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Abstract

Partitive set families are families of sets that can be quite

large, but have a compact, recursive representation in the

form of a tree. This tree is a common generalization of

PQ trees, the modular decomposition of graphs, certain de-

compositions of boolean functions, and decompositions that a b cdefghijk

arise on a variety of other combinatorial structures. We de- [ ]
scribe natural operators on partitive set families, give alge-
braic identities for manipulating them, and describe efficient
algorithms for evaluating them. We use these results to ob-
tain new time bounds for finding the common intervals of a

set of permutations, finding the modular decomposition of an
edge-colored graphs (also known as a two-structure), finding
the PQ tree of a matrix when a consecutive-ones arrange- 1 1]
ment is given, and finding the modular decomposition of a )

permutation graph when its permutation realizer is given. \

1 Introduction

A 0-1 matrix has theonsecutive-ones propetfythere exists f
a permutation of the set of columns such that the 1's in
each row occupy a consecutive block. Such a permutation d e g ik
is called aconsecutive-ones orderir{§igure 1).
In general, the number of consecutive-ones orderings a c h i
need not be polynomial; there may Bg! of them. How-
ever, thePQ treeof a family that has the consecutive-ongsigure 1: A consecutive-ones ordering of a matrix, and the
property gives a way to represent all of its consecutive-orfeyresponding PQ tree. The zeros in the matrix are omitted.
orderings usin@(|V|) space, as in Figure 1. The PQ tree is B€ ordering of the columns is a consecutive-ones ordering
rooted, ordered tree whose leaves are the elemeisanid Pecause the 1's in each row are consecutive. The left-to-
whose internal nodes are each labeled eiharQ. The left- right leaf order of the PQ tree gives this ordering. Reversing
to-right leaf order gives a consecutive-ones ordering, and 4§ left-to-right order of children of a Q node (rectangles)
new leaf order that can be obtained by permuting arbitrarfy Permuting arbitrarily the left-to-right order of children of
the children of a P node or reversing the order of children@fP node (points) induces a new leaf order, which is also a
a Q node is also a consecutive-ones ordering. There ar€fpsecutive-ones ordering. For instance, permuting the order
other consecutive-ones orderings. of children of the left child of the root and reversing the order
One of the most significant applications of PQ tred¥ children of the right child givesd, a,b, ¢, e, f,k,j, h,1,9)
is in finding planar embeddings of planar graphs. Boo@$ & consecutive-ones ordering. An ordering of columns of
and Lueker used PQ trees to develop an algorithm {be matrix is a consecutive-ones ordering iff it is the leaf
determining whether a family of sets has the consecutigder of the PQ tree induced by reversing the children of
ones property [2]. The algorithm runs@(|V|+1(F)) time, Some set of Q nodes and permuting the children of some set
wherel(F) is the sum of cardinalities of members %t or Of P nodes.
lengthof F.
A set family # with the consecutive-ones property gives
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rise to aninterval graph which has one vertex for eactdecomposition trees of partitive families, give identities for
member ofF, and an adjacency between two vertices if amdanipulating them, and develop algorithms for evaluating
only if the corresponding members #fintersect. Booth and them. We use these results to obtain new time bounds for
Lueker’s result gave a linear-time algorithm for determiningpmbinatorial problems that involve partitive families, such
whether a given graph is an interval graph, and, if so, findiag finding theeommon intervalsf a set of permutations [29,
such a set family# for it. This problem played a key14], finding the modular decomposition of edge-colored
role during the 1950’s in establishing that DNA has a linegraphs, otwo-structureg9], finding the PQ tree of a matrix
topology [1], though linear-time algorithms were unavailabighen a consecutive-ones arrangement is given, and finding
at that time. Variations on this problem come up in ththe modular decomposition of a permutation graph when its
physical mapping of a genome, using laboratory data tmaalizer in the form of a permutation is given.
can be modeled with a graph [23, 30].

A moduleof an undirected grap@ = (V,E) isaseX of 2 Preliminaries

vertices such that each vertgx: V — X is either adjacent t0 Ty setsX andY overlapif they intersect, but neither is a
allmembers oKX or adjacent to none of them. The number Qfpset of the other. That is, they overlaiXif- Y, Y —X, and
modules can be exponential in the sizedofHowever, there x y are all nonempty.
exists a compacD(|V/) representation of all the modules, | gt 7 is a family of subsets of a sat. Then let| 7|
called themodular decompositionThe modular decompo-genote the number of sets i this contrasts with(F)
sition, first described by Gallai [11], is a tree that has thghich is the sum of cardinalities of the setstn
members oV as its leaves, and where the internal nodes are |, general, it take€)(1( 7)) space to represetf in the
all labeledprimeor degenerateDetails of the representationcomputer. However, suppose thtsatisfies the following:
are given below. The modular decomposition can be cof- ¢ 1x1 ¢ # for all x € V, and no two members of
puted inO(|V| +[E|) time [19]. overlap. In this case, it is easy to see thef) can be

A close relationship between the modular decompogiy|\/|2), but # can be represented i@(|V|) space. The
tion and a variety of combinatorial problems on graphs hapgsse diagram of the subset relation on membersF of
been described. Gallai [11] showed a close relationshipjdo; tree whose root i and whose leaves are its one-
the transitive orientation problemwhich is the problem of element subsets. Labeling only the leaves of this tree with
orienting the edges of an undirected edge so that the resultiig corresponding set gives a representatioff ofGiven a
digraph is transitiveie. a poset relation). Using the modnode of the tree, the sat that it represents can be returned
ular decomposition, a transitive orientation, if it exists, cap o(|x|) time by traversing its subtree and assembling the
be found inO(|V]+]E|) time [19]. This result has led to lin- gisjoint union of its leaf descendants. This is as efficient as
ear time bounds for maximum clique and minimum coloringny representation ¢, but takesO(1) space to represeit
on transitively orientable graphsg. comparability graphs), Let us call such a set family @ee-like family, and its
and recognizing permutation graphs and co-interval grapfige representation itaclusion tree Partitive families are a
Surveys on applications can be found in [24, 25, 26]. generalization of tree-like families, callgartitive families

The modular decomposition has a straightforward yat may have a number of members that is exponential in
tension to directed graphs, and linear time bounds have #gs sjze ofv, yet still has arO(|V|) representation.
cently been given for finding it [21].

The modules of a graph are an example pédtitive set DeriniTION 2.1, [11, 4, 25, 9] A set familyF on domain
family [4, 24]. All partitive set families have a compact repy s partitive iff it has the following properties:
resentation by means of a tree; the modular decomposition is
just an example of it when the set family is the modules ofae V€ #,0¢ F,andforallve V, {viec F
graph. The PQ tree is another example of this phenomenon. )
In [18], it is shown that the PQ tree is this representation of a® For all X,Y € 7, if X-andY overlap, thenXnY € ¥,
certain partitive family defined by the 0-1 matrix, and, more XUY € F,X—=Y & ¥, andY—-X ¢ ¥.
generally that, like the modular decomposition, the PQ tree . _
is an example of aubstitution decompositidi25], a com- Let the strong membersf a partitive family be those

binatorial abstraction that has partitive families as a centl3ft ©verlap with no other member gf, and let theweak
ingredient. memberde the remaining members.

Other partitive families have played a role in linear timsFHEOREM 21
bounds for recognizing circular-arc graphs [17, 20[n + T
mlogn) bounds for recognizing probe interval graphs [22
and arise in decompositions of boolean expressions [25].

In this paper, we describe natural algebraic operators op Every weak member ¢ is a union of siblings i

[4, 25] The strong members of a partitive
amily F are a tree-like family where the Hasse diagrdm
f the subset relation has the following properties:



2. Each internal node&X can be classified as one of the
following types:

(a) Degenerate: Every union of more than one child
is a member off ;

(b) Prime: Other tharX itself, no union of more than
one child is a member of;

(c) Linear: There exists a linear order on the children
such that a union of more than one child is a
member of ¥ if and only if the children are
consecutive in the linear order.

Conversely, every set family that has such a representa-
tive is partitive. Let us call the tree representatioryofiven
by the theorem thdecomposition treef .

ExamMPLE 2.1. Removing the empty set from the power set
of V gives a partitive family. Its decomposition tree has one
internal node,V, which is degenerate, and one leaf for each
member ol.

EXAMPLE 2.2. A nonempty seX of vertices of a directed {a,b,c.d,e,f,gh,i}(L)
graph G = (V,E) is a moduleiff it satisfies the following
conditions for to every € V—X:

. . . {ab}(P) {c.defg.h}(P) {i}
1. Either every element o is a neighbor ofy or no
element oKX is a neighbor ofy; /
2. Either y is a neighbor of every element of or a fa} - {b} {c} {d} {efeg}D) ({h)
neighbor of no element &. ‘
It is not hard to show that the modules of a graph {e} {f} fe}

satisfy the requirements of Definition 2.1. It follows that B
the modules of a graph can be representedifiV|) space Figure 2: The modular decomposition represents the mod-

with a tree [11, 25]. As illustrated by the complete graleeS of a graph with an orde_zred tree_whose node_zs are subsets
on V, the number of modules can be exponentialvin ©f V. Each internal node is labeldmhear (L), prime (P),
Figure 2 gives a nontrivial example. This tree is thedular O degeneratd). A subset of the vertices is a module iff
decompositiorof the graph. It take©(|V|+ |E|) time to t1S a node of the tree, the union of a set of children of a
compute the modular decomposition of an arbitrary directé§generate node, or the union of a set of children of a lin-

graph [21]; linear time bounds for the special case of&' node that is consecutive in the left-to-right order of its
undirected graphs were given in [19]. children. The modules of the depicted graph that are not

nodes of the tree are unions of children{eff, g}, namely,

If ¥ is a partitive set family, letT(#) denote its {e,f}, {e, g}, and{f,g}, and unions of consecutive children
decomposition tree, andTfis a partitive decomposition treeof {a,b,c,d,e,f,g,h,i}, namely, {a,b,c,d, e, f,g,h} and
let (T) denote the set family that it represents. There{i d,e,f,g,h,i}. To represent the decomposition, it is not
no way to distinguish whether a node with two children isecessary to label internal nodes with the set that they corre-
prime, degenerate or linear, but the classification is uniagjgond to, as this is given by the union of leaf descendants of
for nodes with three or more children. Henceforth, we wilhe node.
consider a node to be classified as prime, degenerate, or
linear only if it has at least three children.

DEFINITION 2.2. A partitive set family issymmetric if,
wheneverX and Y are overlapping members dof, the
symmetric differenc&XAY = (X —Y)U (Y —X) is a member
of F. Itis antisymmetridf XAY is never a member whefa
andY are overlapping members.



It is not hard to see that if a graph is symmetric (undBEFINITION 2.4. If T; and T, are partitive decomposition
rected), its modules are a symmetric partitive family, and thtages, then lef; N T, be the decomposition tree gf(T;) N
if it is antisymmetric, its modules are an antisymmetric paf-(T,), which exists by Theorem 2.4.

titive family, unless it has modules that induce disconnected ) -
subgraphs. In particular, the modules of a tournament dfdECREM2.5. [21] Given decomposition treef and T,

an antisymmetric partitive family. A partitive set family j€°f Symmetric partitive families, it takes time proportional to
symmetric if and only if its decomposition tree has no line&f#€ Sum of cardinalities of their nodes to filigdn T,.
nodes, and it is antisymmetric if and only if its decomposi-
tion tree has no degenerate nodes. 3 New Results

If F is an arbitrary set family, leC(¥) denote the 3.1 Intersection of Arbitrary Partitive Families. Theo-
partitive closureof #, namely, the smallest partitive familyrem 2.5 applies only to symmetric partitive families. The
F' such that¥ C F'. Let S(F) denote thesymmetric case where they are not symmetric is more difficult.
partitive closureof #, namely, the smallest symmetric = The additional difficulties posed by linear nodes are
partitive family F” such thatf C F”. It is shown in [18] illustrated by the simple case of two tréBsandT, that each
that each of these closures is unique. haveV ={1,2,..,8} as their only internal node. If; and

If M is a zero-one matrix, then [&t denote its columns, T, are decomposition trees of symmetric partitive families,
and letF (M) denote the set family oW that has one set forthenV is prime or degenerate in each. TpnNT,, V is the
each row ofM, namely, the one obtained by interpreting thenly internal node, and it is degenerate if it is degenerate in
row as the bit-vector representation of a set. That is, the beth trees and prime otherwise. The intersection is trivial to
represented by a row is the set of columns where the roampute in this case.
has a 1. Conversely, if is a family of subsets of a domain  On the other hand, suppo¥es linear in each of; and
V, we may obtain a representation Bfwith M, such that T, and({1},{2},...,{8}) is the order of its children ifi; and
F(M) = F. M has the consecutive-ones property if andé},{5},{8},{7},{2},{1},{4},{3}) is the order of children in
only if there exists an ordering &f such that every memberT,. Then{1,2}, {3,4}, {5,6}, {7,8},{1,2,3,4}, and{5,6,7,8}
of F is consecutive, and, in this case, we may refer to the R@ internal nodes. In general, two linear nodes in two

tree ofM as the the PQ tree of. partitive trees can give rise to a complicated subtree in the
The following gives a generalization of the PQ tree tiatersection.
arbitrary set families or zero-one matrices: We improve the bound of Theorem 2.4 and generalize it

to arbitrary partitive families, not just symmetric ones:
DEFINITION 2.3. [18] Let # be an arbitrary set family. Let
thePQR treef F be the decomposition tree of ), where THEOREM3.1. Given arbitrary partitive decomposition
the prime nodes are labeled P, the linear nodes are labefé@es T and T, on domainV, it takesO(|V/) time to find

Q, and the degenerate nodes are labeled R. T NTs.

Let theintervals of a permutation(vy,vz,...,v,) be a
nempty set of the fornfvi,viy1,...,v;}. The common
infervals of a set of permutations of the same set are the
intervals that are common to all of them.

Let F be an arbitrary set family ovf, andA(( F ) denote If 7 is a linear ordering ofv, then its intervals are
the family of nonempty subsets dfthat don't overlap with @0 antisymmetric partitive family: their decomposition tree
any member off . T(7) is the tree with one internal linear node, and leaf\set

ordered in the order given hy. It follows that the common
THEOREM2.3. [15] A((¥) is a symmetric partitive setintervals of a se{r;,m,...,mc} is a partitive set family
family, and if ¥ has the consecutive-ones property, it§hose decomposition tree is given by ) N T(mz)N...N
decomposition tree is the PQ tree, where the prime nodegtk)-

are interpreted as Q nodes and the degenerate nodes are S . .
interpreted as P nodes. RPPLICATION 3.1. The following is immediate from this

example and Theorem 3.1:

THEOREM2.2. [18] ¥ has the consecutive-ones properzg
if and only if its PQR tree has no R nodes, and, in this ca
its PQR tree is its PQ tree.

The proof of the following is elementary: THEOREM 3.2. It takes O(kn) time to find the common

THEOREM2.4. [21] If % and %, are two partitive fami- intervals of a sefry, 7, ..., 71y } of permutations of a sét.

lies, then so isfy N %,. If they are both symmetric partitive  The previous time bound for this problem wagnk +
families, then so ig5y N 72, and if they are both antisymmet«), wherekK is the number of common intervals [14]. (Note
ric partitive families, then so iffy N 2. thatK can be quadratic in).



APPLICATION 3.2. The conceptual complexity of manghow that the modular decomposition of this two-structure

linear-time algorithms for computing the PQ tree is welis the well-knowrsuffix treeof the string, which is used in

known. However, Theorem 3.1 gives a simplgxm) ap- efficient solutions to a variety of combinatorial problems on

proach to finding the PQ tree of am x m matrix. LetM strings [6, 13].

be a 0-1 matrix withm columns anch rows, letM; be the

submatrix given by the topm/2| rows and letM, be the Though these last two examples yield an interesting

submatrix given by the remainingn,/2] rows. To find the structural relationship, they do not yield more efficient al-

PQ tree ofM, we may find the PQ tre€f and T, of M, gorithms. However, in [21], we give a linear-time algorithm

andM, by recursion, and then returfy N T, as the PQ tree for finding the modular decomposition of a symmetric (undi-

of M. The correctness follows from Theorem 2.3. rected) two-structure. This is a key step in the linear time
bounds we show there for finding the modular decomposi-

APPLICATION 3.3. [16] If Tis a PQ tree, lef1(T) denote tion of a directed graph.

the set of permutations represented by If T and T’ are Because of the added difficulties posed by linear nodes

PQ trees on domaitV, then letT < T’ denote thafT(T) C in the decomposition, the best bound until now for finding

TI(T'). Given the PQ tree3; and T, of two set families the modular decomposition of arbitrary two-structures has

on the same domaiW, let the thejoin of T; and T, be the beenO(|V|?) [8]. However, given Theorem 3.1, we can now

minimal PQ treeT; (with respect to<) such thatT; < T3 improve this quite easily:

andT, < Ts. ) ]

The join of two PQ trees was first described by LandafiROPOSITIONS. 1. It takes O(k|V| +[E]) time to find the
Parida, and Weimann [16], who have used it in an appncénodular decomposition of a two-structure that has vertex set
tion to genomics, and who obtained &x|V/|3) algorithm to V> €dge sek, andk edge colors.

compute it. When we communicated Theorem 3.2, they used . .
it to improve the bound O (|V]). YBro0f. Let G; denote the graph ovi given by edges of color

i. Find the modular decompositioi, of eachG; for each

it from 1 to k using the linear-time modular decomposition
aﬁgorithm for directed graphs given in [21]. Since the edge
gﬁts are disjoint, this takes a total Of(k|V|+ |E|) time.
The modular decomposition of the two-structure is given by
TyNT,N...NT_7, which takesO(k|V]|) time to find, by
eorem 3.1.

A two-structureis a directed graph whose edges a
colored. A module of a two-structure is a moduteof
the underlying graph that satisfies the following addition
requirement: whenevey € V — X, all edges from members
of X toy are the same color, and all edges frgito members
of X are the same color. The modules of a two-structure :I

a partitive family [9]. B . .
. : , ) y an only slightly more involved proof, we can get a
The following give a relationship between modular dei"l'near time bound, as follows. Let thessential subtreef

composition of two-siructures and problems in other are@%artitive decomposition trek be the tre€l’ obtained by
that have not been observed before. deleting leaf children of the root if the root is degenerate,

ExXAMPLE 3.1. A distance functiond on a setV is an and let itssizebe the number of leaves in the tree.

ultrametricif, for all x,y,z € V, eitherd(x,y), d(y,z) and | eyya 3.1. Let Ty, To,..., Ty be partitive trees on domain

d(x,z) are all equal, or two are equal and the third iSy ang letT/ T/, ..., T/ be their essential subtrees. It takes
smaller. Ultrametrics arise in many clustering applicationg;ye proportional to the sum of sizes Bf, T}, ..., T/, to find
such as the problem of inferring phylogenetic trees. ART,n  AT,.

example is the distance metric in a graph with edge weights,

where theheight of a path is the maximum weight of almHEOREM 3.3. IttakesO(|V|+]|E|) time to find the modular
edge on the path, and where thiistancebetween two decomposition of an arbitrary two-structure.

vertices is the height of the minimum-height path between

them. An ultrametric can be modeled as a two-structufdfoof. Let G1,Gz,...,Gx be as in the proof of Proposi-
where forx,y € V, the “color” of edgexy is d(x,y). In tion 3.1. It is easy to see that the essential subtree of the
this case, the modular decomposition of the two structurédular decomposition @; can be obtained from the mod-

is the tree returned by the well-known UPGMA clusterinigj/ar decomposition of the subgraph induced by non-isolated
algorithm [27]. vertices, which ha®©(|E;|) vertices. Therefore, giveh;,

the modular decomposition d@; can be found inO(|E;|)
EXAMPLE 3.2. Given a stringaaz, ..., an, let us define a time using the linear-time modular decomposition algorithm
two-structure with verticefl, 2,...,n}, and for vertices and of [21]. Using this observation, and replacing Theorem 3.2
j, let the label (“color”) of edgeij be the longest commonwith Lemma 3.1 in the proof of Proposition 3.1, yields the
prefix of ajaitq...an and ajaj4q...an. It is not hard to linear time bound.



3.2 New Algebraic Operators on Symmetric Partitive However,T; N T, = T; N T3 is the minimal element of the
Families. By Theorem 2.3 (¥ ) has a decomposition tredattice, hence so i6T; N T,) U (T; N T3).
even when¥ does not have the consecutive-ones property. Let a symmetric decomposition tree on domainbe
Therefore A[(F) is defined even wheff is itself a symmet- elementaryf it has at most one non-root internal node.
ric partitive family.
THEOREM3.7. If T is the decomposition tree of a sym-
THEOREM3.4. If F is a symmetric partitive family, thenmetric partitive family on domairlv and T has k > 1
T(A(F)) is obtained froml' ( F) be relabeling each degen-non-root internal nodes, thed can be written asT =
erate node as prime and each prime node as degenerate.T; op; T, op2z ,..., opx—1 Tk, Where eactop; is eitheru
or N, the operators are evaluated left-to-right, and edgh
DEFINITION 3.1. If T is the decomposition tree of &s elementary.

symmetric partitive family, let itcomplementT denote
T(A(F(T))). Thatis,T is the result of exchanging the roledroof. (By induction on the number of non-root internal
of prime and degenerate nodes. nodes.) If there is only one non-root internal noddjnt is
already elementary. Otherwise, tbe a minimal internal
THEOREM3.5. If ¥ is an arbitrary set family, thennode, and lefl’ be the result of removing from T and
T(S(F)) =T(N(F)). letting its parenty, adopt its children. Lefy be the tree with
rootV and one other internal nod¥, In Ty, V andX have
DEFINITION 3.2. Let %7 and 7, be symmetric partitive the same prime/degenerate label¥ amdX, respectively, in
families onV, and letT; andT, be their decompositiontreesT. |f Y is degenerate, thefi = T’ N Ty, and if Y is prime,
The unionf; U %, is not necessarily partitive, so 18§ UT,  thenT =T/ UTy. SinceT’ hask — 1 non-root internal nodes,
denote the smallest symmetric partitive family that fas) T’ can be decomposed into unions and intersectiofs-of
%> as a subfamily, that is, 1&g UT, = T(S(% U 72)). elementary trees to complete the expression.

These definitions of intersection and union therefore Theorem 3.7 is a key element in our time bound for
define a lattice on the set of all symmetric partitive trees @itersecting partitive trees (see Section 4.3).
domainV. The minimal element of the lattice is the tree with  Modules and the quotients they induce in a graph are
V as its only internal node, witl labeled as prime, andexamples of aubstitution decompositioon the domain of
the maximal element is this same tree, but witHabeled graphs [25]. We can define a substitution decomposition on
degenerate. the domain of decomposition trees of symmetric partitive
The following shows that the definitions satisfy familiafamilies where where the roots carry a bit that isasngor
properties expected of these operators; the proof will app@afak Let anautonomous setenote a node of or a union
in the journal version. of siblings inT. Note: It is not necessary for the parent of

. C to be degeneratdf X is autonomous, then if it is a node
THEOREM3.6. Let Ty and T be decomposition trees ofyf T thefactor T[X] is the subtree rooted 2 and if it is a

symmetric partitive families. Then: union of a seC of siblings, the factof [X] is the tree where
— X is the root, and its subtrees are the subtreek mfoted at
e i =T. members ofC; in this case, ifX has at least three children,

then it has the same prime/degenerate label as the parent of
C. Let thequotientT/X denote the operation of nodes that
e UL =T, NTy. are subsets of and replacing them with a single leaf. The
guotient isstrongif X is a node ofl, andweakif it is a union
COROLLARY 3.1. It takesO(|V|) time to find the union of Of siblings that is not a node df.
two symmetric partitive trees. Clearly, these operations are invertiblel can be
uniquely reconstructed from a quotiéifV and factorT [W]
Clearly, the intersection operator is commutative arftthe leafw of T/W that corresponds t@ is indicated, and
associative, as is the union operator. However, together, thdyit at the root ofl [W] identifies whether the quotient was
are not distributive. That s, it is not true in general than strong or weak.
(T, UT3) =(T1 NT2)U (T NT3), as the following example Several algebraic properties have been described previ-
illustrates. Letv ={1,2,3}, let T;, T,, Ts be decomposition ously for substitution decompositions, but the introduction
trees onV where{1,2} is the only non-root internal node ofof union and intersection operators on partitive trees yields
Ty, {1,3} is the only non-root internal node @%, and{2,3} the following new identities, which we use in obtaining the
is the only non-root internal node @§. ThenT, UT;s is the new time bounds in this paper (Section 4.3):
maximal element of the lattice, henden (T, UT3) = T;.

e TINT,=THUTy;




THEOREM3.8. If T, and T, are decomposition trees ofl to O(1), and inO(|V|log|V]) time if they are given as real
symmetric partitive families on domai and A is au- numbers.

tonomous in botA, andTy, then: A similar type of result can be obtained for modular
decomposition opermutation graphsA permutation graph
e (TaNTH)/A=Toa/ANTy/A. is obtained from two permutations df, by letting the

members oV be the vertices and letting two verticesand

¢ (TaUTo)/A=Ta/AUT,/A. y be adjacent ifx is beforey in one of the permutations

o (TaNTp)[A] = To[AIN Ty [A] and after it in the other [12]. Recognizing permutations and
deriving their modular decomposition takes linear time [19].
o (TaUT,)[A]l =To[A]UT,[A] However, it turns out that this bound for finding the modular

decomposition is not optimal if the input graph is known to
If X andY are d|SJO|nt autonomous SetST/X)/Y = bea permutation graph:

(T/Y)/X. Therefore, we can write this d%{X, Y}, and, more

generally, if{A7,A,,...,Ay} are disjoint autonomous setsTHEOREM 3.10. Given anO(|V/|) representation of a per-

the quotienfl/{A1,A,,...,Ay}is uniquely defined. mutation graph using two permutationséf it takesO(|V|)
time to find its modular decomposition.

3.3 Algorithmic Uses of Compact Representations.

Any algorithm can be made to runin time linear in the size f Sketches of proofs

its input simply by selecting a suitably space-inefficientreg:1  Theorem 3.9.1f 7 is a set family, let it®verlap graph
resentation for the input. For instance, many algorithms fel’o (}') be the graph that has one vertex for each member of
NP-complete problems can be made to run in “linear” timg and an edge between two vertices iff the corresponding
by choosing a unary representation for integer inputs. Lifrembers off overlap.
earity of an algorithm does not imply an optimal time bound  Gjven a connected componegtof G, (), let =, be
unless the representation of the input is also asymptoticglly equivalence relation apj C, where ifx,y € JC, then
optimal. x = y iff the family of members of that containx is the
When Booth and Lueker's algorithm [2] for finding thesame as the family of members fthat containg). Let C's

PQ tree is applied to a set family that is not known to haygocksbe the equivalence classes=f.
the consecutive-ones property, the algorithm either returns

the PQ tree, or else rejects the family as not having thelEOREM4.1. [18]If ¥ is a set family on domail, then
consecutive-ones property. The running time@fV| + X C V is a node of the decomposition treedff( ) iff it is
L(F)) is an optimum time bound, since it uses a spacene of the following:
efficient representation of arbitrary set families.

However, when itis applied to a set family that is alreadyl- V O @ one-element subset o
kno_wn _to have thg consecutivg—ones property, .the proof 0§ U C for some connected componaniof #’s overlap
optimality of the time bound is no longer valid because graph:
it assumes an input of sizZ®(|V|+1(¥)). Families with
the consecutive-ones property have a representation that3s A block of a connected component %fs overlap
more compact than the standard listing of elements of each graph.
member of the family. A consecutive-ones famftycan be ] ] ]
represented i©(|V|+ | F|) space by giving a consecutive- By Theorem 4.1, it suffices to find the connected compo-
ones ordering, and representing each membaf ¥ in nents of¥’s overlap graph and, for each component, find the

O(1) space by giving the first and last member of the inter/e@MPonent's union and its blocks. The sum of cardinalities
occupied byX in this ordering. of these unions and blocks is rot|V|+| 1), but, since they

each correspond to intervals in the consecutive-ones order-
THEOREM3.9. IttakesO(|V|+|7|) time to find the PQ tree ing, we can represent each of themn1) space by giving
of a consecutive-ones family, given a consecutive-oneghe starting and ending position of the interval it occupies in
ordering and, for eactX € ¥, the first and last element &f the consecutive-ones ordering. Since the decomposition tree
in the ordering. has|V| leaves and each node of the decomposition tree of
A(F) has at least two children, this tak@g|V|) space.
It is worth noting that Theorem 3.9 is the key starting The overlap graph does not even hagV|+ 1(F))
point in the proofs of all of the remaining results of thisize. However, it suffices to find only the components of the
paper. It also implies that, given the interval representatioverlap graph. Dahlhaus has given an algorithm for finding
of an interval graph, the graph’s PQ tree can be obtainedliese inO(|V|+ 1(F)) time [7], but even this bound is too
O(|V|) time if the endpoints of the intervals are integers frofarge for our purposes.



Each block of ones in a consecutive-ones ordering aff {rt;, 72, ..., } in O(kn) time. To do this, we find the
a matrix can be viewed as an interval on the real lifieactures ofrty,7;} for eachj from 2 tok; the ones needed
whose endpoints happen to be integers, namely, the coluimm_emma 4.2 are a subset.
numbers of the first and last interval. Itis easy to then perturb To do this, we make use of the following theorem, which
them to obtain a list of endpoints where no two endpointsdue to Gabow, Bentley, and Tarjan [10]:
coincide, without disturbing the overlap relation among the i ,
intervals. THEOREM4.2. Given a lengthr list L of real values and
Next, if x is an interval, letR(x) denote the set of 2 set ofp i.ntervalls{[ﬁ,j]],[i'z,jz],...,[ip,jp}} of L, it takes
intervals that overlap withik and whose right endpoints lieC (" +P) time to find a maximum elementloin each of the

to the right ofx. If R(x) is nonempty, lek’s right parentbe Ntervals.
the member oR(x) with the rightmost right endpoint. It's | et 7, = (x;,x2,..,xn) and let @ = m =
left parentis defined symmetrically: let(x) denote the set (Xr(1))Xn(2)>-Yn(n)).  Finding the right fracture of

of intervals that overlap witlk and whose left endpoints lief, ,7;} can be accomplished by creating a listointegers,
to the left ofx. If L(x) is nonempty, then’s left parentis  \yhere the integer in position(i) is i. The right fracture of
the member of(x) whose left endpoint is leftmost. They, andx; ,; is now just the maximum integer that occurs in
parent graphis the graph whose vertex set is the intervajfie intervalln(i), (i+ 1)] in this list. By Theorem 4.2, we
and whose edge setfisy| one ofx andy is the left or right ay find all right fractures ofr; ,m;1in O(n) time, and by

parent of the other _ ‘a symmetric operation, all left fractures@(n) time.
We then apply the following lemma, whose proof is
omitted because of space limitations. 4.3 Theorem 3.1.Let T, and T, be the two trees to be

h d f th intersected. To understand the approach of the general
Ig‘;';rg r: 'tﬁeZa(;ecgg?ﬁgt:onn(;%?]e?jogsgt;onoen tts (;f tﬁzriggqrc_)rifchm, let us first consider the case where the trees have
lap graph N prime or degeneratg nodes. Fqr and Ty, we may

’ construct two permutations df whose common intervals
aveT, as their decomposition tree, as follows. Arrange

Given the consecutive-ones arrangement and the CB i ; G TRHEEES
h node’s children according to their implied linear order.

nected components of the overlap graph, it is easy to find f#&

blocks, hence the PQ tree,@(n) time. Get the_ first Iinea_r order by_listing the (_alem(_ents in the leaves
according to their left-to-right order in this ordered tree.
42 Theorem 3.2. Then, reverse the order of children at each node that is at odd

depth in the tree and once again list the ordering of elements
DEFINITION 4.1. [3] Let {m;,72,...,} be a set of per- in the leaves to obtain the second linear order.
mutations ofV, and letrt; = (x1,x2,...,xn ). If there exists Similarly, we may construct two linear orders whose
j <isuch thatx, lies in betweernx; andx;,; in one of the common intervals havé, as their decomposition tree. It
permutationgrr,, ..., }, then letp be the minimum such) is easy to see that, together, the two permutations ffgm
and let us call the seftx,,x+1,..., %1} a left fracture fori. and the two froml, haveT, N Ty, as the decomposition tree
Similarly, if there exist§’ > i+ 1 such thatx;/ lies between of their common intervals.
xi andx; 1 in one of{my, ...,y }, then let letq be the max- If we allow prime nodes, but assume tfigtandT, have
imal suchj’; {xiy1,%i+2,...,xq} IS aright fracture fori+ 1. no degenerate nodes, the procedure is similar, except that
Thefracturesare the set of all left and right fractures for 1three permutations may be required to represent eadh of
throughn. andT,. We omit the details, but they are not difficult.
. Let us now consider the case where no linear nodes
Clearly, the fractures have the consecutive-ones propg allowed, that is, wher&, and T, represent symmetric

erty. partitive families.

LEMMA 4.2. Let ¥ be the set of fractures of a seperiniTION 4.2. Supposed is a set of disjoint autonomous
{m,m2,...,mc} of permutations olV. Then the decompo-sets in a treeT, and letX be a subset o¥ that does not
sition tree of the common intervals is obtained from the PQerlap any member aofl. Let R be a set consisting of
tree of ¥ by relabeling each Q node as prime and relabepne representative from each memberaf Then the set
ing each P node as linear. and ordering its children in thg’ — X0 ((V—{J4)UR) is thehomomorphic imagef X in
ordering in which they appear as intervalsin . the domain off, /4 and T, /4.

The proof is omitted because of space limitations, butis To find T, N Ty, let us write T, as a composition
not especially difficult. Lemma 4.2 and Theorem 3.9, reduée op; T2 op2, ..., opx_1 Tx Of elementary decompo-
the problem of Theorem 3.2 to that of finding the fracturedtion trees, using Theorem 3.7. As in the constructive



proof of the theorem, we may assume that the non-rdbé set of degenerate nodes, and i D(T) let d(Z,T) de-
internal node ofTy is a minimal internal nod&X of T,, note the number of children & in T. Let us define a po-
that is, a node that has only leaf children. LB} = tential functiond(Ty) =n(Tv) + 3 zcp(r, ) (A(Z, To) —1).
Ty op1 T2 op2, ..., opk—2 Tk—1, SO thatT, can be written |nitially, this is O(|V|) and it is positive for every tree passed
asT) opx_1 Tx. Itis easy to see from the proof of TheasT, to a recursive call.
orem 3.7 thafl is obtained fromT, by removingX and Let A\l be the set of nodes that are both proper ancestors
letting its parent inherit its children. of leaf subsets oK’ in T, /4 and proper descendants of
Let T, be the result of changing the root df to their least common ancestor. Since no internal node has
degenerate, if it is not already degenerate. Hebe the more than one leaf child iX’, it is easy to see thaf\| =
maximal unions of siblings of, that are subsets &. Then Q(|X’|). Using Lemma 4.4, we must sper@(|X|) time
each member ofl is autonomou3,, T/, T/, andT,. LetX’ finding 4. In addition, we show that we must spefd1)
andV’ be the homomorphic imagesXfandV, respectively, time operating on each each member’gf However, we
under the quotient byl. X’ can be represented by selectinglso show that each prime nodedq is destroyed, reducing
one representative vertex from each memberpndV’ the potential by 1n(Ty/4) decreasesand each degenerate
can be represented &8 — X) UX’. Note thatX’ is a node node either loses a child or is split into two degenerate nodes
of T,/A4, andV’ is the domain ofl, /4, T, /A4, T\ /4, and (X zem(t, /2)(d(Z,Ty/A) — 1) decreasgs This drop in

Tv/A. o ) potential covers the cost of operating on members\gf
The foIIowmg is not hard to prove using the algebraigng 0 (|X’|) of the O(|X|) cost of applying Lemma 4.4.
operators of Section 3.2: The remainingD(|X| — [X’|) cost is covered by the decrease

of Q(]X|—1X’]) in going from ¢(Ty) to ¢(Tw/A), which

. /! !/
LEMMA 4.3. (TaNTy)/A=T,/ANT/ANT,/A. reduces in the number of nodes by that amount.

ALGORITHM 4.1. Find the intersectiofi, N T, of two de- This givesO(n) algorithms for finding the intersection
composition trees of symmetric partitive families. of symmetric partitive families when the nodes are prime and
linear, or prime and degenerate. The case whgrandT,
1. Choose a minimal internal nodeof T,,. can have all three types of nodes can be solved(in) time

by a combination of these steps; full details will be given in

2. Find the family4 of maximal autonomous sets ®f, the journal version

that are subsets o1, let T, andT/ be as in Lemma 4.3.

3. Using the simple structure &, find T, = T//4n 5 Conclusions and Open Problems
Ty/A. Though they have allowed us to get improved bounds for
problems involving arbitrary partitive families, the operators

i A H ! !
4. Find(TaNTy)/A by recursively evaluating, /AN, of Section 3.2 have been defined only for symmetric partitive

5. Find(T, NTy)[Y] for eachY € 4. families. An obvious question is how to to generalize them
to arbitrary partitive families.
6. Substitute these trees intd, N'Ty)/A to obtainT, N A definition of the intersection of two partitive is im-
To. mediate from Theorem 2.4. One way to define the union of
arbitrary partitive tree§; andT, is Ty, UT, = C(F(T) U

Steps 1 and 6 are obvious. Step 5is trividl, N Ty )[Y]
is equal toT.[Y] if Y is prime, and it is equal tdy[Y] if
Y is degenerate. Step 4 is solved by recursion, and Woﬁﬁp
by induction on the number of nodes ©f; its correctness
follows from Lemma 4.3. The difficulty for the time boun
is Steps 2 and 3.

F(T2)).

Here is one argument in favor of this definition. In

lication 3.2, the algorithm returns the decomposition tree
f a symmetric partitive tree as the PQ tree, and therefore

cfails to assign the orderings to children of Q nodes. This can

X . be added in a separate step. However, a simpler alternative
It is easy to get arD(|X|) bound for Step 2 using the. to compute the PQR tree for the top half; of the

following trick, which is given in a variety of sources, SUCIIPnatrix and for the bottom hali,, interpret the P nodes

as [21]: as prime, the Q nodes as linear, and R nodes as degenerate,

LEMMA 4.4. GivenX C V and the inclusion tree of a tree-and compute the union of these two trees as we have just

like family #, it takes O(]X|) time to find the maximal defined it. It is immediate from the definition of the PQR tree

members off that are subsets of. that this is the PQR tree of the whole matrix. If the matrix

has the consecutive-ones property, there are no R nodes, and

To obtain theO(|V]) time bound for Algorithm 4.1, we the linear order on children of linear nodes gives the desired

use aramortized analysif28, 5]. Letn(T) denote the num- ordering of children of Q nodes.

ber of nodes of of a decomposition tréglet D(T) denote In addition, we claim that, under these definitions of



union and intersection, Theorem 3.7 generalizes easily[16] G. Landau, L. Parida, and O. Weimann. private communica-
arbitrary partitive families.

One disadvantage of this definition of the union is that[i#7]

is not a generalization of the definition of Section 3.2, since
the union of two symmetric partitive families need not be
symmetric: ifV ={a,b,c}, T; has{a, b} as an internal node, 18]
and T, has{b,c} as an internal node, then the union ha[s
a linear root. Thus, this union operation gives a different
result from that of Section 3.2. Also, we do not know of a
reasonable definition of the complement operation that giyes;
an analog of Theorem 3.6 on arbitrary partitive families. If
this is possible, it may require not just a definition of the
complement, but also a different definition of the union thd20]
the one we have suggested here.

(21]
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