
 1

On the Performance of High Dimensional Data

Clustering and Classification Algorithms

Kathleen Ericson and Shrideep Pallickara

Computer Science Department

Colorado State University

Fort Collins, CO USA

{ericson,shrideep}@cs.colostate.edu

Abstract

There is often a need to perform machine learning tasks on voluminous amounts

of data. These tasks have application in fields such as pattern recognition, data

mining, bioinformatics, and recommendation systems. Here we evaluate the

performance of 4 clustering algorithms and 2 classification algorithms supported

by Mahout within two different cloud runtimes, Hadoop and Granules. Our

benchmarks use the same Mahout backend code, ensuring a fair comparison.

The differences between these implementations stem from how the Hadoop and

Granules runtimes (1) support and manage the lifecycle of individual

computations, and (2) how they orchestrate exchange of data between different

stages of the computational pipeline during successive iterations of the

clustering algorithm. We include an analysis of our results for each of these

algorithms in a distributed setting, as well as a discussion on measures for

failure recovery.

Keywords- Machine Learning; Distributed Stream Processing; Hadoop; Mahout;

Clustering; Classification; Granules

1 Background and Related Work

As the rate at which we generate data increases, we find a greater and greater

need to handle voluminous amounts of data within traditional machine learning

algorithms. As a general rule of thumb, the more examples you can provide to a

machine learning algorithm, the better it will be able to perform. The ability to

quickly and efficiently process large amounts of data is necessary in order to

effectively scale learning algorithms to match the growth of data available. Here

we explore both clustering and classification algorithms, within the realm of

distributed processing.

To facilitate distributed processing one approach is to use the MapReduce [1]

framework. Here, a large input dataset is sliced into smaller datasets, each of

which is then operated upon by a different computation – these separate

computations are the Mappers. The results of the processing are then fed into a

Reducer (or a set of reducers) which will account for boundary conditions and

combine results for further processing. For example, it is possible that a cluster

center residing in one map may have points within its purview that is part of the

 2

input data to another map function. The outputs from the reducer are then fed

into the appropriate mappers to begin the next round of processing.

Mahout [2] is a library that implements several clustering and classification

algorithms which have been modified to fit the Map-Reduce [1] model. The

Mahout implementations have been deployed within Apache Hadoop [3] – a

MapReduce based cloud runtime. While Mahout has been designed to work

specifically with Hadoop, there is nothing to preclude using the Mahout library

within another processing system which supports the MapReduce paradigm.

 Clustering algorithms are an unsupervised machine learning technique that

facilitates the creation of clusters, which allow us to group similar items (also

called observations) together so that these clusters are similar in some

quantifiable sense. Clustering has broad applications in areas such as data mining

[4], recommendation systems [5], pattern recognition [6], identification of

abnormal cell clusters for cancer detections, and bioinformatics [7] among others.

Clustering algorithms have certain unique characteristics. First, the algorithms

often involve multiple rounds (also called iterations) of execution, where the

output of the previous round is the input to the subsequent round. Second, the

number of iterations of the algorithm is determined by the convergence

characteristics of the algorithm. This convergence is generally based on distance

measures (in n-dimensional space) and also the movement of cluster centers in

successive iterations of the algorithm. To account for cases where convergence

may not occur for a very large number of iterations, it is also possible to specify

an upper bound on the number of iterations. Finally, the algorithm may operate

on n-dimensional data and will cluster along these dimensions. Beyond the first

iteration the progress of the clustering computation depends on (1) the state that it

has built up in previous iteration (2) the initial set of data points that it holds, and

(3) the adjustments to the cluster centers that it receives from the previous

iteration.

As data volumes increase, it quickly becomes untenable to perform this

clustering over a single machine. One challenge in implementing distributed

clustering algorithms is that it is possible that an algorithm will get stuck in local

optima, never finding the optimal solution. Attempting to converge on an

optimal solution can be even more difficult when data is distributed, where no

single node is fully aware of all data points.

Classification algorithms, on the other hand, are a supervised machine

learning technique. Where unsupervised learning techniques are not aware of the

correct labels for data and need to repeatedly iterate through the inputs in order to

 3

refine observations; supervised machine learning algorithms are provided the

correct answer with the training data, and only loop through the inputs once to

create a statistical model. This model is then used to predict, or classify incoming

data by determining the likelihood of the new, unseen data belonging to a class

learned in the training phase. Classifiers can be used in BCI applications [8],

bioinformatics [9], and spam filtering.

The task of training a classifier becomes more monumental as the number of

training sets increases. Each input needs to be read in, processed, and then used

to modify the prediction model. If a single node attempted to perform this task

sequentially, the training time would quickly become unfeasible. Classification

provides a challenge when moving to a distributed processing environment.

Several stages of model creation require all data gathered so far be collected to a

single node for further processing. While this is a natural fit for a reduce stage, it

also means a mandated bottleneck in processing.

We have compared the efficiency of orchestrating the distributed executions

of these machine learning algorithms within our distributed stream processing

system, Granules [10, 11]. Our benchmarks compare the same Mahout code

running inside Granules and Hadoop. We chose Hadoop and Granules for this

comparison as they are representative of file processing and stream processing

systems, respectively. As both support the MapReduce framework, we can use

the Mahout codebase without modifications in either runtime. With the machine

learning algorithms identical and unmodified, the only differences in computation

speed should be a result of the lifecycle support for individual computations and

the underlying communications framework.

We have implemented 4 clustering algorithms within Granules: K-means

[12], Fuzzy k-means [13], Dirichlet [14] and Latent Dirichlet Allocation [15].

These algorithms are representative of two broad classes of clustering algorithms:

(1) discriminative, where we are making decisions if a point belongs in a

predefined set of clusters (k-means, fuzzy k-means) and (2) generative, where a

model is tweaked to fit the data and we can even generate the data the model has

been fit to using the model parameters (Dirichlet and Latent Dirichlet

Allocation). We believe that these algorithms are also a good example of

performance improvements that can be accrued by moving away from execute-

once and stateless semantics in traditional MapReduce implementations such as

Hadoop.

We also implemented 2 classification algorithms: Naïve Bayes and

Complementary Bayes [16]. While Mahout supports other classification

 4

algorithms, such as Stochastic Gradient Descent (SGD) [2, 17], there is only a

sequential implementation in Mahout since it scales linearly as the size of the

training set grows. SGD is not a good choice for extremely large datasets, but it

can be trained incrementally meaning that a very large dataset may be worked

through piece-meal.

Naive Bayes and Complementary Bayes work well with textual classification

tasks, unlike SGD, such as filtering emails or sorting documents. These

approaches create slightly different models, whose performance can vary based

on the dataset. In Mahout, once the data has been preprocessed it can be used in

both Bayes and Complementary Bayes without further modifications. This

means that if a model trained with Naïve Bayes isn’t performing adequately, it is

a simple task to switch to a Complementary Bayes model.

Distributed machine learning has been a big topic for several years, not only

on multicore machines [18], but also GPUs [19]. While many works mention

machine learning applications running in a distributed environment [1], [20] they

do not go into depth about the details of their implementations, and have not

made the libraries available to the public.

Mahout offers access to many varied machine learning algorithms, but it is

geared towards developing enhanced recommenders [21] which can use multiple

different clustering and classification algorithms to help generate

recommendations. The Twister Iterative Map-Reduce runtime [22], on the other

hand, has been developed to help biologists leverage the many parallel algorithms

available for bioinformatics research. It allows biologists to specify a high-level

workflow without needing a strong background in high performance computing.

1.1 Paper Extensions

From the initial publication of On the Performance of Distributed Data

Clustering Algorithms in File and Streaming Processing Systems [23], we have

added several extensions for this special edition issue. We have switched to the

newer Mahout 0.5 and Hadoop 1.0.0 versions, both of which have been released

since the original publication. All of our original benchmarks were redone in

this particular setting. The clustering section has been expanded to cover the

topic of fault-tolerance, which was not previously supported in our Granules

implementation. We have shown that even with a basic fault-tolerance

implementation – with current clusters written to file after every implementation,

our Granules-based implementation can still outperform the original Hadoop

implementation. We have further explored methods of reducing strain placed on

the hard drives of our HDFS cluster by saving state to disk on a staggered

 5

timescale. Additionally, we have extended our evaluation to cover Mahout’s

supported distributed classification algorithms: Naïve Bayes and Complementary

Bayes.

1.2 Paper Organization

The remainder of this paper is ordered as follows: In section Error!

Reference source not found., we provide a quick overview of Granules and

Hadoop, the two cloud runtimes used in this work. In section 3 we explore

clustering in a distributed setting, covering our experimental setup, dataset and

actual experiments with clustering algorithms as well as an overview of fault-

tolerance for clustering. We then move on to discuss classification as supported

in Mahout in section 4, as well as outline our experimental setup and results. We

then report our conclusions and describe future work in section 5.

2 Core Technology

2.1 Hadoop

Hadoop [3] is a Java-based cloud computing runtime which supports the

Map-Reduce [1] paradigm. Hadoop has execute-once semantics, meaning that

with iterative tasks all state information needs to be written to file and then read

back in for every step of the computation.

Hadoop is open-source, and widely used for Map-Reduce computations.

Mahout [2] has been built to run on top of Hadoop and the Hadoop Distributed

File System (HDFS) [24]. HDFS is an implementation of the Google File

System where a large file is broken into fixed size chunks each of which is then

replicated. While processing the data, the runtime pushes computations to the

machines where these blocks are hosted to maximize data locality during

processing for faster executions.

When Hadoop is running with HDFS, Hadoop can take advantage of data

locality and push computations to the data they are supposed to operate on,

cutting down on the networking overhead which may be incurred when reading

from HDFS. This is not supported in Granules, which may give the Hadoop

based implementation an edge in processing overheads.

2.2 Granules

Granules [10, 11] is a lightweight distributed stream processing system

(DSPS) and is designed to orchestrate a large number of computations on a set of

available machines. The runtime is designed specifically to support processing of

data streams. Granules supports two of the most dominant models for cloud

computing: MapReduce and dataflow graphs [25]. In Granules individual

 6

computations have a finite state machine associated with them. Computations

change state depending on the availability of data on any of their input datasets or

as a result of external triggers. When the processing is complete, computations

become dormant awaiting data on any of their input datasets.

In Granules, computations specify a scheduling strategy, which in turn govern

their lifetimes. Computations specify their scheduling strategy along three

dimensions: counts, data driven and periodicity. The counts axis specifies limits

on the number of times a computation task needs to be executed. The data driven

axis specifies that a computation task needs to be scheduled for execution

whenever data is available on any one of its constituent datasets, which could be

streams or files. The periodicity axis specifies that computations be scheduled for

execution at predefined intervals. One can also specify a custom scheduling

strategy that is a combination along these three dimensions; for example, limit a

computation to be executed 500 times either when data is available or at regular

intervals. A computation can change its scheduling strategy during execution, and

Granules enforces the newly established scheduling strategy during the next

round of execution. Computations in Granules can build state over successive

rounds of execution, meaning we can break away from execute-once semantics.

Though the typical CPU burst time for computations during a given execution is

short (seconds to a few minutes), these computations can be long-running with

computations toggling between activations and dormancy. Domains that

Granules has been deployed include handwriting recognition [26], Brain

Computer Interfaces [27], and epidemiological simulations.

3 Clustering in a Distributed Setting

Clustering is a machine learning algorithm in which the program is

responsible for discovering commonalities across voluminous datasets, and

finding appropriate groups to place, or cluster, all incoming data. Clustering is a

very useful tool in unsupervised data mining and can help uncover relationships

between data points which are not otherwise noticed. The classic example of this

is the retailer who noticed that diapers and beer are often bought together. In our

examples, we are not working with retailer information, but instead working to

classify news articles under various topics.

An important aspect of determining clusters is defining how distance will be

measured. The distance measure used may bias results, so it is important to try

clustering with several different distance measures to determine the best approach

for a given dataset. Mahout includes definitions of multiple types of distance

 7

measurements and also allows users to specify custom distance measures. In this

paper we use the Euclidean distance measure to determine distances between

points and cluster centers across all our tests as done in [2].

3.1 Clustering using Hadoop

Hadoop computations have execute-once semantics and are stateless.

Clustering computations expressed in Hadoop need to account for these execute-

once and statelessness constraints. At the end of an iteration, every computation

must store the state such that the subsequent iterations can retrieve this

information as part of its initialization. A new computation must be launched for

each round of execution, and this computation must reconstruct the state saved by

the previous iteration from disk, typically using HDFS. Often, the original data

splits also need to be loaded into the computation. In the case of clustering

algorithms which often have multiple, successive rounds of execution this can

lead to overheads and increased execution times.

3.2 Clustering Using Granules

Depending on their specified scheduling strategy Granules computations stay

dormant when conditions for their execution have not been satisfied.

Computations are activated from dormancy once data is available on one or more

of their input datasets. The activation overhead for computations once data is

available for processing is in the order of 700 microseconds. Computations in

Granules can have multiple rounds of execution and the runtime manages their

lifecycles. Individual computations are able to retain state across these multiple

rounds of execution.

Granules allows computations to enter a dormant state between rounds of

execution. Due to this ability, running an iterative Map-Reduce application –

such as the machine learning algorithms within the Mahout library – within

Granules should be more efficient than in a runtime that requires all data to be

written to and read from disk between rounds of execution.

In our setting involving Granules, each mapper works with a subset of the

original dataset. The mapper is then responsible for clustering these points

throughout the lifetime of the algorithm. For every iteration, the mapper loops

through the points it is responsible for and aggregates all cluster information

before sending this data on to the reducer. The reducer is activated when it

receives outputs from individual mappers. Once the reducer has received inputs

from all mappers, it is able to determine global adjustments to the clusters and

send this information back to the mappers to start the next round of clustering.

Implementing these distributed clustering algorithms as Granules computations

 8

have a few advantages that could translate into faster execution times.

Computations can gain from:

(1) Not having to reinitialize state from the disk

(2) Streaming results between intermediate stages of a computation pipeline

rather than having to perform disk I/O.

(3) Fast activation of dormant computations as data streams become available.

3.3 Code Modifications

To adapt Mahout code to run within the Granules runtime, we needed to

modify the drivers for the clustering algorithm as well as some semantic changes

to the map and reduce code. The actual clustering algorithms were not touched at

all, meaning we will be seeing a fair comparison of execution times given

different communications substrates. It is important to keep in mind that the bulk

of our code modification, in the drivers, would need to be modified for something

as small as a change in the type of data being clustered.

The I/O format of the code is similarly untouched. In our Granules runs, we

kept the HDFS backend for initial loading of points and clusters – while we

cannot take advantage of rack-locality in Granules, this did enable us to ensure

the runtime overheads are comparable. The real changes were made to slightly

tweak the map and reduce code, to fit the different programming paradigm of

Granules. Hadoop demands run-once semantics – the map and reduce code is

called for every line of data that is read by Hadoop. In Granules, computations

can retain state during successive rounds of execution and multiple lines of data

can be processed at a time.

Both Hadoop and Granules use different strategies to move data between

different stages of a computation pipeline. In the case of Hadoop this involves

disk I/O and polling to determine if the data is available within HDFS. In the case

of Granules, data is streamed between the different stages and computations are

activated from their dormancy when such data is available.

3.4 Experimental Setup for Clustering

Both the Hadoop and Granules-based implementations initially read data

from an HDFS cluster. For our tests, we are using Hadoop version 1.0.0 and

Mahout version 0.5. All tests are run on 2.4 GHz quad-core machines running

Fedora 14 with 12GB RAM and a gigabit network connection. Each distributed

run contains 25 mappers and a reducer (Mahout clustering algorithms are set to

run with a single reducer, eliminating boundary conflicts). To properly compare

Mahout performance across runtimes, when testing with Granules, the Granules

resources are running on the HDFS worker machines.

 9

Among the 25 machines, one was also responsible for acting as a NameNode,

and TaskTracker, while five were acting as Brokers (for the Granules runs). For

both approaches, the Mahout operation was submitted from a machine outside the

cluster.

3.4.1 Clustering Setup

For each clustering method we analyze: k-means, fuzzy k-means, dirichlet,

and latent dirichlet allocation, we first use Mahout to generate a random set of

starting clusters. We use the same set of starting clusters when contrasting the

performance of Hadoop and Granules. Canopy clustering [28] is a technique used

to jumpstart clustering algorithms, and usually only runs for a limited number of

iterations. Due to the limited iterations of computations involved in canopy

clustering, we will not be analyzing canopy clustering in this work.

3.5 Dataset

For the clustering example, we used the Reuters-21578 text categorization

collection data set [29]. This data set contains 21,578 documents which appeared

on the Reuters newswire in 1987. This dataset was generated following the ACM

SIGIR ’96 conference when it was decided the Reuters-22173 dataset should be

cleaned and standardized in order to achieve more comparable results across text

categorization studies. We processed the dataset to convert it to a format that

Mahout can handle, based on the guidelines in [2]. This produced vectors of

normalized bigrams from the input data with term frequency – inverse document

frequency (TF-IDF) weighting. The TF-IDF weighting helps to lower the

importance of words which occur often across all documents, such as “the,” “he,”

“she,” or “a.”

We are clustering across all news documents in the dataset, so we have

21,578 points to cluster. There are 95,000+ dimensions of bigrams, or unique

pairs of words. Since no single document contains all possible bigrams, these are

stored internally using Mahout’s SparseVector format.

3.6 K-Means Clustering

Mahout supports several different clustering algorithms. We initially start

with k-means clustering, a clustering algorithm where the user estimates how

many clusters are required (k) to adequately group all data. The algorithm then

runs with this number kept constant – no clusters are added or removed during

the computation. This algorithm was first introduced as a technique for pulse-

code modulation [12].

K-means is the most basic clustering algorithm supported by Mahout, and

operates on the principle that all data can be separated into distinct clusters. K-

 10

means requires the user to specify a k value, and the output can vary drastically

based on not only the number of clusters chosen, but the initial starting points of

all clusters. With respect to our dataset, when looking for very broad topic

categories, a small value of k would be chosen (10-20). When looking for very

small and finely honed categories, we would need to drastically increase k

(1,000).

K-means clustering is a good choice when it is believed that all points belong

to distinct groups. It can also a good choice when initially approaching a new

dataset. K-means runs quickly, and can find large distinctions within data.

In the Hadoop implementation, the input data is separated into a number of

files. This data consists of the points which will be clustered. Each map process

is responsible for looping through its assigned input file(s), and assigning the

points to the nearest cluster. The mappers output a file which contains a cluster

ID connected to the point which is assigned to it. The reducer will read in each

file generated by the mappers, and move through the list of clusters assigning

each point to it. Once this is complete, the reducer then computes new cluster

centers, and generates a file containing the new clusters. The entire process then

repeats: the mappers read in the new cluster data, as well as the points and begin

processing again.

Our implementation in Granules follows the original Hadoop implementation.

Each mapper node is responsible for loading a set of points into memory, and is

responsible for clustering those points. In each iteration, a set of current clusters

is made available to all mappers. Once each mapper has finished clustering their

points, a set of ClusterObversations for each cluster is sent to the reducer.

The reducer combines ClusterObservations from each mapper, and uses

this information to update the cluster centers. This modified set of clusters is

then sent to each mapper for the next iteration.

One major difference between the Hadoop and Granules versions is where the

completion point is computed. The Hadoop version will calculate the maximum

number of iterations in the mappers as well as in the reducer, while in Granules

the mappers are unaware of the overall point in execution and the reducer is

responsible for keeping track of rounds of execution.

3.6.1 K-Means Runtime Analysis

K-means is the simplest clustering algorithm we have benchmarked. In the

Hadoop implementation, a mapper is responsible for loading the current set of

clusters from disk each iteration. Once the clusters are in memory, the mapper

then reads through the list of points assigned to it one at a time, and identifies

which cluster the point belongs to. Once a point has been assigned to a cluster, it

 11

is written out to file. The overall cost of the Hadoop map operation is CRD +

NCRDWD where C is the number of clusters, N is the number of points a given

mapper is responsible for clustering and RD and WD are read and write times to

disk. It is important to note that these values include seek time as well as the time

to actually read and write the data.

The Hadoop reducer will first read in the current set of clusters from file then

read in the outputs from all the mappers. As the reducer reads in data, it modifies

the clusters in constant time and writes out a modified cluster once it has finished

processing all points assigned to the cluster. The overall runtime of the reducer is

CRD + MNRDWD, where M is the number of mappers in the system.

In the Granules mapper, we can take advantage of state retention by keeping

the points to be clustered in memory, so we only need to read in the new states

for every round of execution. We can also use state to make sure we send less

data to the Reducer, helping cut down on the amount of work the reducer needs

to perform. The Granules mapper runtime is: CRS + NC + CWS where RS refers

to the cost of reading streaming data over a socket while WS refers to writing data

to a socket. It is important to note that this includes the cost of the streaming

substrate overhead.

The Granules reducer needs to read in the input from all the mappers, and

send out the newly computed clusters for the next round of computations. The

running time of this operation is MCRS + CWS.

Comparing the mapper runtimes for the Granules and Hadoop

implementations, it is clear that both can be boiled down to an O(NC) operation,

and the major difference between them is simply the constants around that

function. The reducers have a different overhead by an order of N, yet we’re not

seeing a commensurate speedup in our benchmarks. This is because the majority

of the computation is spent in the mappers, while the role of the reducers is

relatively small in the overall computation.

3.6.2 K-means Clustering Results

In both Hadoop and Granules, we ran 20 rounds of k-means on 88 clusters for

100 iterations. Both implementations used the same initial set of starting clusters.

The results of these tests are displayed in Figure 1. and summarized in TABLE I.

Another observation is the difference in standard deviation of the running

times, where Granules deviates by about 8 minutes, Hadoop varies by only a bit

over 2 minutes. We are obviously seeing some networking congestion when

relying on the Granules approach.

TABLE I. K-MEANS CLUSTERING IN SECONDS

 12

 Mean Min Max SD

Granules 1214.895 559.24 1938.766 484.175

Hadoop 5122.81 5002.732 5683.786 137.581

From these results, we can clearly see that the Granules implementation can

outperform the Hadoop implementation by decreasing the amount of disk

accesses necessary to complete the operation. Granules can even outperform the

Hadoop version when both are running on top of HDFS, where the Hadoop

workers can take advantage of data locality to speed up access times.

Figure 1. K-means Average runtime in Seconds

3.7 Fuzzy K-Means

Fuzzy K-Means [13] operates on a similar principle as k-means: The user

chooses an initial set of k clusters, and allows the algorithm to run and adjust their

centers as points are assigned to them. Fuzzy k-means allows an extra degree of

freedom by allowing a point to belong to more than one cluster.

Using our dataset as an example, k-means is able to find the broad and

overarching topics and group the articles accordingly; however, k-means cannot

handle data points that span multiple topics. For example, a news article may

discuss oil prices in the Middle East. With k-means, this article can either be

clustered with articles about the Middle East, or articles discussing the prices of

raw materials, but not both. Fuzzy k-means would allow the article to be

associated with both topics, thus revealing a link between data that k-means could

not show. Not only will fuzzy k-means show this overlapping of topics, it will

also describe the degree to which the article is related to each topic.

Fuzzy k-means operates in roughly the same manner as k-means, with the

modification that instead of each point belonging to a single cluster, each point is

assigned a probability of belonging to every cluster. After this step, the reducer

then goes through each probability, and adjusts cluster centers with respect to

those points with the highest probability of belonging to the cluster.

 13

3.7.1 Fuzzy K-Means Runtime Analysis

Fuzzy k-means is a slightly more complex clustering algorithm than k-means,

and requires much more data to be sent between the Map and Reduce phases. As

fuzzy k-means computes the probability that each point belongs to every node,

the mapper now will pass NC information to the reducer instead of just N. The

overall running time of the Hadoop mapper is RDC + RDNCWD. Again, RD and

WD refer to reading from and writing to disk – including seek time, N is the

number of points a mapper is responsible for clustering, and C is the number of

clusters.

The runtime for the fuzzy k-means Hadoop reducer is very similar to the k-

means version – it simply has to handle more data. The runtime is: MNCRD +

CWD, where M is the number of mappers in the system.

The Granules fuzzy k-means mapper has an overhead of RSC + NC + CWS,

where RS and WS are the times to read stream data from and write it to sockets –

including the streaming overheads. A major difference between this and the

Hadoop mapper is that Granules can retain state information and can aggregate

outputs, so it only needs to send C to the reducer, instead of NC.

The Granules reducer takes advantage of the partial aggregation done by the

mappers, and needs to read in far less data than its Hadoop counterpart (by a

factor of N). The runtime of the Granules reducer is: MCRS + CWS, again with M

being the total number of reducers.

Both the Granules and Hadoop approaches are bounded by the NC

computation to compute the probability of each point belonging to every cluster,

essentially bounding the runtime at O(N). While we do see a big difference in the

reducer behavior, it is another computation where the work done by the reducers

is insignificant when compared to the work performed by the mappers. Despite

the Granules implementation having a quicker reducer runtime by a factor of N,

the overall runtimes are still very similar.

3.7.2 Fuzzy K-Means Results

Since the fuzzy k-means algorithm allows points to span multiple clusters it is

very long running. We ran 20 rounds of fuzzy k-means for 25 iterations before

halting the computations. We set the number of clusters to 44 and used the same

set of initial clusters was used for both Hadoop and Granules versions. In 0the

mean execution times for Granules and Hadoop can be seen. Hadoop is taking

just a bit more time than Granules to finish processing the data. More detailed

results are shown below in TABLE II. We can see that on average, the Granules

implementation is finishing over 700 seconds (almost 12 minutes) sooner than the

Hadoop implementation.

 14

Figure 2. Fuzzy k-means Average Runtime in Seconds

While we do not see the same increase in speed we get with k-means, the

Granules implementation still manages to outperform Hadoop implementation by

a small margin simply by cutting out the need for repeated reads/writes from

disk. From analyzing the source code, it appears that fuzzy k-means has a far

higher ratio of CPU-to-I/O bound processing than the other clustering algorithms

we discuss here, accounting for the difference in speedup. In order to isolate the

bottleneck in the Granules implementation, we timed each step of the algorithm.

Through this method, we found that the biggest bottleneck in our system was in

the reducer. Each round of execution, several seconds were lost with output

from mappers waiting in the reducer’s queue while it was processing previous

inputs. These slight delays add up over each iteration of processing, leading to a

smaller increase in speed than we hoped for.

TABLE II. FUZZY K-MEANS CLUSTERING IN SECONDS

 Mean Min Max SD

Granules 7685.74 7676.47 7695.79 5.567

Hadoop 8423.78 8414.22 8431.15 5.812

3.8 Dirichlet Clustering

Dirichlet clustering [14] differs drastically from k-means. Most notably, there

is no k. Dirichlet clustering may add and remove clusters as it deems necessary,

and additionally can support different shapes of models. K-means and fuzzy k-

means both assume that all clusters have normal distributions around a central

point (in the case of 2-dimensional data it is circular). They cannot handle a

distribution where clusters match a different model. Mahout currently supports

models such as GaussianCluster, NormalModel, and

SampledNormalDistribution; also allowing the user to define more

models as needed.

 15

Because of its complexity, Dirichlet clustering can take far longer to run than

k-means or fuzzy k-means. Due to the many iterations it may go through,

Mahout allows the user to specify the number of iterations to move through

before writing cluster information to file – though this is only available for local

in-memory runs.

Dirichlet clustering is a good initial clustering algorithm as it can help to

determine an appropriate k to give the faster running k-means algorithms, or even

help show why k-means may be having problems e.g.: if the data does not fit the

normal distribution model that k-means expects, Dirichlet should be able to

cluster data where either k-means or fuzzy k-means fails.

3.8.1 Dirichlet Clustering Runtime Analysis

As mentioned above, Dirichlet clustering follows a different paradigm than k-

means or fuzzy k-means. For Dirichlet, the number of models D is a parameter.

This algorithm also requires state to be passed between each iteration. In the

Hadoop Mapper the state is first read in, then the algorithm is run as the points to

cluster, N, are read in. This leaves the overall mapper runtime at DRD +

RDNDWD, where RD and WD are read and write to disk respectively, and N is the

number of points to cluster.

Each mapper writes data for every point, for every model, meaning that the

Hadoop reducer then has to read in all this information from every mapper, as

well as load state. Once the reducer has finished processing all data for a model,

it then writes the model information to disk to be read in as state information for

the next round of computation. The overall runtime of the reducer is RDD +

RDMND + WDD, where M is the number of mappers in the setup.

The Granules mapper follows the same approach as the Hadoop mapper, but

manages to cut down on the overheads slightly by aggregating data, and sending

a smaller amount of data to the Reducer. This also helps to cut down on the

reducers’ runtime. For the Granules mapper we see an overhead of RSD + ND +

DWS, where RS and WS are read and write overheads for sending data to sockets,

including the streaming overhead. Because of the partial aggregation of data at

the mappers, the value associated with the write is only D instead of ND.

Additionally, the Granules mapper does not need to read in the points, completely

removing a read operation.

The Granules reducer takes advantage of the partial aggregation by having a

much reduced read-in time: RSMD + DWS. Additionally, the Granules reducer

has no need to read in the current state, since it saves the state generated in the

previous iteration. This significantly cuts down the I/O time that Granules needs

for this algorithm.

 16

Both the map and reduce in the Hadoop implementation are bounded by

O(ND). In Granules, the Map has O(ND), but the reducer only has O(MD), and

M is usually several orders of magnitude smaller than N. As we see in the next

section, however, we are not seeing a speedup in Granules of several orders of

magnitude. This is because the work done in the map and reduce portions of the

algorithm are not balanced – the mapper does far more work than the reducer, so

lowering the runtime of the reducer drastically does not have a great effect on

overall runtime.

3.8.2 Dirichlet Clustering Results

We ran 20 iterations of Dirichlet clustering which ran for 40 iterations each.

The results of these tests in both Granules and Hadoop are displayed below in

TABLE III. Granules runs Dirichlet clustering to completion about five times

faster than Hadoop, which is also visualized in Figure 3.

Dirichlet clustering relies heavily on state, and does not require as much

processing of data points as fuzzy k-means. From these results, it seems clear

that the majority of the processing time Hadoop spends is loading the state from

file every step.

Figure 3. Dirichlet Average Runtime in Seconds

TABLE III. DIRICHLET CLUSTERING IN SECONDS

 Mean Min Max SD

Granules 456.78 437.61 481.64 10.474

Hadoop 31933.61 31826.97 32332.79 131.5412

3.9 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [15] is a clustering method similar to

Dirichlet clustering. It is a generative model, so it starts off with a known model,

and tweaks parameters to fit the model to the data. LDA can cluster words into

“topics” by defining all documents as a mixture of all topics with a given

probability. Much like k-means, LDA needs to be given a k, which identifies the

number of topics in the dataset. The LDA classifier then attempts to discern the

separate topics, and cluster each document into the appropriate topic. The

 17

algorithm reads through every word in every document, and calculates the

probability that each word belongs to a topic. Based on the number of words in

the document belonging to each topic, the overall topic of the document can be

determined. LDA runs until the maximum number of iterations have been

reached, or once the model has stabilized i.e. the amount of change between

iterations has fallen below a given threshold.

Where algorithms such as k-means are very adept at grouping data with

patterns not always apparent to humans, LDA can achieve results very similar to

what would happen if we asked a human to cluster documents by topic [2]. The

cost of this is that the algorithm takes many iterations to reach that level. LDA

allows the process to be sped up by modifying a number of parameters which

should help to cut down on the number of necessary iterations, such as

automatically detecting stopwords and removing them from future calculations.

LDA is a good clustering algorithm when one is looking for clustering that is

human-understandable.

3.9.1 Latent Dirichlet Allocation Runtime Analysis

LDA runtimes depend on the number of topics to be clustered by (T), as well

as the dimensionality of the data (|P|). LDA analyzes the number of times given

bigrams appear in a document to determine the probability that the document

belongs to a given group. This matrix of probabilities defining the relationship

between all bigrams and each topic is passed between rounds of execution as part

of the state information. This means that the mappers need to load a T|P| size

array into memory before every run. This array is changed by the reducer

between every round of execution, so even the Granules approach incurs this

cost.

After loading the state, the mapper then creates an inference for every point to

be clustered – this involves looping through the dimensions of the point to be

clustered, and assigning weights based off of the state information gathered in the

first step. The Hadoop Mapper performs this step as it reads in points, and writes

out information as soon as it has calculated adjusted probabilities for every topic.

This results in a runtime of RDT|P| + RDN|P|TWD, where RD and WD are read and

write to disk (including seek time), T is the number of topics, N the nodes to be

clustered, and |P| the dimensionality of every point in N.

The Hadoop reducer has a far simpler task than the mappers, it simply needs

to read in data output by the mappers and aggregate probabilities. The

aggregated probabilities are then read in as the state table by the mappers in the

next iteration. The Hadoop reduce runtime is NMT|P|RD + T|P|WD, with M

being the number of mappers.

 18

As mentioned above, the Granules mappers also need to load in state at the

beginning, so it does not gain much improvement over the Hadoop

implementation there. Granules can improve on the Hadoop implementation

slightly, however, by again performing partial aggregation at the mapper. Instead

of pushing out output immediately, the Granules mapper can hold the information

in memory until the algorithm has completed and only needs to write T|P| data to

the reducer instead of NT|P| data. The overall runtime of the Granules mapper is

T|P|RS + N|P|T + T|P|WS, with RS and WS being overheads for reading and

writing data to sockets, including the streaming overhead.

The Granules reducer can again take advantage of the decreased size of input

and has a runtime of MT|P|RS + T|P|WS. While this is not as great of an increase

as we saw with Dirichlet clustering, it still allows the Granules implementation to

gain an edge over the original Hadoop runtimes.

The Hadoop mapper and reducer are both essentially bound by O(NT|P|).

The Granules mapper has almost the exact same runtime, but the Granules

reducer is only bound by O(T|P|). Again, this looks like it should lead to a much

larger margin in performance between the Hadoop and Granules

implementations, but the disparity between workloads holds true for LDA as

well: even if we speed up the reducer, the mapper is still slowing us down too

much for it to be noticeable.

3.9.2 Latent Dirichlet Allocation Results

In our tests, we ran LDA for 40 iterations clustering into 10 topics. While this

was not enough iterations to allow the model to converge, this is enough

iterations to give us a good idea of how the algorithm runs. We ran the full 40

iterations with both Granules and Hadoop versions, and compared the running

time of each below in TABLE IV.

TABLE IV. LDA CLUSTERING IN SECONDS

 Mean Min Max SD

Granules 1438.656 1402.428 1445.735 6.956

Hadoop 2266.084 2212.842 2294.902 25.081

 19

Figure 4. LDA Average Runtime in Seconds

Figure 4. shows a direct comparison of mean execution times of LDA for

Granules and Hadoop. On average, Granules finished about 4 minutes earlier

than the Hadoop implementation. Again, this seems to be a direct result of

Granules’ ability to stream data between stages, instead of needing to write to

disk between every step.

Interestingly, the difference between standard deviations is again very high in

our experiments with LDA. LDA requires a mixture of overhead to read in state,

as well as significant processing time needed to build probability tables once the

state has been read in. It is interesting to see that it has a very similar profile to

fuzzy k-means, the other algorithm we examine with a heavy CPU processing

load. Additionally, both feature relatively close execution times with a large

difference in standard deviation.

3.10 Fault Tolerant Clustering

With the Hadoop based implementation of Mahout, fault-tolerance is obtained

automatically with HDFS. After every iteration of clustering, the current clusters

are written out to HDFS making it possible to recover from failure by simply

starting from the last completed iteration.

In the previous sections, we showed how switching Mahout from Hadoop

which has a run-once paradigm to Granules which allows state to be built up

across iterations can lead to a processing speedup. While this speedup was less

drastic in CPU bound computations, such as fuzzy k-means clustering, even a

small speedup can become drastic as the number of iterations increases.

 In the previous sections, we have shown that we can complete clustering

more quickly, but this speedup was gained at the cost of fault-tolerance. Instead

of performing a write and then read from disk after every iteration, we are

passing this information across the network, and keeping needed information in

 20

memory. In the event of a failure, this approach loses all information, requiring

the computation to be restarted from the beginning.

In this section we look at methods of reintroducing fault tolerance to our

solution. While Granules does not yet support a method for automatically

detecting and recovering from failures, we are able to take an approach similar to

the original implementation and make use of HDFS as a fault-tolerant storage

resource.

3.10.1 Adding Fault Tolerance to Granules Clustering

As an initial test of fault tolerance in Granules, we first worked with a naive

checkpointing scheme. In this scheme, the set of current clusters is written to

HDFS after every iteration. Essentially, we are ensuring fault tolerance levels

equivalent to what is found in the original implementation, where we can recover

from total failure by simply picking up from the last completed iteration of

processing.

At first glance it appears we will be losing the processing speedups gained by

switching from a Hadoop backend to Granules, but with Granules we can

interleave writes with processing. For example, after the reducer finishes

calculating a new set of clusters, it can immediately send on these new clusters

to the mappers for the next phase of computations, and then orchestrate the write

to HDFS – performing that operation when the reducer would otherwise be in a

dormant state, waiting for the mappers to complete processing.

We reran all our base clustering algorithms with this naïve checkpointing

scheme, and saw no difference in clustering overheads. This means we can

recover from any failure to continue processing from the last iteration of

clustering. The one additional overhead we incur is that of human intervention.

Unlike Hadoop, Granules does not currently support automatic detection and

recovery of failures. A user would be required to manually restart the cluster

after a failure occurred. One upside of this approach, however, is that we can use

this restart capability to pick up a completed clustering result and run the

algorithm for more iterations to see if we can achieve better results.

3.10.2 Optimizing Checkpointing in Granules Clustering

From our previous tests, there is no loss of performance from even a naïve

implementation of fault-tolerance. One disadvantage of this approach, however,

is the stress placed on the hard drives in our HDFS cluster. While this is no

greater stress than we see when using the original Mahout code, we should be

able to do better.

In order to reduce stress on the cluster, we can introduce a new checkpointing

scheme which balances the amount of writes we enforce with recovery time. We

 21

can balance the time to load an algorithm with the time it takes to complete a

single iteration of clustering. From our previous benchmarks, we are able to

calculate the average time it takes to run a single iteration of each algorithm. The

optimal checkpointing scheme is one where we only checkpoint when the cost to

recover from the last checkpoint outweighs the cost of loading a checkpoint.

4 Classification in a Distributed Setting

Unlike clustering techniques, classification is a supervised machine learning

algorithm. This means there is a known, correct output which is provided to the

cluster with the training data. Through the training process the algorithm builds a

statistical model to predict which class a sample belongs to.

Since classification models are built as the training data is processed, it does

not make sense to use an iterative approach such as we saw in the clustering

algorithms. If we attempt to rerun training sets, we increase the chances of

overtraining, where the classifier becomes unable to handle new inputs.

Classification algorithms generally require a large number of training inputs

to accurately classify data, leading to a bottleneck in processing. Using the

MapReduce framework, we can overcome this bottleneck by processing inputs in

parallel.

4.1 Classification in Mahout

Since training is performed after reading in the datasets once, we do not

expect to see a drastic difference in runtimes as we move from Hadoop’s run-

once paradigm to a Granules implementation which can build state. The only

space for improvement is the ability to build state between inputs – Hadoop only

maintains information about the current line of input, not any previously seen

inputs. In order to gather statistical information, such as how often the word

“apple” has been seen across all inputs, a Hadoop mapper would need to output

“apple 1” every time it sees the word and then rely on a reducer to add together

all the ones. This approach creates extra files in HDFS, leading to a potential

strain on hard drives in the cluster.

4.2 Classification with Granules

In the Granules implementation, we followed the same outline as the Hadoop-

based implementation, in order to keep the comparison as fair as possible. By

streaming outputs between the classification steps, we are taking some load off of

the HDFS cluster. Due to the speed with which we can train a Bayesian

classifier, fault-tolerance in the middle of the training process is less of a priority

then we saw in clustering.

 22

4.3 Code Changes

In the Hadoop based implementation, there are 4 full map and reduce jobs

needed to build a statistical model of the input data. This is due to Hadoop’s

inability to maintain state – it is difficult to perform a task such as summing up

the number of times a word is seen across all test cases, requiring a chain of map

and reduce tasks. Such a task is much simpler in the Granules framework, where

each mapper maintains memory across more than one line of input at a time.

Because of this, our processing pipeline is slightly shorter than the original

Hadoop-based pipeline. Instead of 4 map-reduce tasks, we have two map-reduce

pairs, and two combiner stages. These shortcuts were gained simply by being

able to aggregate data in a single stage.

4.4 Experimental Setup for Classification

For our classification tests, we are using the same setup as the clustering tests.

The only difference is the number of nodes we are using. Where the clustering

dataset was simple to divide into 25 files for training, the classification dataset is

more naturally divided into 20 input files – there are 20 classes we are training to

predict. Because of this, we are starting with 20 mappers and a single reducer for

the first stage of classification.

To properly compare Mahout performance across runtimes, when testing with

Granules we again ensure that the Granules resources are running on the HDFS

worker machines. Among these 20 machines, one is also responsible for acting

as a NameNode, and TaskTracker, while five act as Brokers (for the Granules

runs). For both approaches, the Mahout operation was submitted from a machine

outside the cluster. For both the Hadoop and Granules based approaches we used

the same pre-processed inputs. These inputs are hosted in HDFS, and each

approach starts by reading these inputs from file.

4.5 Classification Dataset

For our clustering experiments, we used the 20 News Groups [30] dataset.

This is a standardized dataset available from the UCI Machine Learning Library

(http://archive.ics.uci.edu/ml/index.html), and is used as the sample dataset in

Mahout In Action [2]. This dataset consists of emails sent to various interest

groups, and has already been separated into training and test sets. The goal is to

train a model to sort unlabeled emails based on the sender, content, and title of

the email. It is important to remember that this is a valid real-world example.

Classifiers are often used to filter emails, with the typical example being a spam

filter – particular senders, subjects, and content can flag an incoming email as

potential spam.

 23

The training dataset consists of 11,314 individual emails, each of which

becomes an input to our classification models. The training set splits the emails

by mailing list, so each mapper in the first phase is responsible for reading all

emails addressed to a given class. This means about 566 mails processed per

mapper on average. With a larger dataset, we would want to split the inputs

further, to help speed up this initial processing step.

4.6 Classification Algorithms Supported in Mahout

Mahout supports several classification algorithms including Stochastic

Gradient Descent (SGD) [17], as well as Naïve and Complementary Bayes

implementations. While support is planned for other classification approaches

such as Artificial Neural Networks (ANN) [31] and Hidden Markov Models

(HMM) [32], these algorithms are not yet fully supported.

Mahout’s classification algorithms create logistic regression models, so

instead of predicting a single value for a sample input, these algorithms will

return a list of probabilities. Each probability corresponds to the likelihood that

the input belonged to a class the model was trained to recognize. Logistic

regression is often very useful since it is possible to see how close the model was

to providing an alternate classification.

Stochastic gradient descent is a method of function optimization which may

be used to support other machine learning algorithms such as neural networks.

SGD determines a gradient between sample points, and can then adjust weights

in the objective function in order to move along this gradient. Where many

functions will simply determine which direction to move a weight in (adding or

subtracting from the current weights) then modify the weights by a fixed value,

SGD will actually determine the gradient between two sample points and can

then also know by what magnitude weights should be modified. In Mahout, SGD

is implemented as a stand-alone logistic regression technique. The model is

modified after each input is processed, and never needs to maintain any

information about previous inputs. This means that SGD scales linearly as the

number of inputs grows – you still need to read in and process every input, but

the computing overhead is negligible. Because of this, SGD only has a sequential

implementation – there is no reason to distribute it. While SGD is beyond the

scope of this paper, it is important to understand which situations SGD is the

preferred choice of classification algorithm.

SGD works best when operating on samples with continuous fields – where

valid values exist along a range of possible inputs. Categorical fields – ones

 24

where there are a finite set of options – can also be massaged to work with SGD.

An example of how these differ would be to consider a classification problem

involving people. Age can be considered a continuous field, while the test group

number would be considered a categorical field. SGD does not perform well

when the sample data contains fields of open-ended text – essentially anything

which is not a number and does not have a finite number of possibilities (cannot

be considered categorical). An example of data which does not work well with

SGD is a problem involving email filtering – SGD cannot make use of the body

of the email directly, only statistics built around the text.

Naïve Bayes and Complementary Bayes [16], on the other hand, work best

when operating on purely textual data. These approaches can also make use of

categorical fields, but cannot use continuous fields unless they can somehow be

massaged to look like textual data. Along with the ability to easily handle textual

data, these approaches are designed to be run in a distributed manner, so they can

handle larger data sets more easily than SGD can. The Bayesian approaches use

these text inputs to determine how likely it is that any word seen belongs to a

specific class. For example, emails which reference Pentium processors are more

likely to belong to a computer-themed mailing list than a gardening mailing list.

In order to determine which words or phrases are most useful, these

implementations make use of TF-IDF (as discussed above in section 3.5) to

reduce the importance of words which occur across all inputs.

Naïve Bayes and Complementary Bayes classification are well-suited for

distributed execution, as much of the training process may be performed on

portions of the dataset, only synchronizing after a large amount of processing has

already occurred. In the original Hadoop based implementation, there are 4 tasks

which go into building these classifiers: First, every training sample must be read

and processed, building a table of probabilities for each class. In the second step,

all probabilities are normalized across the classes. Once that is done, another

pass is made to build overall probabilities with respect to each class, and then in

the last step these probabilities are normalized and prepared to be used for

classification. It is only in this last stage where Naïve Bayes and Complementary

Bayes differ – they each generate weights slightly differently, which may result

in slightly different classifications. Complementary Bayes is a slightly more

expensive operation, but it uses the same format for samples as Naïve Bayes –

this means no extra preprocessing steps, so it is simple to train both and compare

results to determine which should be used in a production environment.

4.6.1 Naïve and Complementary Bayes Experiments

 25

Both the Naïve and Complementary Bayes classification approaches use the

same inputs. For our experiments we used an n-gram size of one, meaning we

are analyzing individual words and the probability of these words occurring in

any given class. Additionally, we are using a smoothing parameter of one for

both Naïve Bayes and Complementary Bayes.

In both the Naïve and Complementary Bayes algorithms, there are four stages

to the computation. First, the inputs are processed and separated into n-grams

associated with the correct label. Once this has been done, the TF-IDF is

calculated for each term in each label. After this step, there is a final processing

function where all the weights computed so far are summed together in order to

normalize all the results across all labels.

Once these processing steps have been completed, the classifier finally enters

specific code for Naïve and Complementary Bayes. In this step, the weights

calculated previously are used to build the classification model. While we are not

expecting to see a dramatic speedup due to the non-iterative behavior of

classification algorithms, we may be able to see some by leveraging Granules’

ability to aggregate data.

4.6.2 Classification Results

For both Naïve Bayes and Complementary Bayes, we trained the classifier 20

separate times and averaged the results here. TABLE V. and TABLE VI. below

show these results for Naïve and Complementary Bayes respectively. The

average runtimes were essentially the same across both the Granules and Hadoop

implementations, following our initial belief that we would not see significant

processing gains moving from a file to stream based implementation. One

interesting trend we see is the increased standard deviation when we moved to the

Granules implementation. With both Naïve Bayes and Complementary Bayes,

we saw 5 times as much variation, though slightly more with Complementary

Bayes. This variation is most likely a result of our approach of aggregating data

and then pushing a larger object across the network to the next phase of

execution. One avenue to help cut down on this variation may be to look into

sending results on in a piecemeal fashion, reducing the sudden load on the

network.

TABLE V. NAÏVE BAYES RUNTIMES IN SECONDS FOR GRANULES AND HADOOP

IMPLEMENTATIONS

 Mean Min Max SD

Granules 172.51 158.44 203.60 10.232

Hadoop 172.86 170.32 180.24 2.290

 26

TABLE VI. COMPLEMENTARY BAYES RUNTIMES IN SECONDS FOR GRANULES AND HADOOP

IMPLEMENTATIONS

 Mean Min Max SD

Granules 184.09 163.07 203.89 11.932

Hadoop 190.37 188.24 196.17 2.308

4.7 Fault-tolerant Classification

Classification in Mahout is a very quick task – generally less than 3 minutes.

Because of this, we have not worked to implement fault-tolerance in the Granules

implementation. While this does place the Granules approach at a slight

disadvantage, it is not clear that restarting the process mid-training would grant a

noticeable improvement in overall training speed.

5 Conclusions and Future Work

Our results demonstrate the feasibility of using Granules to manage the

orchestration of large clustering and classification operations. Since Granules

supports computations that can execute multiple, successive rounds of execution

while retaining state it is particularly well suited for clustering algorithms that are

inherently iterative. The ability to stream results between stages of an execution

pipeline and activating computations when such (intermediate result) streams are

available allows us to support distributed implementations of the clustering

algorithms in an efficient fashion. Our benchmarks show that switching to a

stream-based approach can greatly improve the runtimes of iterative tasks. This

streaming feature allows us to incorporate support for fault tolerance without

incurring performance overhead by interleaving the processing and I/O

operations concurrently.

In Mahout only Naïve and Complementary Bayes are currently the only fully

implemented classification algorithms with distributed implementations. As

more algorithms are added to Mahout, we plan to continue this analysis to

determine the effects of moving from a file to streaming based framework.

We also plan to explore the suite of recommendation algorithms in Mahout.

Granules’ ability to enter a dormant state between rounds of execution should

mean a drastic increase in performance for a recommender system.

Recommender systems work by finding similar items a customer may be

interested in. Examples include Netflix [33] and Amazon [34], where users get

personalized recommendations on items to view/purchase based on their previous

patterns of viewing/shopping. These algorithms need to operate quickly and

efficiently in order to provide accurate recommendations in a timely matter – if

processing takes too long, you may miss a customer. Recommendation systems

 27

are a natural extension of clustering and classification algorithms, building on the

idea of finding similar items to present to customers.

REFERENCES

[1] J. Dean and S. Ghemawat, "Mapreduce: Simplified data processing on large clusters,"
ACM Commun., vol. 51, pp. 107-113, Jan. 2008 2008.

[2] S. Owen, et al., Mahout in Action: Manning Publications, 2011 (est.).

[3] T. White, Hadoop: The Definitive Guide, 1 ed.: O'Reilly Media, 2009.

[4] P. Berkhin, "A Survey of Clustering Data Mining Techniques," in Grouping
Multidimensional Data: Recent Advances in Clustering, J. Kogan and C. K. Nicholas, Eds., ed:
Springer, 2006, pp. 25-83.

[5] L. Qing and K. Byeong Man, "Clustering approach for hybrid recommender system," in
Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on, 2003,
pp. 33-38.

[6] C. W. Anderson and J. A. Bratman, "Translating Thoughts into Actions by Finding
Patterns in Brainwaves," in Fourteenth Yale Workshop on Adaptive and Learning Systems,
New Haven, CT, 2008, pp. 1-6.

[7] K. Y. Yeung, et al., "Validating clustering for gene expression data," Bioinformatics, vol.
17, pp. 309-318, April 1, 2001 2001.

[8] E. M. Forney and C. W. Anderson, "Classification of EEG during imagined mental tasks
by forecasting with Elman Recurrent Neural Networks," in Neural Networks (IJCNN), The
2011 International Joint Conference on, 2011, pp. 2749-2755.

[9] A. C. Tan and D. Gilbert, "An empirical comparison of supervised machine learning
techniques in bioinformatics," presented at the Proceedings of the First Asia-Pacific
bioinformatics conference on Bioinformatics 2003 - Volume 19, Adelaide, Australia, 2003.

[10] S. Pallickara, et al., "Granules: A Lightweight, Streaming Runtime for Cloud Computing
With Support for Map-Reduce," in IEEE International Conference on Cluster Computing, New
Orleans, LA., 2009.

[11] S. Pallickara, et al., "An Overview of the Granules Runtime for Cloud Computing," in
IEEE International Conference on e-Science, Indianapolis, 2008.

[12] S. Lloyd, "Least squares quantization in PCM," Information Theory, IEEE Transactions
on, vol. 28, pp. 129-137, 1982.

[13] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell,
MA: Kluwer Academic Publishers, 1981.

[14] P. McCullagh and J. Yang, "How many clusters?," Bayesian Analysis, vol. 3, pp. 101-
120, 2008.

[15] D. M. Blei, et al., "Latent dirichlet allocation," J. Mach. Learn. Res., vol. 3, pp. 993-1022,
2003.

[16] D. Lewis, "Naive (Bayes) at forty: The independence assumption in information retrieval

 [17] W. A. Gardner, "Learning characteristics of stochastic-gradient-descent algorithms: A
general study, analysis, and critique," Signal Processing, vol. 6, pp. 113-133, 1984.

[18] C.-T. Chu, et al., "Map-Reduce for Machine Learning on Multicore," in Advances in
Neural Information Processing Systems (NIPS), Vancouver, Canada, 2006.

[19] B. Catanzaro, et al., "Fast support vector machine training and classification on graphics
processors," presented at the Proceedings of the 25th international conference on Machine
learning, Helsinki, Finland, 2008.

[20] Y. Yu, et al., "DryadLINQ: a system for general-purpose distributed data-parallel
computing using a high-level language," presented at the Proceedings of the 8th USENIX
conference on Operating systems design and implementation, San Diego, California, 2008.

[21] P. Resnick and H. R. Varian, "Recommender systems," Commun. ACM, vol. 40, pp. 56-
58, 1997.

[22] C. Hemmerich, et al., "Map-Reduce Expansion of the ISGA Genomic Analysis Web
Server," presented at the CloudCom 2010, Indianopolis, USA, 2010.

[23] K. Ericson and S. Pallickara, "Adaptive heterogeneous language support within a cloud
runtime," Future Generation Computer Systems, vol. 28, pp. 128-135, 2012.

[24] D. Borthakur. (2007). The Hadoop Distributed File System: Architecture and Design.
Available: http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf

[25] M. Isard, et al., "Dryad: distributed data-parallel programs from sequential building
blocks," in 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, Lisbon,
Poutugal, 2007.

http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.pdf

 28

[26] K. Ericson, et al., "Handwriting Recognition using a Cloud Runtime," in Colorado
Celebration of Women in Computing, Golden, 2010.

[27] K. Ericson, et al., "Analyzing Electroencephalograms Using Cloud Computing
Techniques," in IEEE Conference on Cloud Computing Technology and Science,
Indianopolis, USA, 2010.

[28] A. McCallum, et al., "Efficient clustering of high-dimensional data sets with application
to reference matching," presented at the Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, Boston, Massachusetts, United States,
2000.

[29] D. D. Lewis, "Reuters-21578 text categorization test collection, Distribution 1.0," A. T.
L.-. Research, Ed., 1.0 ed: UCI Machine Learning Repository, 1997.

[30] T. Mitchell, "Twenty Newsgroups Data Set ", ed: UCI Machine Learning Repository,
1999.

[31] B. Yegnanarayana, Artificial Neural Networks: Prentice-Hall of India, 2004.

[32] B.-H. Juang, "Hidden Markov Models," in Wiley Encyclopedia of Telecommunications,
ed: John Wiley & Sons, Inc., 2003.

[33] J. Bennet and S. Lanning, "Title," unpublished|.

[34] G. Linden, et al., "Amazon.com recommendations: item-to-item collaborative filtering,"
Internet Computing, IEEE, vol. 7, pp. 76-80, 2003.

[1]

