policy defining the
privileges attached to each role (physician, nurse, etc). Alice can
manage the authorizations by herself, for example by selecting
which physicians can play this role. When she visits Bob, a new
physician, she is free to provide her SPT or not, depending on her
willingness to let Bob physically access it (this is a rough but
effective way to control the sharing of her data, as with a paper-
based folder). In the positive case, Bob plugs Alice’s PDS on his
terminal, authenticates to the PDS server with his physician
credentials, queries and updates Alice’s folder through his local
Web browser, according to the physician’s privileges.
Bob prescribes a blood test to Alice. The document containing the
blood test results is sent to Alice by the medical lab in an
encrypted form, through e-Store acting here as a secure mailbox.
The document is downloaded from e-Store and wrapped by Alice’s
PDS to feed the embedded database. If this document contains
information Alice would like to keep secret, she simply masks this
document so that it remains hidden from any user querying the
database except her. The lab keeps track of this medical act for
administrative purposes but does not need to keep a copy of its
medical content. If Alice loses her PDS, its tamper-resistance
renders potential attacks harmless. She may then recover her folder
from an encrypted archive stored by e-Store.
Alice suffers from a long-term sickness and must receive care at
home. Any practitioner can interact at home with Alice’s PDS
thanks to his netbook, tablet PC or PDA without need for an
Internet connection. To improve care coordination, Bob convinces
Alice to make part of her folder available 24/7, during a one month
period, to him and to Mary, a specialist physician. A1ice uploads
the requested part of her folder encrypted on e-Store. The secret
key is exchanged with Bob’s and Mary’s PDSs in order for them to
be able to download Alice’s data on their own local database and
query it. While Alice’s data is now replicated on Bob’s and Mary’s
PDSs, Bob and Mary cannot perform actions on the replica
exceeding their privileges and this replica will be destroyed after a
one month period because their PDS will enforce these controls.
Bob and Mary’s actions are recorded by their own PDSs and sent
back to Alice through e-Store for audit purpose. To make this
sharing scenario possible, patients and practitioners are all
assumed to be equipped with PDSs and these PDSs are assumed to
share a compliant database schema. As shown in Annex A, which
presents a field experimentation, this assumption is realistic in
several practical situations.
Finally, if the Ministry of Health decides to compute statistics or to
build an anonymized dataset from a cohort of patients, the targeted
PDSs will perform the processing and deliver the final result while
preventing any leakage of sensitive data or identifying
information.

3.2 Vehicle tracking scenario
John, a traveling salesman, drives a car from his company during
working hours and uses his personal car otherwise that he shares
with Cathy, his daughter who has just got her driving license. Both
have a PDS that they plug in the car to register all their personal
trips. Several applications are interested in the registered GPS
locations. John’s insurance company adapts the insurance fee
according to different criteria (e.g., the distance traveled, type of
road used, and speed). Cathy will probably pay more than her
father because she lacks enough driving experience. The Treasury
is also interested by this information to compute John’s carbon tax
according to similar criteria, though the computation rules are
different. Finally, John’s company would also like to track John’s
moves to organize his rounds better. GPS raw data is obviously
highly private. Fortunately, John’s PDS externalizes only the
relevant aggregated values to each application. In other words,
each application is granted access to a particular view of the data
registered in John’s database.

3.3 BestLoan.com & BudgetOptim scenarios
Alice needs a loan to buy an apartment. She would like to find the
best rates for her loan and, thus, relies on the service of
BestLoan.com (BL for short), a mortgage broker. To assess Alice’s
financial situation, BL needs to get access to sensitive information
from Alice’s PDS such as salary, bank statements and tax
information. Alice’s data can be securely shared with Donald, a
BL employee, as follows: (1) Alice opts in for the BL application
and downloads the security policy associated to it in her PDS,
(2) Donald authenticates to Alice’s PDS with his credentials
embedded in his own PDS and requests the required data, (3) Alice
agrees to share this data with Donald for a specified duration (e.g.,
two weeks), (4) finally Donald downloads the data in his PDS, all
this by exchanging messages and data through the e-Store
Supporting Servers. Donald cannot perform actions on Alice’s data
exceeding their privileges or the retention period fixed by Alice
because his PDS will preclude these actions. If Alice distrusts
Donald, she can audit his activity and can at any moment opt out
of the BL application (with the effect of deleting Alice’s data in
Donald’s PDS), all this again by exchanging messages among
PDSs through the e-Store Supporting Servers.
Alice now wants to optimize her budget and thus opts in for the
BudgetOptim application (BO for short). BO runs locally on
Alice’s PDS with a GUI running on the terminal. BO accesses
details of Alice’s invoices, telecom bills, etc. in order to suggest
more advantageous services according to her consuming profile.
With BO application, Alice does not share data with anybody. This
last scenario is typical of many private applications that can
process personal data (e.g., diet advices, tax minimization, pension
simulation, vaccine reminders, etc.).

3.4 Positioning
Compared to an approach where all personal data is gathered on a
traditional server, the benefit provided by PDS in the scenarios
presented above is fourfold. First, the PDS holder is his own
Database Service Provider. Hence, abusive uses by the Database
Service Provider are precluded. Second, the PDS provides the
holder with tangible elements of trust which cannot be provided by
any traditional server (see factors 1 to 4 in Section 2). Third,
privacy principles (e.g., limited retention, audit) can be enforced
for the data externalized by the holder provided the recipient of
this data is another PDS. Fourth, the holder’s data remains
available in disconnected mode.

However, alternatives to the traditional server exist. The
Hippocratic database approach [3] has been precisely designed to
protect personal data thanks to principles like purpose
specification, consent, limited collection, limited retention, audit,
safety, etc. Part of our architectural ideas has been inspired by this
work. But the Hippocratic database approach provides tangible
guarantees only if the server can be fully trusted. In this respect,
the PDS approach can be seen as a fully distributed
implementation of a Hippocratic database where the founding
Hippocratic principles can be definitely enforced.
The Database as a Service approach (DAS) [18] is another option.
Here data is stored encrypted on the server and is decrypted at the
client side, making server attacks harmless. This time, the DAS
approach makes sense only if all clients can be trusted. Again, part
of our ideas has been inspired by the DAS work and the PDS
provides a way to make the clients trusted.
Statistical databases [1] and data anonymization [14] are both
motivated by the desire to compute statistics or to mine data
without compromising sensitive information about individuals.
Both require trusting the server, either to perform query restriction
or data perturbation in the former case, or to produce the
anonymized data set in the latter case. Though orthogonal to the
PDS approach, these concerns still exist in the PDS context and
must be addressed adequately.

4. PDS GLOBAL ARCHITECTURE
As mentioned in the introduction, PDS is not a simple secure
repository of personal documents but rather provides a well
organized, structured, consistent and queryable representation of
these documents for serving applications requests. The difficulty to
achieve this objective comes notably from the variety of data
sources and applications targeted by PDS. This section presents an
initial design of the PDS architecture considering a set of
simplifying assumptions.

4.1 Personal database
In this design, we assume that the DBMS engine embedded in the
PDS is relational but the choice of the database model (relational,
XML, hybrid) has little impact in the global architecture. Hence,
the personal database is assumed to be composed of a small set of
relational database schemas, typically one per application domain.
We make no assumption on the granularity of application domains
but e-health and e-administration are illustrative examples of
domains. Database schemas are defined by DB Schema Providers.
Depending on the domain, a DB Schema Provider can be a
government agency (e.g., Ministry of Health) or a private
consortium (e.g., a group of banks and insurances).
Content Providers are external information systems that deliver
personal data (e.g., blood test, salary form), encoded in XML. We
make the simplifying assumption that each XML document
conforms to one XML schema defined by a standardization
organization (e.g., HL7) or by a DB Schema Provider (e.g., the
Ministry of Health). To allow building a consistent and structured
view of a set of related documents, an XML document (e.g., a
prescription) is enriched with all referential data required to fill the
embedded database accurately (e.g., detailed data related to the
doctor who wrote the prescription and to the drug prescribed).
Hence, the data contained in different documents related to a given
doctor or drug can be easily retrieved by SQL queries and cross
documents processing becomes possible (e.g., get the list of current
medical treatments or compute average blood pressure during the
last month). Then the enriched document is pushed in an encrypted

form to the recipient PDS through Supporting Servers (see section
4.4 for a description of Supporting Servers). The recipient PDS
downloads the XML document and wraps it into a set of tuples
thanks to mapping rules provided by DB Schema Providers 3 .
Mapping rules are declarative and interpreted by a generic
wrapper, a certified component of the PDS core (see Section 4.5
for a deeper discussion on certification). The benefit of declarative
mapping rules is not only that it simplifies the work of the DB
Schema Provider but primarily that the safety of these rules can be
controlled.
Figure 3 illustrates the wrapping of a prescription, enriched with
doctor and drug referentials sent from a hospital. The document
conforms to an XML schema for healthcare, and is wrapped into
four tables (two of them being referentials) from the healthcare
database schema. As shown in Figure 4, not all documents are
wrapped and integrated in the database. Some documents (e.g., an
X-ray image) can stay encrypted in the Supporting Servers and
simply be referenced by the embedded database.

e.g., HospitalContent
provider

e.g., Ministry
of Health

DOC
3 Joe
9 Bob
7 Jim

DOC
3 Joe
9 Bob
7 Jim

DRUG
88 Aspirin
19 Zetrax
45 Mucomist

DRUG
88 Aspirin
19 Zetrax
45 Mucomist

PRESC
402 113 19 1/day
403 113 88 4/day
404 114 45 3/day

PRESC
402 113 19 1/day
403 113 88 4/day
404 114 45 3/day

VISIT
112 6 2009/12/25
113 6 2009/12/31
114 7 2010/01/01

VISIT
112 6 2009/12/25
113 6 2009/12/31
114 7 2010/01/01

Generic
Wrapper
(certified)

Database
schema

Referential
tablesSupporting

Servers

<DOC>
<Id> 7 </>
<name> Jim </>
~~~~~~~~~~~~~ </></>

<DRUG>
<Id> 45</>
<name> Mucomist</>
~~~~~~~~~~~~~ </></>

<VISIT Id = “X”>
<Date> 2010/1/1</>
<DocRef>7</>
~~~~~~~~~~~~~ </></>

<PRESCS>
<VisitId Ref=“X”/>
<DrugRef>45</>
<Posology> 3/day</></>

Database
Engine

(certified)

Mapping
rules

Mapping
rules

PDS
Enriched XML 

document

conforms to
XML

Schema
XML

Schema

defines

defines

DB Schema
provider

 
Figure 3: Wrapping a document into the PDS database 

Note that problems incurred by the existence of several standards 
in a given application domain and the problems of data redundancy 
when database schemas overlap are orthogonal to the PDS 
approach and are not tackled in this paper. 

4.2 Applications 
Applications are developed by Application Providers (e.g., 
BestLoan.com). They are defined on top of the published DB 
schema(s) of interest and can use all database functionalities 
provided by the embedded DBMS (i.e., DDL and DML 
statements). Each application defines a set of collection rules 
specifying the subset of documents required to accomplish its 
purpose (e.g., the five most recent salary forms are required by 
BestLoan.com). These rules are expressed at the document level to 
make them meaningful to the PDS holder (helping him to opt in or 
opt out of this application) and are mapped at the database level to 
be enforced similarly to access control rules. Applications can run 
locally (on the holder’s PDS with a GUI on a terminal), on another 
user’s PDS (e.g., on the doctor’s one) or on an external server 
sending queries to the holder’s PDS (e.g., the Treasury server 
computing the holder’s carbon tax). While most applications are 
assumed to perform only selection queries, insertion of new 
documents is not precluded (e.g., a treatment prescribed at home 
by the doctor). An updating application will play the same role as a 
content provider and the insertion will follow the same process. 

                                                                 
3 The mapping rules are related to the transcription of documents into a 
structured database and would be required even with an XML database. 



4.3 User Control 
The prime way for the PDS holder to control the usage of her data 
is to opt-in/out of applications and to decide situations where she 
physically delivers her PDS to another individual (e.g., a doctor). 
Assuming that the PDS holder’s consent has been given, the 
actions that any individual can perform are regulated by a 
predefined access control policy. This policy can either be defined 
by the DB schema provider (e.g., the Ministry of Health fixes a 
RBAC policy stating the privileges of each category of 
professionals according to current legislation) or be defined by the 
Application Provider and be ratified by a consumer protection 
association or the legislator.  
Predefined access control policies are usually far too complex to 
be understandable by the PDS holder (e.g., the RBAC matrix 
regulating the use of the French EHR contains more than 400 
entries). It is therefore mandatory to provide the PDS holder with 
simple tools to protect her sensitive data following her wish. A 
first way consists in managing the authorizations through a simple 
GUI, as illustrated in the healthcare scenario. A second way is to 
give the user the ability to mask documents in the database. The 
tuples corresponding to a masked document are no longer 
considered at query execution time, except if the query is issued by 
the PDS holder herself (through an application). To make this 
process intuitive, the DB Schema Provider can predefine masking 
rules (e.g., hide documents by doctor, pathology, time period, etc.) 
exploiting the expressive power of the DBMS language and easily 
selectable by the user through a GUI. 
The PDS holder (called hereafter the donor) can also impose 
privacy preserving rules whenever data leaves her PDS to enter 
another PDS. This sharing is required when a donor’s data must be 
made available while her PDS is disconnected (see the healthcare 
scenario). This sharing must be ruled by the following principles: 
• Minimal exposure: in a nominal use, only the results of authorized 

queries are externalized by a PDS and raw data always remains 
confined in the PDS. When donor’s raw data is made available to 
others, this must be done in such a way that minimal data (limited 
collection principle) is exchanged during a minimal duration 
(limited retention principle) and with the minimum number of 
recipient PDS (need-to-know principle) to accomplish the purpose 
of this externalization.  

• Secure delete: if the donor decides to delete a document before 
the retention period expires, all replicas of the corresponding 
raw data hosted by the recipient PDSs must be deleted. 

• Audit: the donor must have the ability to audit the actions 
performed by all recipient PDSs on replicas. 

Minimal exposure can be implemented by a Secure 
Publish/Subscribe mechanism working as follows. The raw data to be 
exchanged (published) is the tuples belonging to the database view 
computed over the data targeted by the purpose of the sharing, by 
intersecting the collection rules of the application, the predefined 
access control rules applied to the subscribers and the donor’s 
masking rules. The donor publishes these tuples in an encrypted form 
on the Supporting Servers. The recipient PDSs subscribe to this data 
and receive the decryption key once the publisher has accepted the 
subscription. If the content of the view evolves in the publisher PDS 
(e.g., because new documents have been inserted), the update is 
pushed to the subscriber PDSs. We assume that publisher and 
subscriber PDSs have a compatible database schema (e.g., doctors 
and patients share a uniform healthcare DB schema).  
In the following, we denote by user’s control rules all rules which 
can be fixed by the PDS holder herself to protect her privacy, 

namely masking rules, retention rules and audit rules. User’s 
control rules are enforced by all PDSs, both on the PDS holder’s 
data and on the data downloaded after a subscription. 

4.4 Supporting Servers 
Supporting Servers Providers provide storage and timestamp 
services to implement the functions that PDSs cannot provide on 
their own, namely: 
• Asynchronous communication: since PDSs are often 

disconnected, documents, shared data and messages must be 
exchanged asynchronously between Content Providers and 
PDSs and between PDSs themselves through a storage area. 

• Durability: the embedded database must be recovered in case of 
PDS loss or destruction. The PDS holder’s personal data can be 
recovered from the documents sent by Content Providers 
through the Supporting Servers (assuming these documents are 
not destroyed). Data downloaded from other PDSs can be 
recovered from the data published in the Supporting Servers 
(assuming their retention limit has not been reached). Other data 
(user’s control rules definition, metadata built by applications, 
etc.) must be saved explicitly by the embedded DBMS on the 
Supporting Servers (e.g., by sending a message to itself). 

• Global processing: a temporary storage area is required to 
implement processing combining data from multiple PDSs. 
Statistical queries and data anonymization are examples of such 
processing. 

• Timestamping: the SPT hardware platform is not equipped with 
an internal clock since it takes electrical power from the 
terminal it is plugged in. Hence, auditing and limited retention 
cannot be implemented without resorting to a secure time server. 

4.5 Security 
The security of the architecture lies in (1) the tamper-resistance of 
the SPT platform, (2) the certification of the embedded code (and 
ratification of declarative rules), and (3) the encryption of any data 
externalized in the Supporting Servers.  
Regarding encryption, we assume that the security of data embedded 
in a given PDS is comparable to the security of the same data stored 
encrypted in the Supporting Servers, if the key remains confined to 
this PDS. Even if any data stored in the Supporting Servers is 
encrypted, the identity of the users downloading and uploading this 
data must be obfuscated. Indeed, spying communications could lead 
to disclosure of sensitive information (e.g., the volume of data sent 
by a hospital may reveal a heavy pathology). The Supporting Servers 
provide the storage required to make the communication 
asynchronous and the PDS themselves integrate a protocol making 
these communications anonymous.  
The certification does not apply to all parts of the embedded code. 
Typically, assuming the certification of all embedded applications 
is unrealistic. Figure 4 shows the elements for which certification 
is mandatory, namely: (1) the core software (operating system, 
database engine), (2) the generic XML wrapper, (3) the 
communication manager, (4) the Publish/Subscribe manager and 
(5) the privacy manager enforcing the user’s control rules. 
Implementing these software pieces and certifying them is the 
responsibility of the PDS Providers (e.g., a SPT manufacturer like 
Gemalto). Declarative rules need also to be ratified to prove their 
conformance to a public specification. This data is: (1) the 
mapping rules consumed by the wrapper, (2) the predefined access 
control rules, the predefined masking rules and the collection rules 
enforced by the DBMS. The documents themselves are assumed to 
be signed to prove their authenticity.  



Trusting the predefined access control policies requires being able 
to authenticate all users. Depending on the application domains, 
PKI infrastructures already serve this purpose. For example, in 
France, all healthcare professionals have a certificate embedded in a 
smart card containing their identity and role (a strong authentication 
is mandatory to access any server hosting healthcare data). In the 
same spirit, several countries are developing infrastructures based on 
smart cards or on software certificate to allow any citizen to 
authenticate electronically (e.g., IdéNum in France).  

XML 
Wrapper
(certified)

User’s 
control 
rules

From Sources

Operating System (certified)

Privacy
manager
(certified)

Pub/Sub 
manager
(certified)

Communication mgr (certified)

XML
documents

(cache)

Database engine (certified)

e-health 
Mapping rules

e-health 
Mapping rules

e-admin 
Mapping rules

e-admin 
Mapping rules

To PDSs / Ext. app. 

Anon. com. Through supporting Servers

Application 
(not certified)

e-Health e-Admin

Document references

Predefined 
AC Policies

Collection rules

Data

 
Figure 4: PDS generic software, application, and database 

5. EMBEDDED DATA MANAGEMENT 
The SPT hardware constraints presented in Section 2 introduce 
three main technical challenges discussed above.  
Computing SQL queries on Gigabytes of data without relying on 
external resources 
Select-Project-Join-Aggregate queries must be executed on 
Gigabytes of data with Kilobytes of RAM. Join is the most RAM 
demanding operation. It is usually not supported in tiny RAM 
devices (e.g., sensors) while it is a central operator in the PDS 
context. The performance of “Last resort” join algorithms (block 
nested loop, sort-merge, Grace hash, hybrid hash) quickly 
deteriorates when the smallest join argument exceeds the RAM 
size [17]. Jive join and Slam join use join indices [20] but both 
require that the RAM size is of the order of the square root of the 
size of the smaller table. In the PDS context, swapping data in the 
terminal or in the local NAND Flash is precluded due (1) to the 
dramatic amount of swapping required considering the ratio between 
the RAM size and the potential sizes of the tables to be joined and 
(2) to the cost of encryption (only the microcontroller is trusted).  
Consequently, the unique solution is to resort to a highly indexed 
model where all (key) joins are precomputed. In [7], we already 
proposed a multiway join index called Subtree Key Table and a 
Climbing Index allowing to speed up selections at the leaves of a 
join tree. Combined together, these indexes allow selecting tuples 
in any table, reaching any other table in the join path in a single 
step. Queries can then be executed in a pure pipeline fashion 
without consuming RAM or producing intermediate results. This 
work must be considered as a first step towards the definition of 
indexing models and query execution techniques dedicated to tiny 
RAM devices. 
Efficient atomic storage and indexing model in NAND Flash  
NAND Flash chips exhibit uncommon characteristics: (1) reads 
and writes are done at a page granularity, but writes are more 
costly than reads, (2) a page cannot be rewritten without erasing 
the complete block containing it, which is a costly operation, 

(3) writes must be done sequentially within a block and (4) a block 
wears out after about 105 repeated write/erase cycles. A main 
consequence of this is that random writes can be up to order(s) of 
magnitude more costly than sequential writes [10]. Combining 
these constraints with the RAM limit makes the storage and 
indexing problem very challenging.  
Regular indexing techniques (e.g., B+Tree) are poorly adapted to 
NAND Flash because of the high number of random writes they 
incur [24]. All improvements (e.g., BFTL [24], Lazy-Adaptive 
Tree [2]) rely on the idea to defer index updates using a log (or 
Flash-resident cascaded buffers) and batch them to decrease the 
number of writes. The side effect is a higher RAM consumption (to 
index the log or to implement write-coalescing of buffers) and a 
waste of Flash memory space.  
A suggested alternative is to try to organize the whole database in a 
pure sequential way to take advantage of the update pattern of PDS 
(massive insertions, almost no updates, and few deletes) and of the 
Flash characteristics. The benefit of sequentiality is in minimizing 
the need for buffering and caching (thereby saving RAM), in 
avoiding random writes and in greatly simplifying transaction 
atomicity because only a set of high watermarks have to be 
maintained to determine whether NAND Flash blocks contain dirty 
data or not. Updates and deletes are not reported on the database. 
Rather, they are kept in a sequential list, the updated pages are 
marked and their up-to-date image is rebuilt on the fly when the page 
is loaded in RAM, in a way inspired by [19]. The index problem is 
more complex since even sequential insertions generate random 
updates in the index. In [26], we suggested a Flash-aware indexing 
technique, called PBFilter, which organizes also the index 
sequentially and speeds-up lookups thanks to partitioned Bloom 
filters. However, this strategy does not scale for GB of data. To 
tackle this problem, we are investigating a solution where the 
database is stratified so that the indexing strategy can change among 
strata without incurring a dramatic number of rewrites. We feel that 
designing storage and indexing techniques combining the Flash 
constraints and the embedded constraints (RAM limitation, optimal 
Flash usage) deserve a great interest considering the increasing 
diversity of Flash-based devices. 
Enforcing local data confidentiality and integrity 
The NAND Flash being not protected by the tamper-resistance of 
the microcontroller, cryptographic techniques must be used to 
protect the database footprint against confidentiality and integrity 
attacks. Indeed, integrity attacks make sense because the PDS 
holder herself can try to tamper the database (e.g., she could 
perform a replay attack to be refunded several times for the same 
drug or try to change an access control rule or the content of an 
administrative document, e.g., a diploma).  
A primary concern in the PDS context is the granularity of the 
traditional encryption and hashing algorithms (e.g., 128 bits for 
AES and 512 bits for SHA). As explained above, the PDS query 
execution engine must rely on a highly indexed model, thereby 
generating very fine grain random accesses (in the order of the size 
of a pointer). Solutions to this problem can be: (1) designing 
encryption and hashing techniques for fine grain accesses [21] 
compatible with the SPT’s resources, (2) designing clustering 
techniques so that relevant data are contiguous, in the spirit of the 
PAX models [4] and (3) encrypting the data in such a way that 
lookups can be done without decrypting the data. The idea here is 
different from order-preserving encryption or privacy-
homomorphism. Roughly speaking, the idea is to exploit the 
sequentiality of the database to encrypt the data according to their 
insertion order (hence data having the same clear text get a 



different cipher text) but equality tests on the cipher text remain 
possible if they take this order into account. Version management, 
required to detect replay attacks, is another complex issue. 
Maintaining a version number for each page in secure storage (i.e., 
in the NOR of the microcontroller) is unrealistic considering the 
small size of the NOR and the fact that it is primarily dedicated to 
the storage of application code. TEC-Tree [12] overcomes this 
problem by organizing secret information as a tree. However, it 
incurs update propagation in the tree, which badly adapts to 
NAND Flash. Again, our expectation is that the sequential 
organization of the database can lead to smarter version management 
techniques. Hence PDS introduces specific interesting challenges in 
terms of cryptographic techniques applied to database management. 

6. DURABILITY, AVAILABILITY AND 
GLOBAL PROCESSING 

Durability and Availability 
Honest but Curious Supporting Servers are assumed to correctly 
store, retrieve and delete data requests on an unbounded storage 
area in a durable and highly available way. PDSs capitalize on this 
to implement higher level secure functions. 
Anonymous communications between Content Providers and PDSs 
and between PDSs themselves can be implemented through the 
Supporting Servers using an anonymizing network like Tor [11], 
based on the Onion-routing protocol [16]. The anonymizing 
network provides a virtual circuit C from the source to the 
Supporting Servers. Thus, the latter can send data back to the 
source without knowing its identity, following the return circuit  
C-1 encoded in the initial message (this is called Reply Onions 
[16]). An interesting challenge is to use the secure microcontrollers 
of SPTs to increase the security of anonymous protocols, having 
SPTs as entry or exit point for the anonymous route. 
Recipient PDSs must be able to retrieve messages or data sent to 
them. Although communications are anonymous, the difficulty lies 
in selecting the relevant message/data without disclosing any 
information that could help the Supporting Servers to infer PDS 
identity. A protocol tagging messages with anonymous markers is 
proposed to this end. The delete request is trickier to implement. 
First, the physical image of the targeted data should be destroyed 
by the Supporting Servers (e.g., for cleaning purpose) only if the 
requesting PDS can exhibit an anonymous proof of legitimacy for 
this request. Second, the deletion must be effective even if an 
attacker spies all messages sent to the Supporting Servers and 
records them. Hence, there is no other solution than removing 
definitely the access to some data (i.e., by removing the way to 
decrypt it) even if its image has been stolen and cannot be physically 
destroyed. To tackle this problem, we defined a protocol based on the 
Diffie-Hellman key agreement. Note that secure deletion is also a 
prerequisite to enforce masking and limited retention. Assuming 
Supporting Servers guarantee the durability of all messages/data sent 
to them (except those legitimately destroyed), the log enabling PDSs 
to recover after a crash or a loss comes for free. Finally, enforcing 
audit requires a protocol guaranteeing that audit logs are produced 
and delivered despite unpredictable disconnections of the subscriber 
and the publisher PDSs. An initial version of the main protocols is 
given in Annex C. 
Global processing 
Executing global processing over a set of autonomous trusted 
PDSs connecting to Honest but Curious Supporting Servers leads 
to unusual computations in order (1) to tackle the unpredictable 
nature of PDS connections and (2) to preserve PDS holders’ 
privacy. We illustrate this through examples. 

The Ministry of Health would like to prevent a pandemic. It 
executes a continuous-like query on each PDS that connects to the 
Supporting Server in order to select individuals having a given set 
of symptoms. If more than p individuals living in the same region 
are at risk, they are encouraged to go to a hospital. However, the 
patients consent to this form of dynamic queries only if their 
anonymity is guaranteed. The query can then be of the form 
‘SELECT pseudonym, city FROM any PDS WHERE symptom in 
‘x,y,z’’ where pseudonym and city are sent to the querier in the 
clear through the Supporting Servers. If threshold p is reached, the 
querier sends messages back tagged with the pseudonym of the 
individual at risk to the Supporting Servers. Thanks to anonymous 
communication, a PDS holder can get the outcome of the query for 
herself without revealing her identity. Interesting issues lie in the 
organization of the continuous querying protocol, in the 
classification of the queries which can be managed in this manner 
and in the conditions to preserve anonymity (i.e., anonymity could be 
breached if successive queries succeed in recomposing the 
association between quasi-identifiers and sensitive attributes). 
Statistical databases [1] aim at answering aggregate queries (e.g., 
“SELECT AVG(IQ) FROM … WHERE Age=10 AND 
Diagnosis=’Dyspraxia’”) without compromising sensitive 
information about individuals. Examples of disclosure control 
techniques include analyzing the query trail to prevent 
compromising overlaps between successive queries and/or 
perturbing the result without affecting the global distribution [25]. 
An interesting feature of the PDS context is that successive 
aggregates are computed over a fluctuating population of PDSs 
(due to the unpredictable nature of PDS connections), making 
inference among runs harder and influencing the design of 
disclosure control algorithms accordingly. 
Privacy Preserving Data Publishing is another form of global 
processing aimed at publishing a set of micro-data while protecting 
the identity of individuals. The traditional process is composed of 
three phases: data collection, computation of sanitization rules 
based on the collected data and finally data sanitization. The 
challenge here is to design a distributed protocol that (1) allows the 
publisher (through the Supporting Servers) to collect enough data 
from the targeted PDSs to compute the sanitization rule, and then 
(2) delegates the sanitization process itself to the PDSs (so that raw 
data is never exposed) while providing them a way to control the 
safety of the sanitization rules. We suggested a preliminary 
solution [5] for a sanitization algorithm preventing record linkages 
through k-anonymity [22]. Much work remains to be done to 
prevent from other types of linkages (e.g., attribute linkage 
prevention through l-diversity [14]). 

7. USER CONTROL 
Enforcing user’s control rules, namely masking, limited retention 
and audit and combining them with application’s collection rules 
introduce a set of interesting problems described below 
Impedance mismatch between documents and databases 
While predefined access control rules (e.g., RBAC matrix 
published by an application or by the DB Schema Provider) and 
queries issued by applications are expressed at the database level 
(e.g., in SQL), user’s control rules as well as application’s 
collection rules are expressed over documents to be meaningful for 
the end-user. Conversely, for audit purposes, accesses are recorded 
at the database level but must be delivered to the end-user at 
document level in order to interpret them. Consequently, 
translation structures must be integrated in the PDS to store 
document-to-tuple and tuple-to-document links.  



The query engine must integrate these links in the query evaluation 
in order to compute a result compliant with the application’s 
collection rules, the predefined access control rules and the user’s 
masking rules. The evaluation can be as follows. When a document 
D (e.g., a medical prescription) is inserted in the database, the 
tuples created at wrapping time reference D in the database (tuples 
related to referentials like doctors and drugs are not concerned). 
Let Sc be the set of documents targeted by the collection rules of 
application A and Sm be the set of documents targeted by the user’s 
masking rules. When A queries the database, the query result 
includes the document references for each selected tuple t and this 
result is post-filtered to keep only the tuples satisfying (t∈Sc ∧ t∉Sm). 
Post-filtering can be implemented efficiently in RAM constrained 
environments using Bloom filters [9].  
When a delete request is issued for D or when D reaches its 
retention limit, it must be removed from the database. The 
translation structures are used to identify all tuples related to this 
document. This includes the tuples referencing D either directly 
(e.g., prescription elements) or transitively (i.e., the referential data 
like the doctor who does the prescription and the drug prescribed). 
The presence of referential data in a personal database is sensitive 
and the related tuples must be removed as well. The difficulty lies 
in the fact that referential data may be shared by other documents. A 
garbage collector algorithm4 must be designed to tackle this problem. 
The deletion of the targeted tuples can be logical (following the tuple 
marking process sketched in Section 5) or physical, the latter case 
being more costly due to the Flash constraints. 
Propagating user’s control rules to other PDSs  
If data has been uploaded on the Supporting Servers by a publisher 
PDS and downloaded by a subscriber PDS, the user’s control rules 
defined by the publisher must be propagated to the subscriber. 
Being able to implement the mechanisms presented above on the 
subscriber PDS requires sending the user’s control rules and the 
translation structures along with the data and forwarding to the 
subscriber any masking and delete operation performed on the fly 
by the publisher. Hence, the effect of user’s control rules will be 
the same independently of the location of the data and of the 
number of replica. 

8. CONCLUDING REMARKS 
Our belief and hope is that the emergence of new hardware devices 
combining portability, secure processing and Gigabytes-sized 
storage will revolution the way people think about management 
and protection of personal data. The vision proposed in this paper 
of a secure and portable Personal Data Server is a first contribution 
in this direction. We have presented an initial design for this vision 
and have identified a set of important technical challenges related 
to it. Moreover, Annex A presents an experiment in the healthcare 
field which prefigures the PDS approach and gives some confidence 
about the feasibility of converting the PDS vision into reality. 
Simplifying assumptions have been made, other solutions could 
have been envisioned to tackle the identified challenges (e.g., 
designing an XML embedded DBMS) and new challenges could 
also have been identified by enlarging the PDS vision. We have 
considered a highly structured vision of the personal database to 
support rich applications and we have made strong security 
assumptions by considering that the PDS is the main element of 
trust in the architecture. These two options can be debated and 
reconsidered, opening the way for other exciting research work. 
                                                                 
4  Storing reference counters is badly adapted to the Flash update 

constraints. An option can be to recompute counters dynamically. 

9. REFERENCES 
[1] Adam, N. R. and Worthmann, J. C. Security-control methods for 

statistical databases: a comparative study. ACM Comput. Surv., 
1989.  

[2] Agrawal, D., Ganesan, D., Sitaraman R., Diao Y. and Singh S. 
Lazy-Adaptive Tree: An Optimized Index Structure for Flash 
Devices. VLDB, 2009. 

[3] Agrawal, R., Kiernan, J., Srikant, R. and Xu, Y. Hippocratic 
Databases. VLDB, 2002.  

[4] Ailamaki, A., DeWitt, D.J. and Hill, M. D. Data page layouts for 
relational databases on deep memory hierarchies. The VLDB 
Journal, 2002. 

[5] Allard, T., Nguyen, B. and Pucheral, P. Safe Anonymization of 
Data Hosted in Smart Tokens, PRiSM Technical Report n° 526, 
2010. 

[6] Allard, T., Anciaux, N., Bouganim, L., Pucheral, P., Thion, R. 
Trustworthiness of Pervasive Healthcare Folders, Pervasive and 
Smart Technologies for Healthcare, Information Science 
Reference, 2009. 

[7] Anciaux, N., Benzine, M., Bouganim, L., Pucheral, P. and 
Shasha, D. GhostDB: Querying Visible and Hidden data without 
leaks. ACM SIGMOD, 2007. 

[8] Anciaux, N., Bouganim, L., Guo, Y., Pucheral, P., Vandewalle 
J-J. and Yin, S. Pluggable Personal Data Servers. ACM 
SIGMOD, 2010. To appear (demonstration paper). 

[9] Bloom, B. H. Space/time trade-offs in hash coding with 
allowable errors. Communications of the ACM, 1970. 

[10] Bouganim, L., Jónsson, B. Þ. and Bonnet P. uFLIP: 
Understanding Flash IO Patterns. CIDR, 2009. 

[11] Dingledine, R., N. Mathewson, and Syverson P. Tor: The 
Second-Generation Onion Router. USENIX, 2004. 

[12] Elbaz, R., Champagne, D., Lee, R. B., Torres, L., Sassatelli G. 
and Guillemin P. TEC-Tree: A Low-Cost, Parallelizable Tree for 
Efficient Defense Against Memory Replay Attacks. CHES, 2007. 

[13] Eurosmart. Smart USB token. White paper, Eurosmart, 2008. 
[14] Fung, B. C. M., Wang K., Chen R. and Yu P. S. Privacy-

preserving data publishing: A survey on recent developments. 
ACM Computing Surveys, 2010. To appear.  

[15] Gagneux, M. Recommandations de la mission de relance du 
projet de DMP. http://www.sante-jeunesse-sports.gouv.fr/ 
IMG/pdf/Rapport_DMP_mission_Gagneux.pdf (in French). 

[16] Goldschlag, D., M. Reed, and Syverson P. Onion Routing for 
Anonymous and Private Internet Connections. Communications 
of the ACM, 1999.  

[17] Haas, L. M., Carey, M. J., Livny, M. and Shukla, A. Seeking the 
truth about ad hoc join costs. VLDB Journal, 1997. 

[18] Hacıgümüş, H., Iyer, B., and Mehrotra, S. Providing Database as 
a Service. ICDE, 2002. 

[19] Lee, S. and Moon, B. Design of flash-based DBMS: an in-page 
logging approach. ACM SIGMOD, 2007. 

[20] Li, Z. and Ross, K. A. Fast joins using join indices. VLDB 
Journal, 1999.  

[21] Robshaw, M., Billet, O. New Stream Cipher Designs - The 
eSTREAM Finalists, LNCS 4986, 2008 

[22] Sweeney, L. k-anonymity: a model for protecting privacy. Int. J. 
Uncertain. Fuzziness Knowl.-Based Syst, 2002. 

[23] Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M. and 
Light, J. The Personal Server: Changing the Way We Think 
about Ubiquitous Computing. UbiCom, 2002. 

[24] Wu, C., Chang, L., and Kuo, T. An Efficient B-Tree Layer for 
Flash-Memory Storage Systems. RTCSA, 2003. 

[25] Xiao, X. and Tao, Y. Output perturbation with query relaxation. 
VLDB, 2008. 

[26] Yin, S., Pucheral, P. and Meng, X. A Sequential Indexing 
Scheme for flash-based embedded systems. EDBT, 2009. 



Annex A: The DMSP experimental project 
This annex presents an experimental project of secure and portable 
medical-social folder (DMSP in French) [6]. Its goal is to improve 
the coordination of medical and social cares while giving the 
control back to the patient over how her data is accessed and 
shared. The DMSP project fits well the PDS vision but is less 
ambitious and general. It constitutes, however, a first real-life 
experience bringing some insights on the benefits and feasibility of 
managing highly sensitive personal data on Secure Portable 
Tokens. The goal of this annex is precisely to present these 
insights exemplifying the PDS approach on a real-case study. 
The DMSP project is funded by the Yvelines District and is led by 
INRIA (the French National Research Institute in Computer 
Sciences). It involves the University of Versailles, SANTEOS (the 
provider hosting the French National EHR system), Gemalto (the 
smart card world leader), ALDS and COGITEY (two gerontology 
networks), the project being targeted to elderly people.  
The ageing of population makes the organization of home care a 
crucial issue and requires sharing medical and social information 
between different participants (doctors, nurses, social workers, 
home helpers and family circle) at the patient’s bedside. Server-
based EHR solutions are inadequate because (1) the access to the 
folder is conditioned by the existence of a high speed and secure 
internet connection at any place and any time; and (2) they fail in 
providing ultimate security guarantees to the patients, a 
fundamental concern for patients facing complex human situations 
(diagnosis of terminal illness, addictions, financial difficulties, 
etc).  
The goal of the DMSP project was precisely to address these 
concerns. The solution adopted is a simplified and mono-
application instance of the PDS architecture. 
Patients are equipped with SPTs embedding a personal server to 
manage their medical-social folder. The form factor of patient’s 
SPT is a USB token. The French law imposes that all professionals 
strongly authenticate to any server containing medical data thanks 
to a Health Professional Smart Card. This led Gemalto to develop 
a specific smart badge (see figure 5) acting both as a smart card 
reader and as a SPT used for synchronization purpose. 
A central server achieves the durability and the availability of the 
patient’s folders (without risk of privacy breach, as discussed 
next), and imports/exports data from/to the gerontology networks 
information systems. However, few elderly patients have an 
internet connection at home. Hence the SPTs of professionals are 
used to carry synchronization data between the central server and 
the patient’s SPTs thereby implementing a “pedestrian network”, 
the latency of which is linked to the frequency of visits at home. 
The patients’ folder includes social information such as financial 
resources or scores measuring possible lack of autonomy, as well 
as medical data like diagnosis, treatments, and evolution of 
medical metrics (e.g., weight, blood pressure, cholesterol, etc.).  
Database schema 
The data stored in DMSP has been modeled in a highly structured 
way to allow expressing powerful queries and access control rules 
in the application. For instance, diagnosis and prescriptions 
produced by the professionals are all wrapped into relational 
tables, e.g., Professional, Visit, Prescription, and Drug tables. The 
wrapping principle is similar to the one illustrated in Figure 3 
though the wrappers used in DMSP are not generic. The contents 
of Professional and Drug are referential data shared by several 
documents. 

Transaction atomicity and durability 
Transaction atomicity is required for inserting documents, e.g., 
while inserting a diagnosis and associated prescriptions. Also, 
processing synchronization files issued from the central server 
requires atomicity. Transaction durability for updates performed at 
the patient’s bedside is ensured only when the synchronization file 
reaches the central server through the “pedestrian network”.  
Access control 
Predefined access control rules have been set in conformance with 
the healthcare RBAC matrix edited by the French government. 
Authorized views are expressed by select-project-join-agg queries. 
For example, nurses are granted access to the current medical 
prescriptions (not to the complete history) to be able to administer 
the treatment. Health professional cannot access raw social data, 
and vice-versa, but a reduced set of aggregates is allowed. 
Different levels of authentications are supported, i.e., strong 
authentication for professional, login/password for family circle, 
no authentication for occasional visitor with highly restricted 
access (access to emergency contacts and to a dashboard to notify 
some events). 
User control 
The patient can regulate her privacy by (1) selecting professionals 
that can access her folder (respecting the predefined access control 
policy); (2) share part of her folder securely within a restricted 
trusted circle of professionals; and (3) mask sensitive documents 
(e.g., the one produced by a given doctor, during a given period of 
time, for a given pathology). These features were required to make 
the DMSP acceptable for patients; otherwise, the initiative may 
have been perceived as an additional transgression of their privacy, 
equivalent to publishing their former “paper-based” folder on the 
internet. Consequently, part of the patient’s data stored on the 
central server is encrypted and the cryptographic keys remain 
confined in the Patient’s SPT and in the SPTs of the member of her 
trusted circle (i.e., in the spirit of the PDS publish/subscribe 
mechanism but less general and dynamic than this protocol).  
Queries and application  
The SPTs embed a local Web server, Servlets implementing the 
DMSP application, a JDBC driver, and the DBMS engine. The 
DMSP application issues SQL queries to feed the GUI and the 
embedded query engine computes these queries over views (access 
controls) and takes into account masking rules. The query and part 
of the application logic is processed inside the SPT microcontroller 
(DBMS engine and Servlets). The presentation of the results and 
additional computations (e.g., plotting curves of cholesterol rates) 
are done by applets using JavaScript. 
An experiment in the field has begun since the end of 2009 and 
involves 25 practitioners and 100 elderly patients. Both the DMSP 
application and the DBMS internals will be demonstrated at ACM 
Sigmod 2010 [8], focusing on some elements mentioned in this 
paper (e.g., PBFilters, SKT and climbing index). 
In summary, the DMSP project can be considered as a 
prefiguration of the PDS vision, with several restrictions in terms 
of genericity and dynamicity. However, it already demonstrates 
the interest of this vision in terms of privacy preservation. The 
experiment in the field will last during the next 18 months and 
more ambitious extensions are already foreseen. Typically, the 
French government has adopted, very recently, a law allowing 
triggering experiments of healthcare folder managed on secure 
USB tokens 5  for long term illnesses 6 . This could open future 
                                                                 
5 See: http://www.assemblee-nationale.fr/13/dossiers/dossier_ 

medical_cle_USB.asp 



opportunities, relying on the DMSP experience and building on the 
PDS vision. 
Additional information on the DMSP project can be found at 
http://www-smis.inria.fr/~DMSP/home.php 

Operating system
Java

Virtual
Machine

W
eb Server

Synchronization

Servlets

TCP/IP
USB

APDU
multi -

thread OS 

Authentification

Access Control Mgr
Query Manager

Crypto. modules

Storage Manager

Hardware Manager

Authentification

Access Control Mgr
Query Manager

Crypto. modules

Storage Manager

Hardware Manager

Smart BadgePatient’s token

 
 

Figure 5. The DMSP project 
 

Annex B: Large scale privacy violations 
An example of recent privacy violations caused by negligence: 
• The National Archives and Records Administration (NARA) is 

investigating on the loss of a hard drive containing more than 
70 millions of veterans’ records (social security numbers, dates 
of birth, names…). The failing hard drive was first sent for 
repair; however, as the task was too complicated, it was 
outsourced as-is to another enterprise to be recycled. 
(DataLossDB, 05 October 2009). 

An example of abusive usage of data: 
• Attackers who managed to gather hundreds of British medical 

folders announced that they would sell them £ 4 per unit. They 
said that several customers – marketing, insurance offices – 
were interested to sell targeted products to vulnerable people. 
These medical folders came from a private hospital whose 
documents were outsourced to an enterprise (which used an 

                                                                                                            
6 Considering long term illnesses is of utmost interest since they 

concern 15% of the population but amount to 65% of the total 
medical expenses (www.assemblee-nationale.fr/13/rapports 
/r2347.asp) 

Indian subcontractor) in order to be digitized. (The Daily Mail 
Online, 19 October 2009). 

An example of data breaches caused by internal attackers: 
• One of the largest reported data breach caused by a malicious 

insider occurred in 2004 at America Online when 92 million 
email addresses for 32 million subscribers were sold to 
spammers. (DataLossDB, Open Security Foundation). 

An example of external attacks: 
• 30 000 patients of UCSD's Moores Cancer Center have been 

notified that their personal data - names, dates of birth, medical 
record number, diagnosis and treatment dates dating back to 
2004 – have been leaked after a hacker breached the center’s 
data servers. (Sign on San Diego, 15 July 2009). 

Even the most secured servers are not spared: 
• 1 600 soldiers have been notified that some personal 

information, including their names, e-mail messages, phone 
numbers, home addresses, awards received, ranks, gender, 
ethnicity and dates of deployment on the field have been 
breached after an U.S. Army database has been penetrated by 
unauthorized users. (Federal Computer Week, 12 March 2009). 

• A recent computer intrusion that forced the FBI to shut down its 
computer network and disrupted FBI operations for about 48 
hours was traced to an e-mail containing malicious code that 
originated in China, according to FBI officials. (The 
Washington Times, 18 June 2009). 

Examples of the demands from users for more control: 
• 60% of the American people can be considered as privacy 

pragmatists: they have strong feelings about privacy and are 
very concerned to protect themselves from the abuse or misuse 
of their personal information by companies or government 
agencies. (Alan Westin, Harris Privacy Survey, 2003). Notably, 
43% of the people consider that the privacy risk incurred by 
EHR systems outweighs the excepted benefit. (Harris/Westin 
survey, ‘Privacy and EHR Systems’, 2006). 

• In the Netherlands, privacy and access concerns are major 
arguments for the postponement of the national EHR (The 
International Council on Medical & Care Compunetics, 2009). 
In particular, the lack of security measures limiting data access 
for service providers and the loss of control on their own data 
has been identified as a main reason for citizens to opt-out of 
the system (within 2 months over 330.000 persons opted-out). 

Annex C: Communication protocols 
This annex describes the main protocols necessary for 
anonymously and asynchronously exchanging messages, and 
supporting deletion. Table 1 introduces a set of notations used in 
the protocols. 

Table 1: List of Symbols used in Protocols 

][ME pub
X Encryption of message M with the public key of entity X. 

][MEk
 Encryption of message M with secret key k 

1M || 2M  Concatenation of messages M1 and M 2  
H M[ ] Cryptographic hash of message M 

()rand k
A pseudorandom number generator using a secret key k, 
specific to each actor (PDSs or Content Providers)  

ID X( )  Publicly known identifier of entity X 
TS  Timestamp generated by a time server 
N Null value 



Messages sent and stored on Supporting Servers have the 
following structure: 

TS  Tag  Cpt DeleteTag KeyInfo EncryptedData Digest 

Encrypted Hash  
TS is a timestamp acquired by the supporting server thanks to a 
secure time server and added to the message to allow filtering out 
the messages a recipient PDS already received. Tag is an 
anonymous marker allowing a receiver PDS to retrieve its 
messages on the Supporting Servers. Cpt is a counter associated to 
each sender/receiver pair (or to each marker), incremented by the 
sender and used by the receiver to check the correctness of the 
message ordering (not shown in the protocol). DeleteTag is a proof 
of legitimacy for the delete operation, as explained next. KeyInfo is 
a session key used to produce the EncryptedData field, itself 
encrypted with the public key of the receiver. EncryptedData is the 
actual content of the message. Finally, Digest is a hash of the 
previous fields, encrypted with the session key of KeyInfo and is 
used to check the integrity of the message (not shown in the 
protocols). 
 

( )TEKsENRIDTS Ks
pub
R ],[, ,)(,

Sender: S Supporting Server Receiver: R

Compute the tag:
Send  the tag using 

 ()randT k=

Request Msgs such that
lastTSTSTTag >∧=

[ ]DataEKsENTTS Ks
pub
R ],[, , ,

Send Data using 

Request Msgs such that
( ) lastTSTSRIDTag >∧=   

[ ]DataEKsENTTS Ks
pub
R ],[, , ,

Fi
rs

t p
ha

se
(o

nc
e 

pe
r S

/R
)

Se
co

nd
 p

ha
se

(f
or

 e
ac

h 
M

sg
)

 ()randKs k=

 ()randKs k=

( )TEKsENRIDTS Ks
pub
R ],[, ,)(,

 
Figure 6. Communication using markers 

 
Message marking and retrieval from Supporting Servers 
The protocol to establish anonymous markers works in two phases 
(see Figure 6). In the first phase, the sender computes a tag T 
(which will be used to tag the next messages) thanks to the 
pseudorandom number generator. The computed tag T is 
transmitted encrypted with the session key Ks, itself encrypted 
with the public key of the receiver. This first message between a 
sender and a receiver is itself tagged with the public identifier of 
the receiver ID(R). Note that, while the receiver identifier is 
transmitted in clear-text in this first message, it does not disclose 
sensitive information because (1) the sender is anonymous and 
(2) for a sender/receiver pair there is only one message of that 
kind. Hence, an attacker could only count the number of entities 
who established a communication with a given PDS.  
In the second phase, data is exchanged using the defined marker T, 
the timestamp TS, and the session key Ks encrypted with the public 
key of the receiver. Note that the reuse of markers with timestamps 
allows a passive observer to determine that new data items are 
shared possibly between the same sender and the receiver. Since 
all communications are anonymous this information cannot be 
exploited further to link a particular data item to one specific 
sender or receiver. However, this information could be hidden by 

changing the marker periodically, transmitting the new marker in 
the last message using the current marker. 

Deletion with proof of legitimacy 
A proof of legitimacy is required to guarantee that only the PDS 
which produces a data can delete it. Audit data is a special case 
where the PDS which is granted permission to delete some audit 
data (i.e., the publisher) is actually not the PDS which produces it 
(i.e., the subscriber). We illustrate below the protocol used when 
the delete right is delegated to the receiver. The protocol when the 
sender keeps the delete right can be deduced easily. The idea is 
based on cryptographic hash functions preimage resistance 
property. The sender computes a random value called Delete Proof 
or DP and applies a cryptographic hash, thus obtaining DT, the 
Delete Tag. To transmit the delete right to the receiver, the sender 
simply adds DP to the data before encrypting it. When the receiver 
receives the message, it extracts DP and stores it. At delete time, 
the receiver sends a delete request, sending DP to the Supporting 
Server. Since given the hash value DT, it is computationally 
infeasible to find DP, such that DT = H(DP) (pre-image resistance 
property), the Supporting Server knows that the delete request was 
sent by an authorized PDS. 
 

Sender: S Supporting Server Receiver: R

[ ]DataEKsEDTTTS Ks
pub
R ],[, , ,

DPTSTDelete  , ,,

If H(DP) = DT delete message 
identified by (T,TS)

Compute DeleteProof:
DeleteTag:

Add DP to Data:

 ()randDP k=

 H(DP)DT =
DataDPData   =

Requests Msgs such that
lastTSTSTTag >∧=

Retrieve DP from Data

[ ]DataEKsEDTTTS Ks
pub
R ],[, , ,

Send delete request

 
Figure 7. Deletion with proof of legitimacy for the receiver 

Secure deletion 
All data stored in the Supporting Servers have been carried by 
messages. Hence deleting a data on the Supporting Servers 
amounts to deleting the corresponding message. Since the 
communications may be spied by an attacker and the messages 
copied, there is no other solution for enforcing the deletion than 
removing permanently the access to this message. This can be 
implemented as follows. The sender and the receiver establish a 
secret key using the Diffie-Hellman key agreement protocol and 
use it to encrypt the message (thus do not fill the KeyInfo field). 
When, e.g., the sender decides to delete the message, he destroys 
his partial secret and sends a message to the receiver requiring 
deletion of his partial secret. Even if an attacker tampers one of the 
SPT after the deletion occurs, he cannot recover the message. This 
idea is simple but the protocol to implement it is more complex 
due to the fact that each party must be able to recover this message 
(assuming it has not been yet deleted) in case of a SPT failure (i.e., 
to ensure the durability property). 
 

  


