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Abstract

This paper summarizes a study carried out on data from
the Face Recognition Vendor Test 2006 (FRVT 2006). The
finding of greatest practical importance is the discovery of
a strong connection between a relatively simple measure
of image quality and performance of state-of-the-art ven-
dor algorithms in FRVT 2006. The image quality measure
quantifies edge density and likely relates to focus. This ef-
fect is part of a larger four-way interaction observed be-
tween edge density, face size and whether images are ac-
quired indoors our outdoors. This finding illustrates the
broader potential for statistical modeling of empirical data
to play an important role in finding and codifying biometric
quality measures.

1. Introduction

Understanding factors that influence performance is fun-
damental to developing, evaluating, and operating face
recognition algorithms. This paper describes a statistical
analysis that quantifies the effects of multiple factors, co-
variates, for the Face Recognition Vendor Test 2006 (FRVT
2006). The statistical analysis technique is generalized lin-
ear mixed modeling (GLMM).

Previous GLMM work has analyzed how subject covari-
ates, such as gender and age, influence face recognition per-
formance [2, 3]. This paper advances this work by identify-
ing relatively simple image measures that predict dramatic

∗The identification of any commercial product or trade name does not
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differences in the performance of a state-of-the-art algo-
rithm. The algorithm studied fuses similarity scores from
three top performers in FRVT 2006.

Covariates, in the context of this paper, are factors inde-
pendent of an algorithm that may effect performance; e.g.,
gender of a person and the size of the face in an image. The
goal of covariate analysis is to identify which covariates af-
fect algorithm performance and to quantify those effects.
This includes quantifying interactions among covariates.

Subject covariates are attributes of the person being rec-
ognized, such as age, gender or race. Subject covariates can
be transitive properties of subjects, such as smiling or wear-
ing glasses. Image covariates are attributes of the image or
sensor, such as size of the face or focus of the camera.

In the field of biometrics, there is considerable interest in
identifying good quality measures. Grother and Tabassi [4]
define a quality measure as a number that relates an image’s
quality to a recognition system and should be predictive of
performance. Within our framework, we define a quality
measures as a covariate that is measurable, is predictive of
performance and is actionable.

A measurable covariate can be reliably and consistently
computed from an image. The edge density measure to be
introduced shortly as a proxy for measuring image focus is a
measurable covariate. Other factors that may influence per-
formance, for example hair style, are not easily measured
and hence are not good candidates for quality.

An actionable covariate is one over which a biometric
application has a degree of control over. For example, po-
tential actionable covariates are size of the face in an image,
focus, and whether a person is smiling. Examples of covari-
ates that are not actionable are gender, race, and age.
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Figure 1. Examples of controlled lighting, and indoor and outdoor
uncontrolled lighting imagery.

Quality measures naturally fit into the GLMM model-
ing framework. The GLMM quantifies the effect of quality
measures and their interactions with other covariates. In ad-
dition, actionable covariates do not have to be identified a
priori. Rather, one analysis can provide input to assessing
impact of quality measures for multiple applications. In ap-
plications where the system designers can select a limited
number of covariates to manipulate, the model can assist in
the selection process.

Our primary finding, described in Section 4.2, is a four-
way interaction between focus, face size, and environment.
Environment is either outside or indoors in a hallway, and
the focus measure is a proxy based upon edge density. Over
these four image covariates, the model estimated verifica-
tion rate varied from 0.1 to 0.9 at a false accept rate of 0.001.

This is a surprising and highly significant scientific find-
ing. The effect of this interaction is greater than the effect of
gender, race, and whether a person was wearing glasses. An
additional major benefit of the GLMM technique is that our
key finding is independent of these other covariates; e.g.,
the four-way interaction effects performance regardless of
gender, race, and wearing of glasses.

All the covariates in the key finding are potentially ac-
tionable and hence quality measures. The results of this
analysis provide input to algorithm developers about where
to concentrate research; and to system designers regarding
which image covariates are most important to control.

2. FRVT 2006 Overview
The FRVT 2006 was an independent evaluation of face

recognition algorithms administered by the National Insti-
tute of Standards and Technology (NIST) [11]. The FRVT
2006 was the latest in a series of U.S. Government spon-
sored challenge problems and evaluations designed to ad-
vance automatic face recognition [8] [9] [10].

This paper analyzes performance on the FRVT 2006 very
high-resolution image set. The very high-resolution images
were acquired with a 6 Mega-pixel Nikon D70 camera. Im-

ages were captured under three conditions, see Figure 1. All
images in the data set are full face frontal. The controlled
illumination images were taken in studio conditions with
lighting that followed the NIST mugshot best practices [6].
The average face size for the controlled illumination images
was 400 pixels between the centers of the eyes. The indoor
uncontrolled illumination images were taken in hallways
and indoor open spaces with ambient lighting. The aver-
age face size was 190 pixels between the centers of the eyes
(this is over the entire dataset). The outdoor images were
taken outdoors with ambient lighting. The average face size
was 163 pixels between the centers of the eyes.

The FRVT 2006 large-scale experiment report [11] pre-
sented results matching controlled illumination images to
controlled illumination images, and controlled illumination
images to indoor uncontrolled illumination images. This is
the first article to report results on matching controlled illu-
mination images to outdoor images for the FRVT 2006.

We analyze the performance of an algorithm that is the
fusion of three top performers in the uncontrolled illumi-
nation experiment in FRVT 2006. The performance of the
fusion algorithm was significantly better than the individ-
ual algorithms. For the experiment in this paper, the per-
formance of the fusion algorithm was a verification rate of
0.81 at a FAR of 0.001; the verification rates for the three
component algorithms was 0.74, 0.69, and 0.66.

The algorithms were fused as follows. For each al-
gorithm, the median and the median absolute deviation
(MAD) were computed from 36,602 similarity scores ran-
domly sampled from a total of 37,443,978 scores. Next,
similarity scores for each algorithm were standardized by
subtracting the median and dividing by its MAD. Formally,
if sk is a similarity score for algorithm k and sf is a fu-
sion similarity score for k = 1, 2, 3, then sf =

∑
k(sk −

mediank)/MADk where mediank and MADk are the me-
dian and MAD for algorithm k.

Analyzing the performance of the fusion algorithm has
two benefits. First, the analysis is done on an algorithm
that is better than any of the individual algorithms. Sec-
ond, attention is focused on the effect of covariates on per-
formance. Most people have an understandable predispo-
sition to focus on how well individual algorithms perform
and which performs best. In most circumstances, this is
very appropriate. However, in our studies it is desirable to
concentrate on on how covariates influence performance in
general and presenting results on the fused algorithm serves
this purpose well. That said, a complementary study of the
individual algorithms is underway.

3. Relating Performance to Covariates
Figure 2 illustrates our modeling approach and will be

referenced at several points throughout this section. The left
side of the figure indicates that modeling begins by relating
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Figure 2. Schematic illustrating the overall flow of information for estimation and uses of the generalized linear mixed model (GLMM).
The left panel illustrates the process of fitting the model, whereas the right panel illustrates prediction of performance.

covariates to face recognition outcomes, in this case verifi-
cation outcomes as defined in Section 3.1. The right side
of the figure indicates a fitted statistical model provides a
quantitative basis for relating covariates to the probability
that a face will be correctly verified given a set of covari-
ates. Section 3.2 discusses the principal covariates used in
our model and Section 3.3 introduces the statistical model.

3.1. Verification Outcomes

The performance variable in our analysis is whether or
not a matching pair of images, two images of the same
person, are correctly verified at one of three possible false
accept rates (FARs). The FARs are 1

100 , 1
1,000 and 1

10,000 .
These FAR settings are assigned to match pairs at random,
balancing the total number of samples associated with each.

The connection between FAR and verification success or
failure is established through the population of non-match
scores derived from the images used in the study. Put sim-
ply, the population of non-match scores provides us the
match score threshold that yields each of the three FARs.
A match pair is recorded as a successful verification if it’s
match score is higher than the corresponding threshold.

3.2. The Covariates

As illustrated on the left side of Figure 2, GLMM analy-
sis begins with us fitting a model whose inputs are the veri-
fication outcomes and covariates associated with the match
pairs. There are 110, 514 match pairs derived from a pop-
ulation of 345 distinct people. For the controlled lighting

there are between 16 and 32 images per person. For the in-
door and outdoor images there are between 4 and 16 images
per person. For subject covariates such as gender and race
there is only one value per match pair. For other match pairs
there are two values; e.g., the size of the face in each image.

In this paper we report findings for gender, race, size
of the face, degree of focus of a face, wearing glasses,
whether images were taken indoors or outdoors, and FAR.
Our model had 50 covariates, but these seven covariates
produced the most interesting scientific effects.

As is the case with virtually all face recognition applica-
tions, a measure of focus has to be computed post hoc from
the face in an image. Krotkov [5] advocated the average
edge density in an image as an effective after-the-fact mea-
sure of focus, showing it did a superior job of predicting
quality of focus when compared to other measures includ-
ing those based on the spectral energy in an image. The
edge-density measure is not perfect, as it is sensitive to en-
vironmental factors which give rise to high edge density.

Only the face if of interest, so the focus measure we in-
troduce in this analysis is the Face Region In Focus Mea-
sure (FRIFM). Figure 3 illustrates how this measure is com-
puted. First, a face is transformed to a standard size. Sec-
ond, a Sobel edge mask is applied to the image to derive
edges. The FRIFM is then simply the average Sobel edge
magnitude within an oval defining the region of the face.
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Figure 3. Face Region In Focus Measure (FRIFM) values are com-
puted by summing edge density within an oval face mask.

3.3. The Statistical Model

The word generalized in generalized linear mixed model
refers to the sensible assertion that verification outcomes are
Bernoulli distributed, rather than normally distributed as in
ordinary linear models. Through a link function (canoni-
cally, the logit function in the present case) transforming the
mean response, this model allows one to relate verification
outcomes to a linear function of the covariates.

Specifically, the verification outcomes are expressed as
Bernoulli random variables Yiaj with success probabilities
piaj . The subscripts indicate specific covariates, and here
only a sufficient number of covariates has been used to sug-
gest the form of GLMM. In this example, a GLMM may be
defined by the following equation:
log
(

piaj

1−piaj

)
= µ + γa + βB + γj + γaj + πi where

µ = grand mean
γa = effect of level a of factor A
β = effect of continuous covariate B
γj = effect of the jth FAR level
γaj = interaction effect between A and FAR
πi = subject-specific random effect

The last term, πi, is a random variable having a
Normal(0,σ2) distribution. This term is associated with
the word mixed in GLMM because it means that the lin-
ear predictor contains both fixed and random effects. The
random effect parameterizes the extra-Bernoulli variation
in verification outcomes associated with unexplained dif-
ficulty or ease of recognizing various people. It also allows
outcomes within subject to be correlated while outcomes
between subjects remain independent.

In practical terms, the presence of a random effect to ac-
count for differences in recognition difficulty between peo-
ple is very important. It is well understood that some people

are harder to recognize than others [1], and our model takes
this into account with the random subject effect. It is called
a random effect because we do not care precisely who is
difficult and who is easy; all that we care about is that some
people are harder than others to recognize. Accounting for
this variation reduces the unexplained variation that would
otherwise weaken our ability to detect how other covariates
influence performance.

While we are the first group to our knowledge to have in-
troduced GLMMs to the task of evaluating biometric algo-
rithms, these models are well-known and increasingly used
by statisticians. Their use has grown over roughly the last
20 years as reliable and efficient computational strategies
have been developed for fitting them.

In our context, one of the useful attributes of the GLMM
is that it directly relates covariates to the expected probabil-
ity of successful verification, or in essence to the expected
verification rate. This aspect is highlighted on the right hand
side of Figure 2. The direct mapping between the output of
our statistical model and one of the most commonly used
performance measures for face recognition makes the task
of interpreting results simpler compared to, for example,
analysis based on similarity scores.

4. Findings
Our major findings are summarized here. Limited space

has led us to omit many details, and as we prepare this work
for archival publication, details including a summary of the
statistical model selection process will be added. This topic
is especially noteworthy because it requires a careful mix-
ture of quantitative analysis and expert judgment.

Because of the massive sample size of our dataset,
110, 514 match pair observations, almost all effects pass
common tests of statistical significance. Thus, the common
notion of statistical significance (i.e., that an observed effect
is too large relative to estimated precision to be attributable
to chance alone) is not particularly relevant here because the
precision is extremely fine due to sample size.

We turn, therefore, to a notion of operational or scientific
significance. Specifically, an effect is considered scientifi-
cally significant if it is statistically significant and it leads to
a change in verification performance equivalent to at least
2 out of 100 people. The five findings that follow pass this
test and are particularly notable.

4.1. Findings 1 to 4

Finding 1: FAR for Indoor and Outdoor Images Fig-
ure 4 shows the estimated probability of successful verifi-
cation as a function of the FAR, separately for indoor and
outdoor query image locations. The fact that the probabil-
ity of verification increases with increased FAR is a math-
ematical necessity. Also, for all FAR settings, verification
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Figure 4. Estimated probability of successful verification for out-
door and indoor query images at 3 false accept rates.

Figure 5. Estimated probability of successful verification for in-
door and outdoor query images Male (M) and Female (F) subjects.

is easier when the query image is indoors and there is an
interaction between FAR and query image location. Specif-
ically, the penalty for outdoor query images is reduced as
FAR increases.

It is also important to recognize that the results shown
represent effects after controlling for the impact of all other
covariates in the model. In other words, the model has ac-
counted for other factors and the probability of successful
verification shown is an output of the GLMM with covari-
ates not explicitly indicated set to default/nominal values.
This is true here and for all the findings which follow.

Finding 2: Gender Figure 5 shows the estimated proba-
bility of successful verification as a function of gender for

Figure 6. Estimated probability of successful verification for in-
door and outdoor query images for subjects of various races.

Figure 7. Estimated probability of successful verification for in-
door and outdoor query images for cases when the subject did or
did not wear glasses in the query image. Note subjects never wore
glasses in the target images.

each query image location. The effect of gender on perfor-
mance is scientifically significant. However, because gen-
der interacts1 with query image location, there is no signif-
icant marginal (i.e., averaged across locations) gender ef-
fect. Instead, we see that when men and women are pho-
tographed indoors, women are somewhat more likely to
be correctly verified. Conversely, when men and women
are photographed outdoors, men are slightly more likely to
be verified correctly. Furthermore, the penalty for outdoor
query images is greater for women than for men.

1Line plots are commonly used in this type of analysis to accentuate
relationships. Specifically, the observation that the two lines are not par-
allel is a visual cue reinforcing the conclusion that there is an interaction
between gender and environment (indoor/outdoor).
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Finding 3: Race Figure 6 shows the estimated probabil-
ity of successful verification as a function of race for each
query image location. Most of the 345 subjects used in
this analysis are either East Asian or Caucasian. The actual
number of match pairs, i.e. verification outcomes for each
of the four races, are indicated along the horizontal axis
of the plot. Overall, we would not wish to overly empha-
size the result for the Hispanic or Unknown categories due
to comparatively low numbers of subjects. However, the
distinction between the verification performance for East
Asians versus Caucasians is convincing and consistent with
previous findings by other studies [2, 3]. For reasons that
are still not fully understood, verification performance for
East Asian subjects is better.

Finding 4: Glasses When the people in the study were
photographed under uncontrolled lighting they were also
permitted to wear their glasses. For the controlled imagery
people were never permitted to wear glasses. Consequently,
some of the comparisons in the study involved people wear-
ing glasses in the query image but not in the target. It is not
surprising that glasses make verification much harder. This
result is shown in Figure 7. However, it is more surpris-
ing that there is a significant interaction between wearing
glasses and the query image location. Specifically, for query
images without glasses the estimated performance penalty
for outdoors query imagery is seen but for query images
with glasses the outdoor query location actually improves
performance, albeit from a much lower baseline.

4.2. Finding 5: The Face Size, Focus and Environ-
ment Interaction

This is by far the most interesting finding. It provides
an excellent example of the detection and interpretation of
multi-factor interactions. It also demonstrates a very strong
linkage between easily measured aspects of image quality
and probability of successful verification. The overall result
is summarized in Figure 8. A careful exploration of this
figure is given in the following paragraphs.

First note the three columns of plots in Figure 8 cor-
responding to the resolution of the query images as mea-
sured by the distance between the eyes measured in pixels.
The median distance between eyes for the columns labeled
Small, Medium and Large are 137, 164 and 210 pixels re-
spectively. The break points between the columns fall at
150 and 185 pixels between the eyes. Query image resolu-
tion is the first of the four interacting covariates.

Next focus on the upper and lower rows of plots. The up-
per row is for query images acquired indoors and the lower
row is for query images acquired outdoors. The second of
the four covariates participating in this interaction is the dis-
tinction between indoor versus outdoor imagery.

The six plots shown share the same x- and y-axes. The
horizontal axis shows FRIFM for the query image and the
vertical axis shows FRIFM for the target image. Note the
overall broader range of FRIFM values for the query im-
agery compared to the target imagery. This makes sense
considering the control exerted over the acquisition of the
target images compared to the query images.

The estimated probabilities of successful verification
shown in the six plots are color-coded using a standard cold
to warm pseudo-color mapping. Each of the six plots has
been further refined to indicate approximately which re-
gions the response surface correspond to the available data.
To put this another way, interior to the regions bounded by
the black outlines are portions of the surface where about
95% of all our observations lie. In order to avoid accidental
extrapolation, it is important to restrict our attention to the
interior of these regions.

Several conclusions are striking when one studies Fig-
ure 8. First, there is a very large variation in predicted per-
formance. For the indoor images, the probability of verifi-
cation values range from around 0.7 up to greater than 0.95.
For the outdoor images the range in probability of verifica-
tion values over an astonishingly large range, from a low
0.1 to a high of nearly 0.9.

Second, note that query FRIFM scores do not range as
high for the indoor query images than for the outdoor query
images. This may be suggestive of some relationship be-
tween query image location and FRIFM.

Third, it is surprising that lower FRIFM values are asso-
ciated with higher estimated probability of correct verifica-
tion. This suggests that the three algorithms prefer images
somewhat out of focus. Were we studying older whole im-
age matching algorithms, this finding would not seem so
surprising. It has been fairly well established that tech-
niques such as PCA do marginally better when images are
smoothed [7]. However, here we are looking at state-of-the-
art commercial algorithms, and it is less obvious that they
should share this preference for reduced focus.

It is also important to note that while FRIFM is a good
surrogate for a true measure of focus, it may also reflect
other image attributes such as harsh lighting, hairs across
the forehead, etc. Because of the importance of our findings
with respect to FRIFM, we have visually inspected about
50 images with very high and very low FRIFM scores. Six
of these images are shown in Figure 9. Overall, it is our
judgment that in the majority of cases FRIFM is responding
to what we as human judges would call focus. However, it
is also clear that other factors are at work as well. Notice,
for example, the glasses and overall strong shadowing of
the face in the woman shown in the upper right of Figure 9.
Also notice the hair coming down across the face combined
with strong lighting in the woman shown in the lower right
of Figure 9. Low FRIFM scores also seem to be produced
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Figure 8. Estimated probability of successful verification split by query image resolution, query image location, and FRIFM for both query
and target images. See the text for a full explanation of this figure.

by people whose overall complexion and facial appearance
is relatively uniform, for example the woman shown in the
middle left image of Figure 9.

Taking a broader perspective, it is clear that a single
simple quality measure computed post hoc from images
is highly correlated with probability of successful verifica-
tion by state-of-the-art vendor algorithms. From a practical
standpoint, such findings may be very valuable for enabling
progress toward a better overall measure of face image qual-
ity. In terms of algorithm development and improvement, it
is important to better understand why images with high edge
density (i.e., high FRIFM scores) confound algorithms.

5. Conclusions

A tremendous amount of effort will be spent in the near
future trying to better characterize the quality of face images
in terms of successful biometric matching. For example, in

the past two years NIST has sponsored two workshops on
biometric quality. Our work has demonstrated that statisti-
cal modeling provides an excellent means of explicitly es-
tablishing connections between easily measured properties
of imagery and predicted probability of verification success.

Furthermore, the generalized linear mixed model allows
us to explicitly to control for confounding covariates, allow
for subject-specific performance variation, and capture in-
teractions between covariates. The importance of analysis
at this level is illustrated by the complex four-way interac-
tion presented above. Because the GLMM controls for con-
founding covariates, the four-way interaction effects perfor-
mance regardless of the other covariates. In the case of this
analysis, regardless of gender, race, and wearing of glasses.

Finally, this study has helped identify where some of
the most important short term gains in performance may
be achieved. In particular, it seems that improvements or
compensation for the FRIFM factor should improve perfor-
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Figure 9. Examples of three images with very low and three im-
ages with very high FRIFM scores.

mance. Also, high resolution outdoor query images lead
to much better performance than do low-resolution outdoor
query images and this finding has practical importance be-
cause image resolution is a factor that may be easily in-
creased in many common circumstances. With further anal-
yses of richer datasets that lie ahead, we anticipate iden-
tifying additional strategies for improving algorithm per-
formance on the basis of a growing understanding of the
impact of subject covariates and image quality on perfor-
mance.
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