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Abstract 

There is often a need to perform machine learning tasks on voluminous amounts 

of data. These tasks have application in fields such as pattern recognition, data 

mining, bioinformatics, and recommendation systems. Here we evaluate the 

performance of 4 clustering algorithms and 2 classification algorithms supported 

by Mahout within two different cloud runtimes, Hadoop and Granules.  Our 

benchmarks use the same Mahout backend code, ensuring a fair comparison. 

The differences between these implementations stem from how the Hadoop and 

Granules runtimes (1) support and manage the lifecycle of individual 

computations, and (2) how they orchestrate exchange of data between different 

stages of the computational pipeline during successive iterations of the 

clustering algorithm. We  include an analysis of our results for each of these 

algorithms in a distributed setting, as well as a discussion on measures for 

failure recovery. 

Keywords- Machine Learning; Distributed Stream Processing; Hadoop; Mahout; 

Clustering; Classification; Granules 

1  Background and Related Work 

As the rate at which we generate data increases, we find a greater and greater 

need to handle voluminous amounts of data within traditional machine learning 

algorithms.  As a general rule of thumb, the more examples you can provide to a 

machine learning algorithm, the better it will be able to perform.  The ability to 

quickly and efficiently process large amounts of data is necessary in order to 

effectively scale learning algorithms to match the growth of data available.  Here 

we explore both clustering and classification algorithms, within the realm of 

distributed processing. 

To facilitate distributed processing one approach is to use the MapReduce [1] 

framework. Here, a large input dataset is sliced into smaller datasets, each of 

which is then operated upon by a different computation – these separate 

computations are the Mappers.  The results of the processing are then fed into a 

Reducer (or a set of reducers) which will account for boundary conditions and 

combine results for further processing.  For example, it is possible that a cluster 

center residing in one map may have points within its purview that is part of the 
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input data to another map function.  The outputs from the reducer are then fed 

into the appropriate mappers to begin the next round of processing. 

Mahout [2] is a library that implements several clustering and classification 

algorithms which have been modified to fit the Map-Reduce [1] model.  The 

Mahout implementations have been deployed within Apache Hadoop [3] – a 

MapReduce based cloud runtime.  While Mahout has been designed to work 

specifically with Hadoop, there is nothing to preclude using the Mahout library 

within another processing system which supports the MapReduce paradigm. 

 Clustering algorithms are an unsupervised machine learning technique that 

facilitates the creation of clusters, which allow us to group similar items (also 

called observations) together so that these clusters are similar in some 

quantifiable sense. Clustering has broad applications in areas such as data mining 

[4], recommendation systems [5], pattern recognition  [6], identification of 

abnormal cell clusters for cancer detections, and bioinformatics [7] among others. 

Clustering algorithms have certain unique characteristics. First, the algorithms 

often involve multiple rounds (also called iterations) of execution, where the 

output of the previous round is the input to the subsequent round. Second, the 

number of iterations of the algorithm is determined by the convergence 

characteristics of the algorithm. This convergence is generally based on distance 

measures (in n-dimensional space) and also the movement of cluster centers in 

successive iterations of the algorithm. To account for cases where convergence 

may not occur for a very large number of iterations, it is also possible to specify 

an upper bound on the number of iterations. Finally, the algorithm may operate 

on n-dimensional data and will cluster along these dimensions. Beyond the first 

iteration the progress of the clustering computation depends on (1) the state that it 

has built up in previous iteration (2) the initial set of data points that it holds, and 

(3) the adjustments to the cluster centers that it receives from the previous 

iteration. 

As data volumes increase, it quickly becomes untenable to perform this 

clustering over a single machine. One challenge in implementing distributed 

clustering algorithms is that it is possible that an algorithm will get stuck in local 

optima, never finding the optimal solution.  Attempting to converge on an 

optimal solution can be even more difficult when data is distributed, where no 

single node is fully aware of all data points. 

Classification algorithms, on the other hand, are a supervised machine 

learning technique.  Where unsupervised learning techniques are not aware of the 

correct labels for data and need to repeatedly iterate through the inputs in order to 
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refine observations; supervised machine learning algorithms are provided the 

correct answer with the training data, and only loop through the inputs once to 

create a statistical model.  This model is then used to predict, or classify incoming 

data by determining the likelihood of the new, unseen data belonging to a class 

learned in the training phase.  Classifiers can be used in BCI applications [8], 

bioinformatics [9], and spam filtering. 

The task of training a classifier becomes more monumental as the number of 

training sets increases.   Each input needs to be read in, processed, and then used 

to modify the prediction model.  If a single node attempted to perform this task 

sequentially, the training time would quickly become unfeasible.  Classification 

provides a challenge when moving to a distributed processing environment.  

Several stages of model creation require all data gathered so far be collected to a 

single node for further processing.  While this is a natural fit for a reduce stage, it 

also means a mandated bottleneck in processing. 

We have compared the efficiency of orchestrating the distributed executions 

of these machine learning algorithms within our distributed stream processing 

system, Granules [10, 11].  Our benchmarks compare the same Mahout code 

running inside Granules and Hadoop.  We chose Hadoop and Granules for this 

comparison as they are representative of file processing and stream processing 

systems, respectively.  As both support the MapReduce framework, we can use 

the Mahout codebase without modifications in either runtime.  With the machine 

learning algorithms identical and unmodified, the only differences in computation 

speed should be a result of the lifecycle support for individual computations and 

the underlying communications framework. 

We have implemented 4 clustering algorithms within Granules: K-means 

[12], Fuzzy k-means [13], Dirichlet [14] and Latent Dirichlet Allocation [15]. 

These algorithms are representative of two broad classes of clustering algorithms: 

(1) discriminative, where we are making decisions if a point belongs in a 

predefined set of clusters (k-means, fuzzy k-means) and (2) generative, where a 

model is tweaked to fit the data and we can even generate the data the model has 

been fit to using the model parameters (Dirichlet and Latent Dirichlet 

Allocation). We believe that these algorithms are also a good example of 

performance improvements that can be accrued by moving away from execute-

once and stateless semantics in traditional MapReduce implementations such as 

Hadoop. 

We also implemented 2 classification algorithms: Naïve Bayes and 

Complementary Bayes [16].  While Mahout supports other classification 
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algorithms, such as Stochastic Gradient Descent (SGD) [2, 17], there is only a 

sequential implementation in Mahout since it scales linearly as the size of the 

training set grows.  SGD is not a good choice for extremely large datasets, but it 

can be trained incrementally meaning that a very large dataset may be worked 

through piece-meal. 

Naive Bayes and Complementary Bayes work well with textual classification 

tasks, unlike SGD, such as filtering emails or sorting documents.  These 

approaches create slightly different models, whose performance can vary based 

on the dataset.  In Mahout, once the data has been preprocessed it can be used in 

both Bayes and Complementary Bayes without further modifications.  This 

means that if a model trained with Naïve Bayes isn’t performing adequately, it is 

a simple task to switch to a Complementary Bayes model. 

Distributed machine learning has been a big topic for several years, not only 

on multicore machines [18], but also GPUs [19].  While many works mention 

machine learning applications running in a distributed environment [1], [20] they 

do not go into depth about the details of their implementations, and have not 

made the libraries available to the public. 

Mahout offers access to many varied machine learning algorithms, but it is 

geared towards developing enhanced recommenders [21] which can use multiple 

different clustering and classification algorithms to help generate 

recommendations. The Twister Iterative Map-Reduce runtime [22], on the other 

hand, has been developed to help biologists leverage the many parallel algorithms 

available for bioinformatics research. It allows biologists to specify a high-level 

workflow without needing a strong background in high performance computing. 

1.1 Paper Extensions 

From the initial publication of On the Performance of Distributed Data 

Clustering Algorithms in File and Streaming Processing Systems [23], we have 

added several extensions for this special edition issue.  We have switched to the 

newer Mahout 0.5 and Hadoop 1.0.0 versions, both of which have been released 

since the original publication.   All of our original benchmarks were redone in 

this particular setting.   The clustering section has been expanded to cover the 

topic of fault-tolerance, which was not previously supported in our Granules 

implementation.  We have shown that even with a basic fault-tolerance 

implementation – with current clusters written to file after every implementation, 

our Granules-based implementation can still outperform the original Hadoop 

implementation.  We have further explored methods of reducing strain placed on 

the hard drives of our HDFS cluster by saving state to disk on a staggered 
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timescale.  Additionally, we have extended our evaluation to cover Mahout’s 

supported distributed classification algorithms: Naïve Bayes and Complementary 

Bayes. 

1.2 Paper Organization 

The remainder of this paper is ordered as follows:  In section Error! 

Reference source not found., we provide a quick overview of Granules and 

Hadoop, the two cloud runtimes used in this work.  In section 3 we explore 

clustering in a distributed setting, covering our experimental setup, dataset and 

actual experiments with clustering algorithms as well as an overview of fault-

tolerance for clustering.  We then move on to discuss classification as supported 

in Mahout in section 4, as well as outline our experimental setup and results.  We 

then report our conclusions and describe future work in section 5. 

2 Core Technology 

2.1 Hadoop 

Hadoop [3] is a Java-based cloud computing runtime which supports the 

Map-Reduce [1] paradigm.  Hadoop has execute-once semantics, meaning that 

with iterative tasks all state information needs to be written to file and then read 

back in for every step of the computation. 

Hadoop is open-source, and widely used for Map-Reduce computations. 

Mahout [2] has been built to run on top of Hadoop and the Hadoop Distributed 

File System (HDFS) [24].   HDFS is an implementation of the Google File 

System where a large file is broken into fixed size chunks each of which is then 

replicated. While processing the data, the runtime pushes computations to the 

machines where these blocks are hosted to maximize data locality during 

processing for faster executions.  

When Hadoop is running with HDFS, Hadoop can take advantage of data 

locality and push computations to the data they are supposed to operate on, 

cutting down on the networking overhead which may be incurred when reading 

from HDFS.  This is not supported in Granules, which may give the Hadoop 

based implementation an edge in processing overheads. 

2.2 Granules 

Granules [10, 11] is a lightweight distributed stream processing system 

(DSPS) and is designed to orchestrate a large number of computations on a set of 

available machines. The runtime is designed specifically to support processing of 

data streams. Granules supports two of the most dominant models for cloud 

computing: MapReduce and dataflow graphs [25]. In Granules individual 
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computations have a finite state machine associated with them. Computations 

change state depending on the availability of data on any of their input datasets or 

as a result of external triggers. When the processing is complete, computations 

become dormant awaiting data on any of their input datasets. 

In Granules, computations specify a scheduling strategy, which in turn govern 

their lifetimes. Computations specify their scheduling strategy along three 

dimensions: counts, data driven and periodicity. The counts axis specifies limits 

on the number of times a computation task needs to be executed. The data driven 

axis specifies that a computation task needs to be scheduled for execution 

whenever data is available on any one of its constituent datasets, which could be 

streams or files. The periodicity axis specifies that computations be scheduled for 

execution at predefined intervals. One can also specify a custom scheduling 

strategy that is a combination along these three dimensions; for example, limit a 

computation to be executed 500 times either when data is available or at regular 

intervals. A computation can change its scheduling strategy during execution, and 

Granules enforces the newly established scheduling strategy during the next 

round of execution.  Computations in Granules can build state over successive 

rounds of execution, meaning we can break away from execute-once semantics. 

Though the typical CPU burst time for computations during a given execution is 

short (seconds to a few minutes), these computations can be long-running with 

computations toggling between activations and dormancy. Domains that 

Granules has been deployed include handwriting recognition [26], Brain 

Computer Interfaces [27], and epidemiological simulations. 

3 Clustering in a Distributed Setting 

Clustering is a machine learning algorithm in which the program is 

responsible for discovering commonalities across voluminous datasets, and 

finding appropriate groups to place, or cluster, all incoming data.  Clustering is a 

very useful tool in unsupervised data mining and can help uncover relationships 

between data points which are not otherwise noticed.  The classic example of this 

is the retailer who noticed that diapers and beer are often bought together.  In our 

examples, we are not working with retailer information, but instead working to 

classify news articles under various topics. 

An important aspect of determining clusters is defining how distance will be 

measured.  The distance measure used may bias results, so it is important to try 

clustering with several different distance measures to determine the best approach 

for a given dataset. Mahout includes definitions of multiple types of distance 
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measurements and also allows users to specify custom distance measures. In this 

paper we use the Euclidean distance measure to determine distances between 

points and cluster centers across all our tests as done in [2]. 

3.1 Clustering using Hadoop 

Hadoop computations have execute-once semantics and are stateless. 

Clustering computations expressed in Hadoop need to account for these execute-

once and statelessness constraints. At the end of an iteration, every computation 

must store the state such that the subsequent iterations can retrieve this 

information as part of its initialization. A new computation must be launched for 

each round of execution, and this computation must reconstruct the state saved by 

the previous iteration from disk, typically using HDFS. Often, the original data 

splits also need to be loaded into the computation. In the case of clustering 

algorithms which often have multiple, successive rounds of execution this can 

lead to overheads and increased execution times. 

3.2 Clustering Using Granules 

Depending on their specified scheduling strategy Granules computations stay 

dormant when conditions for their execution have not been satisfied. 

Computations are activated from dormancy once data is available on one or more 

of their input datasets. The activation overhead for computations once data is 

available for processing is in the order of 700 microseconds. Computations in 

Granules can have multiple rounds of execution and the runtime manages their 

lifecycles. Individual computations are able to retain state across these multiple 

rounds of execution. 

Granules allows computations to enter a dormant state between rounds of 

execution.  Due to this ability, running an iterative Map-Reduce application – 

such as the machine learning algorithms within the Mahout library – within 

Granules should be more efficient than in a runtime that requires all data to be 

written to and read from disk between rounds of execution. 

In our setting involving Granules, each mapper works with a subset of the 

original dataset.  The mapper is then responsible for clustering these points 

throughout the lifetime of the algorithm. For every iteration, the mapper loops 

through the points it is responsible for and aggregates all cluster information 

before sending this data on to the reducer. The reducer is activated when it 

receives outputs from individual mappers. Once the reducer has received inputs 

from all mappers, it is able to determine global adjustments to the clusters and 

send this information back to the mappers to start the next round of clustering.  

Implementing these distributed clustering algorithms as Granules computations 
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have a few advantages that could translate into faster execution times. 

Computations can gain from: 

(1) Not having to reinitialize state from the disk 

(2) Streaming results between intermediate stages of a computation pipeline 

rather than having to perform disk I/O. 

(3) Fast activation of dormant computations as data streams become available.  

3.3 Code Modifications 

To adapt Mahout code to run within the Granules runtime, we needed to 

modify the drivers for the clustering algorithm as well as some semantic changes 

to the map and reduce code.  The actual clustering algorithms were not touched at 

all, meaning we will be seeing a fair comparison of execution times given 

different communications substrates.  It is important to keep in mind that the bulk 

of our code modification, in the drivers, would need to be modified for something 

as small as a change in the type of data being clustered. 

The I/O format of the code is similarly untouched.  In our Granules runs, we 

kept the HDFS backend for initial loading of points and clusters – while we 

cannot take advantage of rack-locality in Granules, this did enable us to ensure 

the runtime overheads are comparable.  The real changes were made to slightly 

tweak the map and reduce code, to fit the different programming paradigm of 

Granules.  Hadoop demands run-once semantics – the map and reduce code is 

called for every line of data that is read by Hadoop. In Granules, computations 

can retain state during successive rounds of execution and multiple lines of data 

can be processed at a time.  

Both Hadoop and Granules use different strategies to move data between 

different stages of a computation pipeline. In the case of Hadoop this involves 

disk I/O and polling to determine if the data is available within HDFS. In the case 

of Granules, data is streamed between the different stages and computations are 

activated from their dormancy when such data is available. 

3.4 Experimental Setup for Clustering 

Both the Hadoop and Granules-based implementations initially read data 

from an HDFS cluster.  For our tests, we are using Hadoop version 1.0.0 and 

Mahout version 0.5.  All tests are run on 2.4 GHz quad-core machines running 

Fedora 14 with 12GB RAM and a gigabit network connection.  Each distributed 

run contains 25 mappers and a reducer (Mahout clustering algorithms are set to 

run with a single reducer, eliminating boundary conflicts).  To properly compare 

Mahout performance across runtimes, when testing with Granules, the Granules 

resources are running on the HDFS worker machines. 
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Among the 25 machines, one was also responsible for acting as a NameNode, 

and TaskTracker, while five were acting as Brokers (for the Granules runs).  For 

both approaches, the Mahout operation was submitted from a machine outside the 

cluster. 

3.4.1 Clustering Setup 

For each clustering method we analyze: k-means, fuzzy k-means, dirichlet, 

and latent dirichlet allocation, we first use Mahout to generate a random set of 

starting clusters. We use the same set of starting clusters when contrasting the 

performance of Hadoop and Granules. Canopy clustering [28] is a technique used 

to jumpstart clustering algorithms, and usually only runs for a limited number of 

iterations.  Due to the limited iterations of computations involved in canopy 

clustering, we will not be analyzing canopy clustering in this work. 

3.5 Dataset 

For the clustering example, we used the Reuters-21578 text categorization 

collection data set [29].  This data set contains 21,578 documents which appeared 

on the Reuters newswire in 1987.  This dataset was generated following the ACM 

SIGIR ’96 conference when it was decided the Reuters-22173 dataset should be 

cleaned and standardized in order to achieve more comparable results across text 

categorization studies.  We processed the dataset to convert it to a format that 

Mahout can handle, based on the guidelines in [2]. This produced vectors of 

normalized bigrams from the input data with term frequency – inverse document 

frequency (TF-IDF) weighting.  The TF-IDF weighting helps to lower the 

importance of words which occur often across all documents, such as “the,” “he,” 

“she,” or “a.” 

We are clustering across all news documents in the dataset, so we have 

21,578 points to cluster.  There are 95,000+ dimensions of bigrams, or unique 

pairs of words.  Since no single document contains all possible bigrams, these are 

stored internally using Mahout’s SparseVector format. 

3.6 K-Means Clustering 

Mahout supports several different clustering algorithms.  We initially start 

with k-means clustering, a clustering algorithm where the user estimates how 

many clusters are required (k) to adequately group all data.  The algorithm then 

runs with this number kept constant – no clusters are added or removed during 

the computation.  This algorithm was first introduced as a technique for pulse-

code modulation [12]. 

K-means is the most basic clustering algorithm supported by Mahout, and 

operates on the principle that all data can be separated into distinct clusters.  K-
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means requires the user to specify a k value, and the output can vary drastically 

based on not only the number of clusters chosen, but the initial starting points of 

all clusters.  With respect to our dataset, when looking for very broad topic 

categories, a small value of k would be chosen (10-20).  When looking for very 

small and finely honed categories, we would need to drastically increase k 

(1,000). 

K-means clustering is a good choice when it is believed that all points belong 

to distinct groups.  It can also a good choice when initially approaching a new 

dataset.  K-means runs quickly, and can find large distinctions within data. 

In the Hadoop implementation, the input data is separated into a number of 

files.  This data consists of the points which will be clustered.  Each map process 

is responsible for looping through its assigned input file(s), and assigning the 

points to the nearest cluster.  The mappers output a file which contains a cluster 

ID connected to the point which is assigned to it.  The reducer will read in each 

file generated by the mappers, and move through the list of clusters assigning 

each point to it.  Once this is complete, the reducer then computes new cluster 

centers, and generates a file containing the new clusters.  The entire process then 

repeats: the mappers read in the new cluster data, as well as the points and begin 

processing again. 

Our implementation in Granules follows the original Hadoop implementation.  

Each mapper node is responsible for loading a set of points into memory, and is 

responsible for clustering those points.  In each iteration, a set of current clusters 

is made available to all mappers.  Once each mapper has finished clustering their 

points, a set of ClusterObversations for each cluster is sent to the reducer. 

The reducer combines ClusterObservations from each mapper, and uses 

this information to update the cluster centers.  This modified set of clusters is 

then sent to each mapper for the next iteration. 

One major difference between the Hadoop and Granules versions is where the 

completion point is computed.  The Hadoop version will calculate the maximum 

number of iterations in the mappers as well as in the reducer, while in Granules 

the mappers are unaware of the overall point in execution and the reducer is 

responsible for keeping track of rounds of execution. 

3.6.1 K-Means Runtime Analysis 

K-means is the simplest clustering algorithm we have benchmarked.  In the 

Hadoop implementation, a mapper is responsible for loading the current set of 

clusters from disk each iteration.  Once the clusters are in memory, the mapper 

then reads through the list of points assigned to it one at a time, and identifies 

which cluster the point belongs to.  Once a point has been assigned to a cluster, it 
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is written out to file.  The overall cost of the Hadoop map operation is CRD + 

NCRDWD where C is the number of clusters, N is the number of points a given 

mapper is responsible for clustering and RD and WD are read and write times to 

disk.  It is important to note that these values include seek time as well as the time 

to actually read and write the data. 

The Hadoop reducer will first read in the current set of clusters from file then 

read in the outputs from all the mappers.  As the reducer reads in data, it modifies 

the clusters in constant time and writes out a modified cluster once it has finished 

processing all points assigned to the cluster.  The overall runtime of the reducer is 

CRD + MNRDWD, where M is the number of mappers in the system. 

In the Granules mapper, we can take advantage of state retention by keeping 

the points to be clustered in memory, so we only need to read in the new states 

for every round of execution.  We can also use state to make sure we send less 

data to the Reducer, helping cut down on the amount of work the reducer needs 

to perform.  The Granules mapper runtime is: CRS + NC + CWS where RS refers 

to the cost of reading streaming data over a socket while WS refers to writing data 

to a socket.  It is important to note that this includes the cost of the streaming 

substrate overhead. 

The Granules reducer needs to read in the input from all the mappers, and 

send out the newly computed clusters for the next round of computations.  The 

running time of this operation is MCRS + CWS. 

Comparing the mapper runtimes for the Granules and Hadoop 

implementations, it is clear that both can be boiled down to an O(NC) operation, 

and the major difference between them is simply the constants around that 

function.  The reducers have a different overhead by an order of N, yet we’re not 

seeing a commensurate speedup in our benchmarks.  This is because the majority 

of the computation is spent in the mappers, while the role of the reducers is 

relatively small in the overall computation. 

3.6.2 K-means Clustering Results 

In both Hadoop and Granules, we ran 20 rounds of k-means on 88 clusters for 

100 iterations. Both implementations used the same initial set of starting clusters. 

The results of these tests are displayed in Figure 1. and summarized in TABLE I.   

Another observation is the difference in standard deviation of the running 

times, where Granules deviates by about 8 minutes, Hadoop varies by only a bit 

over 2 minutes.  We are obviously seeing some networking congestion when 

relying on the Granules approach. 

TABLE I.  K-MEANS CLUSTERING IN SECONDS 
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 Mean Min Max SD 

Granules 1214.895 559.24 1938.766 484.175 

Hadoop 5122.81 5002.732 5683.786 137.581 

 

From these results, we can clearly see that the Granules implementation can 

outperform the Hadoop implementation by decreasing the amount of disk 

accesses necessary to complete the operation.  Granules can even outperform the 

Hadoop version when both are running on top of HDFS, where the Hadoop 

workers can take advantage of data locality to speed up access times. 

 

Figure 1.  K-means Average runtime in Seconds 

3.7 Fuzzy K-Means 

Fuzzy K-Means [13] operates on a similar principle as k-means: The user 

chooses an initial set of k clusters, and allows the algorithm to run and adjust their 

centers as points are assigned to them.  Fuzzy k-means allows an extra degree of 

freedom by allowing a point to belong to more than one cluster. 

Using our dataset as an example, k-means is able to find the broad and 

overarching topics and group the articles accordingly; however, k-means cannot 

handle data points that span multiple topics.  For example, a news article may 

discuss oil prices in the Middle East. With k-means, this article can either be 

clustered with articles about the Middle East, or articles discussing the prices of 

raw materials, but not both.  Fuzzy k-means would allow the article to be 

associated with both topics, thus revealing a link between data that k-means could 

not show. Not only will fuzzy k-means show this overlapping of topics, it will 

also describe the degree to which the article is related to each topic. 

Fuzzy k-means operates in roughly the same manner as k-means, with the 

modification that instead of each point belonging to a single cluster, each point is 

assigned a probability of belonging to every cluster.  After this step, the reducer 

then goes through each probability, and adjusts cluster centers with respect to 

those points with the highest probability of belonging to the cluster. 
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3.7.1 Fuzzy K-Means Runtime Analysis 

Fuzzy k-means is a slightly more complex clustering algorithm than k-means, 

and requires much more data to be sent between the Map and Reduce phases.  As 

fuzzy k-means computes the probability that each point belongs to every node, 

the mapper now will pass NC information to the reducer instead of just N.  The 

overall running time of the Hadoop mapper is RDC + RDNCWD.  Again, RD and 

WD refer to reading from and writing to disk – including seek time, N is the 

number of points a mapper is responsible for clustering, and C is the number of 

clusters. 

The runtime for the fuzzy k-means Hadoop reducer is very similar to the k-

means version – it simply has to handle more data.  The runtime is: MNCRD + 

CWD, where M is the number of mappers in the system. 

The Granules fuzzy k-means mapper has an overhead of RSC + NC + CWS, 

where RS and WS are the times to read stream data from and write it to sockets – 

including the streaming overheads.  A major difference between this and the 

Hadoop mapper is that Granules can retain state information and can aggregate 

outputs, so it only needs to send C to the reducer, instead of NC. 

The Granules reducer takes advantage of the partial aggregation done by the 

mappers, and needs to read in far less data than its Hadoop counterpart (by a 

factor of N).  The runtime of the Granules reducer is: MCRS + CWS, again with M 

being the total number of reducers. 

Both the Granules and Hadoop approaches are bounded by the NC 

computation to compute the probability of each point belonging to every cluster, 

essentially bounding the runtime at O(N).  While we do see a big difference in the 

reducer behavior, it is another computation where the work done by the reducers 

is insignificant when compared to the work performed by the mappers.  Despite 

the Granules implementation having a quicker reducer runtime by a factor of N, 

the overall runtimes are still very similar. 

3.7.2 Fuzzy K-Means Results 

Since the fuzzy k-means algorithm allows points to span multiple clusters it is 

very long running.  We ran 20 rounds of fuzzy k-means for 25 iterations before 

halting the computations.  We set the number of clusters to 44  and used the same 

set of initial clusters was used for both Hadoop and Granules versions.  In 0the 

mean execution times for Granules and Hadoop can be seen.  Hadoop is taking 

just a bit more time than Granules to finish processing the data.  More detailed 

results are shown below in TABLE II.  We can see that on average, the Granules 

implementation is finishing over 700 seconds (almost 12 minutes) sooner than the 

Hadoop implementation. 
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Figure 2.  Fuzzy k-means Average Runtime in Seconds 

While we do not see the same increase in speed we get with k-means, the 

Granules implementation still manages to outperform Hadoop implementation by 

a small margin simply by cutting out the need for repeated reads/writes from 

disk.  From analyzing the source code, it appears that fuzzy k-means has a far 

higher ratio of CPU-to-I/O bound processing than the other clustering algorithms 

we discuss here, accounting for the difference in speedup.  In order to isolate the 

bottleneck in the Granules implementation, we timed each step of the algorithm.  

Through this method, we found that the biggest bottleneck in our system was in 

the reducer.   Each round of execution, several seconds were lost with output 

from mappers waiting in the reducer’s queue while it was processing previous 

inputs.  These slight delays add up over each iteration of processing, leading to a 

smaller increase in speed than we hoped for. 

TABLE II.  FUZZY K-MEANS CLUSTERING IN SECONDS 

 Mean Min Max SD 

Granules 7685.74 7676.47 7695.79 5.567 

Hadoop 8423.78 8414.22 8431.15 5.812 

3.8 Dirichlet Clustering 

Dirichlet clustering [14] differs drastically from k-means.  Most notably, there 

is no k.  Dirichlet clustering may add and remove clusters as it deems necessary, 

and additionally can support different shapes of models.  K-means and fuzzy k-

means both assume that all clusters have normal distributions around a central 

point (in the case of 2-dimensional data it is circular).  They cannot handle a 

distribution where clusters match a different model.  Mahout currently supports 

models such as GaussianCluster, NormalModel, and 

SampledNormalDistribution; also allowing the user to define more 

models as needed. 
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Because of its complexity, Dirichlet clustering can take far longer to run than 

k-means or fuzzy k-means.  Due to the many iterations it may go through, 

Mahout allows the user to specify the number of iterations to move through 

before writing cluster information to file – though this is only available for local 

in-memory runs. 

Dirichlet clustering is a good initial clustering algorithm as it can help to 

determine an appropriate k to give the faster running k-means algorithms, or even 

help show why k-means may be having problems e.g.: if the data does not fit the 

normal distribution model that k-means expects, Dirichlet should be able to 

cluster data where either k-means or fuzzy k-means fails. 

3.8.1 Dirichlet Clustering Runtime Analysis 

As mentioned above, Dirichlet clustering follows a different paradigm than k-

means or fuzzy k-means.  For Dirichlet, the number of models D is a parameter.  

This algorithm also requires state to be passed between each iteration.  In the 

Hadoop Mapper the state is first read in, then the algorithm is run as the points to 

cluster, N, are read in.  This leaves the overall mapper runtime at DRD + 

RDNDWD, where RD and WD are read and write to disk respectively, and N is the 

number of points to cluster. 

Each mapper writes data for every point, for every model, meaning that the 

Hadoop reducer then has to read in all this information from every mapper, as 

well as load state.  Once the reducer has finished processing all data for a model, 

it then writes the model information to disk to be read in as state information for 

the next round of computation.  The overall runtime of the reducer is RDD + 

RDMND + WDD, where M is the number of mappers in the setup. 

The Granules mapper follows the same approach as the Hadoop mapper, but 

manages to cut down on the overheads slightly by aggregating data, and sending 

a smaller amount of data to the Reducer.  This also helps to cut down on the 

reducers’ runtime.  For the Granules mapper we see an overhead of RSD + ND + 

DWS, where RS and WS are read and write overheads for sending data to sockets, 

including the streaming overhead.  Because of the partial aggregation of data at 

the mappers, the value associated with the write is only D instead of ND.  

Additionally, the Granules mapper does not need to read in the points, completely 

removing a read operation. 

The Granules reducer takes advantage of the partial aggregation by having a 

much reduced read-in time: RSMD + DWS.  Additionally, the Granules reducer 

has no need to read in the current state, since it saves the state generated in the 

previous iteration.  This significantly cuts down the I/O time that Granules needs 

for this algorithm. 
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Both the map and reduce in the Hadoop implementation are bounded by 

O(ND).  In Granules, the Map has O(ND), but the reducer only has O(MD), and 

M is usually several orders of magnitude smaller than N.  As we see in the next 

section, however, we are not seeing a speedup in Granules of several orders of 

magnitude.  This is because the work done in the map and reduce portions of the 

algorithm are not balanced – the mapper does far more work than the reducer, so 

lowering the runtime of the reducer drastically does not have a great effect on 

overall runtime. 

3.8.2 Dirichlet Clustering Results 

We ran 20 iterations of Dirichlet clustering which ran for 40 iterations each.  

The results of these tests in both Granules and Hadoop are displayed below in 

TABLE III.  Granules runs Dirichlet clustering to completion about five times 

faster than Hadoop, which is also visualized in Figure 3.  

Dirichlet clustering relies heavily on state, and does not require as much 

processing of data points as fuzzy k-means.  From these results, it seems clear 

that the majority of the processing time Hadoop spends is loading the state from 

file every step. 

 

Figure 3.  Dirichlet Average Runtime in Seconds 

TABLE III.  DIRICHLET CLUSTERING IN SECONDS 

 Mean Min Max SD 

Granules 456.78 437.61 481.64 10.474 

Hadoop 31933.61 31826.97 32332.79 131.5412 

3.9 Latent Dirichlet Allocation 

Latent Dirichlet Allocation (LDA) [15] is a clustering method similar to 

Dirichlet clustering.  It is a generative model, so it starts off with a known model, 

and tweaks parameters to fit the model to the data.  LDA can cluster words into 

“topics” by defining all documents as a mixture of all topics with a given 

probability.  Much like k-means, LDA needs to be given a k, which identifies the 

number of topics in the dataset.  The LDA classifier then attempts to discern the 

separate topics, and cluster each document into the appropriate topic.  The 
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algorithm reads through every word in every document, and calculates the 

probability that each word belongs to a topic.  Based on the number of words in 

the document belonging to each topic, the overall topic of the document can be 

determined.  LDA runs until the maximum number of iterations have been 

reached, or once the model has stabilized i.e. the amount of change between 

iterations has fallen below a given threshold. 

Where algorithms such as k-means are very adept at grouping data with 

patterns not always apparent to humans, LDA can achieve results very similar to 

what would happen if we asked a human to cluster documents by topic [2].  The 

cost of this is that the algorithm takes many iterations to reach that level.  LDA 

allows the process to be sped up by modifying a number of parameters which 

should help to cut down on the number of necessary iterations, such as 

automatically detecting stopwords and removing them from future calculations.  

LDA is a good clustering algorithm when one is looking for clustering that is 

human-understandable. 

3.9.1 Latent Dirichlet Allocation Runtime Analysis 

LDA runtimes depend on the number of topics to be clustered by (T), as well 

as the dimensionality of the data (|P|).  LDA analyzes the number of times given 

bigrams appear in a document to determine the probability that the document 

belongs to a given group.  This matrix of probabilities defining the relationship 

between all bigrams and each topic is passed between rounds of execution as part 

of the state information.  This means that the mappers need to load a T|P| size 

array into memory before every run.  This array is changed by the reducer 

between every round of execution, so even the Granules approach incurs this 

cost. 

After loading the state, the mapper then creates an inference for every point to 

be clustered – this involves looping through the dimensions of the point to be 

clustered, and assigning weights based off of the state information gathered in the 

first step.  The Hadoop Mapper performs this step as it reads in points, and writes 

out information as soon as it has calculated adjusted probabilities for every topic.  

This results in a runtime of RDT|P| + RDN|P|TWD, where RD and WD are read and 

write to disk (including seek time), T is the number of topics, N the nodes to be 

clustered, and |P| the dimensionality of every point in N. 

The Hadoop reducer has a far simpler task than the mappers, it simply needs 

to read in data output by the mappers and aggregate probabilities.  The 

aggregated probabilities are then read in as the state table by the mappers in the 

next iteration.  The Hadoop reduce runtime is NMT|P|RD + T|P|WD, with M 

being the number of mappers. 
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As mentioned above, the Granules mappers also need to load in state at the 

beginning, so it does not gain much improvement over the Hadoop 

implementation there.  Granules can improve on the Hadoop implementation 

slightly, however, by again performing partial aggregation at the mapper.  Instead 

of pushing out output immediately, the Granules mapper can hold the information 

in memory until the algorithm has completed and only needs to write T|P| data to 

the reducer instead of NT|P| data.  The overall runtime of the Granules mapper is 

T|P|RS + N|P|T + T|P|WS, with RS and WS being overheads for reading and 

writing data to sockets, including the streaming overhead. 

The Granules reducer can again take advantage of the decreased size of input 

and has a runtime of MT|P|RS + T|P|WS.  While this is not as great of an increase 

as we saw with Dirichlet clustering, it still allows the Granules implementation to 

gain an edge over the original Hadoop runtimes. 

The Hadoop mapper and reducer are both essentially bound by O(NT|P|).  

The Granules mapper has almost the exact same runtime, but the Granules 

reducer is only bound by O(T|P|).  Again, this looks like it should lead to a much 

larger margin in performance between the Hadoop and Granules 

implementations, but the disparity between workloads holds true for LDA as 

well: even if we speed up the reducer, the mapper is still slowing us down too 

much for it to be noticeable. 

3.9.2 Latent Dirichlet Allocation Results 

In our tests, we ran LDA for 40 iterations clustering into 10 topics.  While this 

was not enough iterations to allow the model to converge, this is enough 

iterations to give us a good idea of how the algorithm runs.  We ran the full 40 

iterations with both Granules and Hadoop versions, and compared the running 

time of each below in TABLE IV.  

 

 

TABLE IV.  LDA CLUSTERING IN SECONDS 

 Mean Min Max SD 

Granules 1438.656 1402.428 1445.735 6.956 

Hadoop 2266.084 2212.842 2294.902 25.081 
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Figure 4.  LDA Average Runtime in Seconds 

Figure 4. shows a direct comparison of mean execution times of LDA for 

Granules and Hadoop.  On average, Granules finished about 4 minutes earlier 

than the Hadoop implementation.  Again, this seems to be a direct result of 

Granules’ ability to stream data between stages, instead of needing to write to 

disk between every step. 

Interestingly, the difference between standard deviations is again very high in 

our experiments with LDA.  LDA requires a mixture of overhead to read in state, 

as well as significant processing time needed to build probability tables once the 

state has been read in.  It is interesting to see that it has a very similar profile to 

fuzzy k-means, the other algorithm we examine with a heavy CPU processing 

load.  Additionally, both feature relatively close execution times with a large 

difference in standard deviation. 

3.10  Fault Tolerant Clustering 

With the Hadoop based implementation of Mahout, fault-tolerance is obtained 

automatically with HDFS.  After every iteration of clustering, the current clusters 

are written out to HDFS making it possible to recover from failure by simply 

starting from the last completed iteration. 

In the previous sections, we showed how switching Mahout from Hadoop 

which has a run-once paradigm to Granules which allows state to be built up 

across iterations can lead to a processing speedup.  While this speedup was less 

drastic in CPU bound computations, such as fuzzy k-means clustering, even a 

small speedup can become drastic as the number of iterations increases. 

 In the previous sections, we have shown that we can complete clustering 

more quickly, but this speedup was gained at the cost of fault-tolerance.  Instead 

of performing a write and then read from disk after every iteration, we are 

passing this information across the network, and keeping needed information in 
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memory.  In the event of a failure, this approach loses all information, requiring 

the computation to be restarted from the beginning. 

In this section we look at methods of reintroducing fault tolerance to our 

solution.  While Granules does not yet support a method for automatically 

detecting and recovering from failures, we are able to take an approach similar to 

the original implementation and make use of HDFS as a fault-tolerant storage 

resource. 

3.10.1 Adding Fault Tolerance to Granules Clustering 

As an initial test of fault tolerance in Granules, we first worked with a naive 

checkpointing scheme.  In this scheme, the set of current clusters is written to 

HDFS after every iteration.  Essentially, we are ensuring fault tolerance levels 

equivalent to what is found in the original implementation, where we can recover 

from total failure by simply picking up from the last completed iteration of 

processing. 

At first glance it appears we will be losing the processing speedups gained by 

switching from a Hadoop backend to Granules, but with Granules we can 

interleave writes with processing.  For example, after the reducer finishes 

calculating   a new set of clusters, it can immediately send on these new clusters 

to the mappers for the next phase of computations, and then orchestrate the write 

to HDFS – performing that operation when the reducer would otherwise be in a 

dormant state, waiting for the mappers to complete processing. 

We reran all our base clustering algorithms with this naïve checkpointing 

scheme, and saw no difference in clustering overheads.  This means we can 

recover from any failure to continue processing from the last iteration of 

clustering.  The one additional overhead we incur is that of human intervention.  

Unlike Hadoop, Granules does not currently support automatic detection and 

recovery of failures.  A user would be required to manually restart the cluster 

after a failure occurred.  One upside of this approach, however, is that we can use 

this restart capability to pick up a completed clustering result and run the 

algorithm for more iterations to see if we can achieve better results. 

3.10.2 Optimizing Checkpointing in Granules Clustering 

From our previous tests, there is no loss of performance from even a naïve 

implementation of fault-tolerance.  One disadvantage of this approach, however, 

is the stress placed on the hard drives in our HDFS cluster.  While this is no 

greater stress than we see when using the original Mahout code, we should be 

able to do better. 

In order to reduce stress on the cluster, we can introduce a new checkpointing 

scheme which balances the amount of writes we enforce with recovery time.  We 
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can balance the time to load an algorithm with the time it takes to complete a 

single iteration of clustering.  From our previous benchmarks, we are able to 

calculate the average time it takes to run a single iteration of each algorithm.  The 

optimal checkpointing scheme is one where we only checkpoint when the cost to 

recover from the last checkpoint outweighs the cost of loading a checkpoint. 

4  Classification in a Distributed Setting 

Unlike clustering techniques, classification is a supervised machine learning 

algorithm.  This means there is a known, correct output which is provided to the 

cluster with the training data.  Through the training process the algorithm builds a 

statistical model to predict which class a sample belongs to. 

Since classification models are built as the training data is processed, it does 

not make sense to use an iterative approach such as we saw in the clustering 

algorithms.  If we attempt to rerun training sets, we increase the chances of 

overtraining, where the classifier becomes unable to handle new inputs. 

Classification algorithms generally require a large number of training inputs 

to accurately classify data, leading to a bottleneck in processing.  Using the 

MapReduce framework, we can overcome this bottleneck by processing inputs in 

parallel. 

4.1 Classification in Mahout 

Since training is performed after reading in the datasets once, we do not 

expect to see a drastic difference in runtimes as we move from Hadoop’s run-

once paradigm to a Granules implementation which can build state.  The only 

space for improvement is the ability to build state between inputs – Hadoop only 

maintains information about the current line of input, not any previously seen 

inputs.  In order to gather statistical information, such as how often the word 

“apple” has been seen across all inputs, a Hadoop mapper would need to output 

“apple 1” every time it sees the word and then rely on a reducer to add together 

all the ones.  This approach creates extra files in HDFS, leading to a potential 

strain on hard drives in the cluster. 

4.2 Classification with Granules 

In the Granules implementation, we followed the same outline as the Hadoop-

based implementation, in order to keep the comparison as fair as possible.  By 

streaming outputs between the classification steps, we are taking some load off of 

the HDFS cluster.  Due to the speed with which we can train a Bayesian 

classifier, fault-tolerance in the middle of the training process is less of a priority 

then we saw in clustering. 
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4.3 Code Changes 

In the Hadoop based implementation, there are 4 full map and reduce jobs 

needed to build a statistical model of the input data.  This is due to Hadoop’s 

inability to maintain state – it is difficult to perform a task such as summing up 

the number of times a word is seen across all test cases, requiring a chain of map 

and reduce tasks.  Such a task is much simpler in the Granules framework, where 

each mapper maintains memory across more than one line of input at a time.  

Because of this, our processing pipeline is slightly shorter than the original 

Hadoop-based pipeline.  Instead of 4 map-reduce tasks, we have two map-reduce 

pairs, and two combiner stages.  These shortcuts were gained simply by being 

able to aggregate data in a single stage. 

4.4  Experimental Setup for Classification 

For our classification tests, we are using the same setup as the clustering tests.  

The only difference is the number of nodes we are using.  Where the clustering 

dataset was simple to divide into 25 files for training, the classification dataset is 

more naturally divided into 20 input files – there are 20 classes we are training to 

predict.  Because of this, we are starting with 20 mappers and a single reducer for 

the first stage of classification.  

To properly compare Mahout performance across runtimes, when testing with 

Granules we again ensure that the Granules resources are running on the HDFS 

worker machines.  Among these 20 machines, one is also responsible for acting 

as a NameNode, and TaskTracker, while five act as Brokers (for the Granules 

runs).  For both approaches, the Mahout operation was submitted from a machine 

outside the cluster.  For both the Hadoop and Granules based approaches we used 

the same pre-processed inputs.  These inputs are hosted in HDFS, and each 

approach starts by reading these inputs from file. 

4.5  Classification Dataset 

For our clustering experiments, we used the 20 News Groups [30] dataset.  

This is a standardized dataset available from the UCI Machine Learning Library 

(http://archive.ics.uci.edu/ml/index.html), and is used as the sample dataset in 

Mahout In Action [2].  This dataset consists of emails sent to various interest 

groups, and has already been separated into training and test sets.  The goal is to 

train a model to sort unlabeled emails based on the sender, content, and title of 

the email.  It is important to remember that this is a valid real-world example.  

Classifiers are often used to filter emails, with the typical example being a spam 

filter – particular senders, subjects, and content can flag an incoming email as 

potential spam. 
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The training dataset consists of 11,314 individual emails, each of which 

becomes an input to our classification models.  The training set splits the emails 

by mailing list, so each mapper in the first phase is responsible for reading all 

emails addressed to a given class.  This means about 566 mails processed per 

mapper on average.  With a larger dataset, we would want to split the inputs 

further, to help speed up this initial processing step. 

 

4.6  Classification Algorithms Supported in Mahout 

Mahout supports several classification algorithms including Stochastic 

Gradient Descent (SGD) [17], as well as Naïve and Complementary Bayes 

implementations.  While support is planned for other classification approaches 

such as Artificial Neural Networks (ANN) [31] and Hidden Markov Models 

(HMM) [32], these algorithms are not yet fully supported. 

Mahout’s classification algorithms create logistic regression models, so 

instead of predicting a single value for a sample input, these algorithms will 

return a list of probabilities.  Each probability corresponds to the likelihood that 

the input belonged to a class the model was trained to recognize.  Logistic 

regression is often very useful since it is possible to see how close the model was 

to providing an alternate classification. 

Stochastic gradient descent is a method of function optimization which may 

be used to support other machine learning algorithms such as neural networks.  

SGD determines a gradient between sample points, and can then adjust weights 

in the objective function in order to move along this gradient.  Where many 

functions will simply determine which direction to move a weight in (adding or 

subtracting from the current weights) then modify the weights by a fixed value, 

SGD will actually determine the gradient between two sample points and can 

then also know by what magnitude weights should be modified.  In Mahout, SGD 

is implemented as a stand-alone logistic regression technique.  The model is 

modified after each input is processed, and never needs to maintain any 

information about previous inputs.  This means that SGD scales linearly as the 

number of inputs grows – you still need to read in and process every input, but 

the computing overhead is negligible.  Because of this, SGD only has a sequential 

implementation – there is no reason to distribute it.  While SGD is beyond the 

scope of this paper, it is important to understand which situations SGD is the 

preferred choice of classification algorithm. 

SGD works best when operating on samples with continuous fields – where 

valid values exist along a range of possible inputs.  Categorical fields – ones 
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where there are a finite set of options – can also be massaged to work with SGD.  

An example of how these differ would be to consider a classification problem 

involving people.  Age can be considered a continuous field, while the test group 

number would be considered a categorical field.  SGD does not perform well 

when the sample data contains fields of open-ended text – essentially anything 

which is not a number and does not have a finite number of possibilities (cannot 

be considered categorical).  An example of data which does not work well with 

SGD is a problem involving email filtering – SGD cannot make use of the body 

of the email directly, only statistics built around the text. 

Naïve Bayes and Complementary Bayes [16], on the other hand, work best 

when operating on purely textual data.  These approaches can also make use of 

categorical fields, but cannot use continuous fields unless they can somehow be 

massaged to look like textual data.  Along with the ability to easily handle textual 

data, these approaches are designed to be run in a distributed manner, so they can 

handle larger data sets more easily than SGD can.  The Bayesian approaches use 

these text inputs to determine how likely it is that any word seen belongs to a 

specific class.  For example, emails which reference Pentium processors are more 

likely to belong to a computer-themed mailing list than a gardening mailing list.  

In order to determine which words or phrases are most useful, these 

implementations make use of TF-IDF (as discussed above in section 3.5) to 

reduce the importance of words which occur across all inputs. 

Naïve Bayes and Complementary Bayes classification are well-suited for 

distributed execution, as much of the training process may be performed on 

portions of the dataset, only synchronizing after a large amount of processing has 

already occurred.  In the original Hadoop based implementation, there are 4 tasks 

which go into building these classifiers: First, every training sample must be read 

and processed, building a table of probabilities for each class.  In the second step, 

all probabilities are normalized across the classes.  Once that is done, another 

pass is made to build overall probabilities with respect to each class, and then in 

the last step these probabilities are normalized and prepared to be used for 

classification.  It is only in this last stage where Naïve Bayes and Complementary 

Bayes differ – they each generate weights slightly differently, which may result 

in slightly different classifications.  Complementary Bayes is a slightly more 

expensive operation, but it uses the same format for samples as Naïve Bayes – 

this means no extra preprocessing steps, so it is simple to train both and compare 

results to determine which should be used in a production environment. 

4.6.1  Naïve and Complementary Bayes Experiments 
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Both the Naïve and Complementary Bayes classification approaches use the 

same inputs.  For our experiments we used an n-gram size of one, meaning we 

are analyzing individual words and the probability of these words occurring in 

any given class.  Additionally, we are using a smoothing parameter of one for 

both Naïve Bayes and Complementary Bayes. 

In both the Naïve and Complementary Bayes algorithms, there are four stages 

to the computation.  First, the inputs are processed and separated into n-grams 

associated with the correct label.  Once this has been done, the TF-IDF is 

calculated for each term in each label.  After this step, there is a final processing 

function where all the weights computed so far are summed together in order to 

normalize all the results across all labels. 

Once these processing steps have been completed, the classifier finally enters 

specific code for Naïve and Complementary Bayes.  In this step, the weights 

calculated previously are used to build the classification model.  While we are not 

expecting to see a dramatic speedup due to the non-iterative behavior of 

classification algorithms, we may be able to see some by leveraging Granules’ 

ability to aggregate data. 

4.6.2 Classification Results 

For both Naïve Bayes and Complementary Bayes, we trained the classifier 20 

separate times and averaged the results here.  TABLE V.  and TABLE VI.  below 

show these results for Naïve and Complementary Bayes respectively. The 

average runtimes were essentially the same across both the Granules and Hadoop 

implementations, following our initial belief that we would not see significant 

processing gains moving from a file to stream based implementation.  One 

interesting trend we see is the increased standard deviation when we moved to the 

Granules implementation.  With both Naïve Bayes and Complementary Bayes, 

we saw 5 times as much variation, though slightly more with Complementary 

Bayes.  This variation is most likely a result of our approach of aggregating data 

and then pushing a larger object across the network to the next phase of 

execution.  One avenue to help cut down on this variation may be to look into 

sending results on in a piecemeal fashion, reducing the sudden load on the 

network. 

 

TABLE V.  NAÏVE BAYES RUNTIMES IN SECONDS FOR GRANULES AND HADOOP 

IMPLEMENTATIONS 

 Mean Min Max SD 

Granules 172.51 158.44 203.60 10.232 

Hadoop 172.86 170.32 180.24 2.290 

 



 26 

TABLE VI.  COMPLEMENTARY BAYES RUNTIMES IN SECONDS FOR GRANULES AND HADOOP 

IMPLEMENTATIONS 

 Mean Min Max SD 

Granules 184.09 163.07 203.89 11.932 

Hadoop 190.37 188.24 196.17 2.308 

 

4.7 Fault-tolerant Classification 

Classification in Mahout is a very quick task – generally less than 3 minutes.  

Because of this, we have not worked to implement fault-tolerance in the Granules 

implementation.  While this does place the Granules approach at a slight 

disadvantage, it is not clear that restarting the process mid-training would grant a 

noticeable improvement in overall training speed. 

5 Conclusions and Future Work 

Our results demonstrate the feasibility of using Granules to manage the 

orchestration of large clustering and classification operations. Since Granules 

supports computations that can execute multiple, successive rounds of execution 

while retaining state it is particularly well suited for clustering algorithms that are 

inherently iterative. The ability to stream results between stages of an execution 

pipeline and activating computations when such (intermediate result) streams are 

available allows us to support distributed implementations of the clustering 

algorithms in an efficient fashion. Our benchmarks show that switching to a 

stream-based approach can greatly improve the runtimes of iterative tasks.  This 

streaming feature allows us to incorporate support for fault tolerance without 

incurring performance overhead by interleaving the processing and I/O 

operations concurrently. 

In Mahout only Naïve and Complementary Bayes are currently the only fully 

implemented classification algorithms with distributed implementations.  As 

more algorithms are added to Mahout, we plan to continue this analysis to 

determine the effects of moving from a file to streaming based framework. 

We also plan to explore the suite of recommendation algorithms in Mahout.  

Granules’ ability to enter a dormant state between rounds of execution should 

mean a drastic increase in performance for a recommender system.  

Recommender systems work by finding similar items a customer may be 

interested in.  Examples include Netflix [33] and Amazon [34], where users get 

personalized recommendations on items to view/purchase based on their previous 

patterns of viewing/shopping.  These algorithms need to operate quickly and 

efficiently in order to provide accurate recommendations in a timely matter – if 

processing takes too long, you may miss a customer.  Recommendation systems 
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are a natural extension of clustering and classification algorithms, building on the 

idea of finding similar items to present to customers. 
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