
Exploiting Geospatial and Chronological
Characteristics in Data Streams to Enable Efficient

Storage and Retrievals

Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara

Department of Computer Science
Colorado State University

Fort Collins, USA
{malensek, sangmi, shrideep}@cs.colostate.edu

Abstract

We describe the design of a high-throughput storage system, Galileo, for data
streams generated in observational settings. To cope with data volumes, the
shared nothing architecture in Galileo supports incremental assimilation of nodes,
while accounting for heterogeneity in their capabilities. To achieve efficient stor-
age and retrievals of data, Galileo accounts for the geospatial and chronologi-
cal characteristics of such time-series observational data streams. Our bench-
marks demonstrate that Galileo supports high-throughput storage and efficient
retrievals of specific portions of large datasets while supporting different types
of queries.

Keywords: data storage, commodity clusters, distributed systems, scale-out
architectures, observational streams, query evaluations

1. Introduction

There has been a steady increase in the number and type of observational
devices. Data from such devices must be stored for (1) processing that relies on
access to historical data to make forecasts, and (2) visualizing how the observa-
tional data changes over time for a given spatial area. Data produced by such
observational devices can be thought of as time-series data streams; a device
generates the packets periodically or as part of configured change notifications.
Data packets generated in these settings contain measurements from multiple,
proximate locations. These measurements can be made by a single device (e.g.,
volumetric scans generated by radars) or from multiple devices (e.g., sensors
send data to a base station that collates multiple observations to generate a
single packet).

Observational data have spatio-temporal characteristics. Each measurement
represents a feature of interest such as temperature, pressure, humidity, etc. The
measurement is tied to specific location and elevation, and has a timestamp

Preprint submitted to Future Generation Computer Systems July 27, 2012

associated with it. While individual packets within an observational stream
may not be large, (often in the order of kilobytes) the frequency of the reported
measurements combined with increases in the number and type of devices lead
to increasing data volumes.

1.1. Usage Scenarios
Our targeted usage scenario is in the atmospheric domain where data from

such measurements are used as inputs to weather forecasting models and visual-
ization schemes. These usage patterns entail access to historical data to validate
new models, identify correlations or trends, and visualize feature changes over
time. We need to be able to access specific portions of the data efficiently to
ensure faster completions of the aforementioned activities.

1.2. Research Challenges
Research challenges in designing a storage framework for such observational

data include the following:

1. Support for a scale-out architecture: An extensible architecture that can
assimilate nodes one at a time to support increased data storage require-
ments.

2. High throughput storage of data: Given the number of data sources, we
must be able to store data streams arriving at high rates. We measure
throughput in terms of the total number of stream packets stored by the
system over a period of time.

3. Efficient retrievals of specific portions of the data: Given the large data
volumes involved we must support fast sifting of stored data streams in
response to queries that target a specific feature at a specific time for a
given geospatial area. To accomplish this, we must account for the spatial
and temporal characteristics of the data during the storage process and in
turn use this metadata for efficient retrievals.

4. Fast detection of non-matching queries: Often the query parameters are
adjusted based on results from past queries. To support fine-tuning of
queries, we must have accurate and efficient detection of situations when
there are no data that match a specified query.

5. Range query support: We must be able to support range queries over both
the spatial and temporal dimensions while ensuring that support for such
queries do not result in unacceptable overheads.

6. Dynamic indexing strategies: The system should allow its indexing func-
tionality to be adaptively reconfigured to better service different usage
patterns and reduce latencies.

7. Extensive data format support: There are vast amounts of data stored
in established scientific storage formats. Our system must not require
a particular input format so that it is useful for researchers that have
already invested in an existing format, and we must allow the system to
read and understand a variety of metadata without any loss of fidelity
from conversion.

2

8. Efficient processing of stored data: Our system should not only facilitate
data retrieval, but also simplify launching distributed computations for
processing data using the system’s indexing semantics as inputs.

9. Integrated support for visualization: The system should provide function-
ality for visualizing data in a number of ways to facilitate analysis.

10. Failure recovery: We must account for any possible failures and data cor-
ruptions at individual nodes. Recovery from failures must be fast and
consistent.

1.3. Contributions
This paper describes the design of a demonstrably high-throughput geospa-

tial data storage system, Galileo. The storage framework is distributed and is
incrementally scalable with the ability to assimilate new storage nodes as they
become available. The storage subsystem organizes the storage and dispersion
of data streams to support fast, efficient range queries targeting specific fea-
tures across the spatial and temporal dimensions. A dynamic indexing scheme
is utilized to help the system respond to differing load conditions, and a flexible
framework is provided to allow a number of observational data formats to be
read and understood by the system. To sustain failures and recover from data
corruptions of specific blocks the system relies on replication. Most importantly,
our benchmarks demonstrate the feasibility of designing high-throughput data
storage from commodity nodes while accounting for differences in the capabili-
ties of these nodes. Leveraging heterogeneity in the available nodes is particu-
larly useful in cloud settings where newer nodes tend to have better storage and
processing capabilities.

1.4. Paper Organization
In the following section, the architecture of Galileo will be discussed, in-

cluding an overview of how data is stored to disk, the network layout, and how
data is positioned and replicated within the system. Next, an overview of the
system’s scientific data format support infrastructure is detailed in Section 3,
including information about the runtime plugin architecture and implementa-
tion of NetCDF format support. In Section 4, the dataset and query system
will be described, followed by details of Galileo’s built-in distributed computa-
tion API in Section 5. Section 6 explores using the system for client-side data
visualization. Section 8 provides a brief survey of related technologies in the
field, and Section 7 presents benchmarks of our system’s capabilities. Section 9
reports conclusions from our research and discusses the future direction of the
project.

1.5. Paper Extensions
Since the initial publication of Galileo: A Framework for Distributed Storage

of High-Throughput Data Streams [1], we have added several key extensions
for this special edition issue. Updates to the system architecture are detailed,
including block versioning, compression support, and cross-group replication.

3

We also added support for launching distributed computations on the data
stored in Galileo, streaming visualization, and converting other storage types to
our metadata format through a plugin architecture. Finally, a number of new
benchmarks have been added, including a comparison with Hadoop and timing
information for visualization, computation launching, graph reorientation, and
metadata conversion.

2. System Architecture

Galileo runs as a computation on the Granules Runtime for Cloud Comput-
ing [2]. Granules is an ideal platform to build upon because it provides a basis
for streaming communication between nodes in the system and for incoming
data streams as well. As data enters the system, it can be sifted and pre-
processed with the Granules runtime and then stored in a distributed manner
across multiple machines with Galileo. When accessing data, users have the op-
tion of pushing their computations out to relevant Galileo storage nodes where
they can be run locally to avoid incurring IO costs associated with transferring
large amounts of data across a network. This also makes it possible to support
distributed programming paradigms such as MapReduce [3].

Much like Google File System (GFS) [4] or Amazon’s Dynamo [5] storage
system, Galileo is a high-level abstraction that utilizes the underlying host file
systems for storing data on physical media. This allows Galileo to be portable
across operating systems and hardware while also coexisting with other files. It
also means that Galileo does not require an entire disk or partition be devoted
to the system. In Galileo, storage units are called blocks and are stored as files
on the host file system. Each block is accompanied by a set of metadata that is
specifically tailored for scientific applications.

As extremely large datasets can require massive computing resources, Galileo
is designed with scalability in mind. The system employs a shared nothing
architecture, meaning storage nodes operate autonomously and do not share
their state with any other nodes. This simplifies the process of meeting increased
storage demands because additional nodes can be added to the system without
requiring excessive communication or migration of data.

To ensure the system is as fault-tolerant as possible, Galileo does not utilize
master nodes or fixed entry points that could result in a single point of failure.
In fact, Galileo will continue to provide query and storage facilities even when
failures occur so that applications that do not require complete access to all
information in the system can continue to run. Blocks are also replicated across
machines to cope with general hardware failures and planned outages that are
expected in distributed setting.

2.1. Granules
Granules [2] is a light-weight distributed stream processing system. In Gran-

ules computations can be expressed as MapReduce or as directed cyclic graphs
and the runtime orchestrates these computations on a set of available machines.

4

In Granules individual computations can specify a scheduling strategy that al-
lows them to be scheduled for execution when data is available or at regular
intervals specified in milliseconds. Computations in Granules can have multi-
ple, successive rounds of execution during which they can retain state.

Granules is an open-source effort, and allows computations to be developed
in C, C++, C#, Java, Python and R [6]. Some of the domains that Gran-
ules has been deployed in include bioinformatics, brain-computer interfaces [7],
multidimensional clustering algorithms, handwriting recognition [8], and epi-
demiological modeling.

2.2. Blocks
A Galileo block is an multi-dimensional array of data, similar to how data

is represented in systems like SciDB [9, 10] or formats such as NetCDF [11] or
FITS [12], although in the case of Galileo metadata files are stored separately on
the file system alongside their respective data blocks. This separation simplifies
operations: indexing, lookups, and queries all operate on metadata, while stor-
age and modification operations occur on the blocks themselves. The division
also makes it possible to load and retain metadata information in main memory
without needing to read an entire block from disk. Combined with the on-disk
metadata journal, a storage node’s entire state can be quickly recovered after a
crash.

Blocks support seamless compression and decompression, which is useful
for several operations. For instance, compression can be used as a means to
conserve disk space when storing blocks on physical media, and also reduce
network transfer times by decreasing the amount of raw data being exchanged.
Compression can be turned on and off for network transfers or storage operations
by users dynamically at runtime depending on whether it benefits their usage
patterns or not.

Instead of just one or a few large directories containing all the blocks present
on a machine, Galileo separates blocks into an on-disk hierarchical directory
structure using the blocks’ metadata. As the number of files in a directory
increases, reading directory indexes becomes more and more time-consuming, so
this structure spreads data across multiple directories to avoid this performance
penalty. The structure also makes it possible to glean some of a block’s metadata
simply by knowing its location in the hierarchy on disk. In the case of massive
datasets where not all the metadata in the system can be stored in main memory
or after a failure has occurred, the hierarchy makes it possible to start searching
from a point that is already close to the desired information. The number of
subdirectories used for storing the data can be tuned at runtime to cope with
shifting storage demands and disk usage patterns.

The initial directory structure is as follows: beginning with temporal infor-
mation, the year associated with the block is used to determine the directory
under the first (root) storage directory for data in the system. Months, days,
and hours are used to further sub-divide the directory structure; each year di-
rectory contains twelve month directories, and each month directory contains
up to 31 days, and so on. Since temporal information could include a range of

5

times, the beginning of the range is used for the on-disk graph. The next level
of subdirectories is determined by using the data’s spatial information to com-
pute a Geohash [13]. Geohashes are strings that can be used to divide data into
arbitrarily-sized spatial bounding boxes, where shorter strings correspond with
larger geographic regions, and therefore more blocks. The precision of these
strings determines the number of subdirectories created on the file system, and
can be automatically tuned by Galileo to cope with different geographic dis-
persions of data. Further details of the Geohash algorithm are discussed in
Section 2.5.

Our storage scheme offers a few advantages over using one large, contigu-
ous file for storing blocks. For instance, the on-disk hierarchy encodes partial
metadata in directory names that is available without needing to read any files
directly. In addition, this scheme makes the on-disk storage format flexible; we
can incorporate support for additional formats such as NetCDF [11], HDF5 [14],
or FITS [12] easily without needing to overhaul major parts of the system. When
non-native formats are stored, a block simply acts as a container of raw data.

2.3. Metadata
When designing a database specifically for scientific data, the creators of

SciDB [10] identified some major differences between scientific data and business-
oriented data. Two of these differences involve file metadata: first, scientific
data usually has a spatial aspect, involving location or elevation information.
Additionally, scientific data storage needs are massive and continuously growing
in size; systems dealing with such information should be able to handle data
on the petabyte-scale. This generally requires an indexing scheme to speed up
access.

Galileo aims to address these scientific needs as well. Each file in Galileo
is accompanied by a rich set of metadata. The metadata contains spatial in-
formation, which can include elevation and a range of coordinates that form a
bounding box or a single spatial point. This information can be used to query
and apply computations on specific geographic regions. Since measurements are
often performed over a range of time, temporal information is also encoded in
files’ metadata. This allows users to retrieve a wide array of constantly chang-
ing information bundled as a single dataset, or apply transformations across a
specific time interval.

Versioning information is another another relevant metadata item to have
when storing and processing scientific data. Versioning is used extensively in
Google’s BigTable [15] storage system for a variety of scenarios including garbage
collection of old data. There are several situations in Galileo where versioning
and garbage collection are useful. For instance, scientific users often need to
be able to reproduce the steps taken to create a dataset. In this case, each
intermediate step can be stored as a different version of the same Galileo file.
Unlike the temporal ranges stored in metadata, versioning information is not
bounded. In the case of extremely large datasets that are being used to make
real-time predictions, the garbage collection feature could be used to remove old
data that is no longer relevant to conserve disk space.

6

In an effort to make Galileo data blocks self-describing, meaning all the
information needed to interpret the data is included in the files, metadata con-
tains a number of user-defined features. Features could include environmental
attributes such as wind speed, pressure, humidity, or some other application-
specific attribute. Support is also included for encoding device identifiers in the
metadata so datasets can be built from specific sensors or instruments. This
gives the file format flexibility to fit a wide range of use case scenarios.

To cope with massive data storage needs, Galileo uses temporal and spatial
metadata attributes to create a hierarchical graph-based index of the data resid-
ing in the system. This index is stored in main memory on the Galileo storage
node, so locating data is as fast as possible.

2.4. Journaling
Making complex changes to the underlying data structures in Galileo can of-

ten require many separate disk operations. Power failures or system crashes that
take place during such operations can leave these data structures in an incon-
sistent, partially-modified state; the use of journaling safeguards against such
uncertainties. Every change committed to the on-disk data stored in Galileo is
preceded by an update to the system journal. In the case of failures, the journal
serves as a checkpoint and the entire journal is read from disk to determine the
last operation that was taking place before the failure occurred. Once the pre-
failure state has been determined, the operation can be completed, if possible,
or rolled back if the data required to complete the operation was lost during
the failure. The journal also allows the system to recreate its in-memory graph
quickly and begin servicing queries without needing to re-read all the metadata
from disk.

2.5. Geohashes
The Geohash algorithm [13] can be used to divide geographic regions into a

hierarchical structure. A Geohash is derived by interleaving bits obtained from
latitude and longitude pairs and then converting the bits to a string using a
base-32 character map. A Geohash string represents a fixed spatial bounding
box. For example, the latitude and longitude coordinates of N 40.57, W 105.08
fall within the Geohash bounding box of 9xjqbce. Appending characters to the
string would make it refer to more precise geographical subsets of the original
string. Figure 1 illustrates how regions are divided into successively more precise
bounding boxes.

To obtain the latitude and longitude bits from an initial pair of coordinates
representing a target point in space, the algorithm is applied recursively across
successively more precise geographical regions bounding the coordinates. The
remaining geographical area is reduced by selecting a halfway pivot point that
alternates between longitude and latitude at each step. If the target coordinate
value is greater than the pivot, a 1 bit is appended to the overall set of bits;
otherwise, a 0 bit is appended. The remaining geographic area that contains
the original point is then used in the next iteration of the algorithm. Successive
iterations increase the accuracy of the final Geohash string.

7

9Q

9R9R
9X

9W

9R9R

 9XB 9XC 9XF 9XG 9XU 9XV 9XY

 9X8 9X9 9XD 9XE 9XS 9XT 9XW

 9X2 9X3 9X6 9X7 9XK 9XM 9XQ

 9X0 9X1 9X4 9X5 9XH 9XJ 9XN

 9XB 9XC 9XF 9XG 9XU 9XV 9XY

 9X8 9X9 9XD 9XE 9XS 9XT 9XW

 9X2 9X3 9X6 9X7 9XK 9XM 9XQ

 9X0 9X1 9X4 9X5 9XH 9XJ 9XN

Figure 1: An illustration of successively increasing precision in the Geohash algorithm.

An appealing property of the Geohash algorithm is that nearby points will
generally share similar Geohash strings. The longer the sequence of matching
bits is, the closer two points are. This property is exploited in Galileo to support
simple range-based spatial queries that return data in a given Geohash region,
allowing users to specify more- or less-precise hashes to select smaller or larger
areas. It is also possible to use Geohashes for quick proximity searches. In addi-
tion to queries, Geohashes can also be used to group similar data. If a collection
of data gets too large, simply using more precise Geohashes allows the system
to create more specific, and therefore smaller, groupings of data. This property
also allows quick retrieval of similar data blocks for use in computations.

2.6. Network Organization
Galileo employs many features of distributed hash tables, (DHTs) much like

systems such as Chord [16], Pastry [17], or Dynamo [5]. Like Dynamo, Galileo
is a zero-hop DHT, where each node knows about the network topology and
hash algorithm used to route information directly to its destination. Individ-
ual storage nodes running on machines in the system are divided into groups.
These groups can represent arbitrary collections of machines, or could be used
to arrange machines with geographic locality or common hardware attributes.
Each group is assigned its own UUID stream, so it is also possible to broadcast
information to an entire group if necessary. Group members form a ring and
communicate with their neighbors over a socket connection on a separate thread.
This connection is used for detecting when a neighboring node has failed and
maintaining replication levels when failures occur.

In DHTs, a hash function is used to locate where data will be stored in the
system. In the case of Galileo, a two-tiered hashing scheme is used: first, the
destination group for the data is determined by computing a Geohash based
on the data’s spatial information. Then, to determine the storage node within
a group, a SHA-1 hash is computed using the data’s temporal and feature
metadata sets. Using the group and storage node hashes, clients can determine
a UUID for the particular node they wish to communicate with and begin
publishing data on the node’s UUID stream. In the system’s present state,
this scheme simply distributes data evenly across all available machines, but in

8

the future the algorithm could be changed to group data based on its content
or metadata.

To cope with heterogeneous systems, machines can also join multiple groups
or represent multiple “virtual” machines within a group by running multiple
cooperating Galileo instances. This allows more powerful storage nodes to be
added to the system later and still balance load across available machines effi-
ciently.

Galileo is an eventually consistent system. Nodes and groups can be added or
removed from the system at will, but this may affect the availability of data that
must be migrated during changes to the network topology. This property allows
applications to continue with their computations if they can be completed with
partial information. Once data migrations are complete, the system resumes its
usual operating state and all the information stored in the system is available
once again.

2.7. Data Replication
Each storage node in Galileo executes a separate thread that oversees the

verification and replication of data. The designers of Hadoop Distributed File
System (HDFS) at Yahoo! observed that around 0.8 percent of their nodes fail
each month and that with a replication level of three, the probability of losing
a block during one year is less than 0.005 [18]. Therefore, it is ideal to allocate
at least three machines per group since replication is done at the group level.

Within a group, machines act as a circular buffer. The parent node for a
block will receive the first copy of the block, store it, and then forward the block
on to its neighbor. The neighbor then stores and forwards the block on to its
neighbor, continuing until the configured replication level is achieved. In the case
of machines acting as multiple virtual nodes in the system, the data is forwarded
on to the next non-virtual node. This scheme has a few advantages. For one,
network load is distributed evenly among nodes participating in replication since
multiple copies do not need to be sent to the system directly. Additionally,
the parent node will know where replicas will be stored without needing to
communicate with any other nodes.

Since groups in the system are often formed based on rack locality or some
other geographic locality, it can be advantageous to replicate across groups as
well. Cross-group replication can be configured manually to guarantee that at
least one replica is placed in a different geographic location so data is not lost
in scenarios where an entire data center goes down. In cases where groups are
already geographically dispersed, the system can handle cross-group replication
automatically.

When corruption is detected using checksums stored in metadata files, a node
may request a replica from its neighbor. Replication requests are logged and
used to determine if a particular node is experiencing a higher rate of corruption
than the rest of the nodes. In cases where a node has been determined to be
faulty based on its corruption rate, it can be automatically removed from the
system.

9

3. Scientific Data Format Support

While the scientific community has invested considerable time and effort in
collecting and storing vast amounts of data, there has also been a great deal of
investment in the formats used for storing these volumes of data. The storage
formats in question could include simple comma-separated plain text files, rela-
tional database management systems, proprietary storage formats, distributed
storage, or multi-dimensional arrays stored as binary files. This diversity in
storage formats is largely due to organizations having unique usage patterns
and storage requirements for their data.

Galileo has its own internal storage format that can be leveraged directly
by users if they choose, but also provides rich functionality for supporting other
formats. Innovation in storage formats is not our goal for Galileo. Instead, we
wish to facilitate the storage, management, and retrieval of vast amounts of
data in any storage format the end user desires. This approach ensures that the
system will be useful without requiring long conversion processes that could be
costly or result in partial data loss.

Much of Galileo’s power is derived from its ability to reason about the data
stored in the system, particularly its metadata. Therefore, in order to support
multiple storage formats, we provide an interface that allows programmers to
specify how relevant fields in a foreign format should be converted to Galileo’s
native format. If available, spatial, temporal, and feature data must be read
from incoming data formats before being stored in the system. Other rele-
vant fields can be included as well, if deemed necessary by the programmer.
This approach is somewhat similar to databases such as Cassandra [19] or mon-
goDB [20] in its schemaless data representation. Queries and datasets can be
built around the foreign data format once relevant fields have been stored as
Galileo metadata.

3.1. Plugin Architecture
Available plugins and their capabilities are loaded by clients at runtime. To

maintain a separation of concerns in the system, format support is a client-
side functionality; if reading and converting metadata was done at each storage
node, then users would have to ensure that all nodes have the same plugins
available. Utilizing this architecture also means that the client-side algorithm
for file placement in the network only needs to deal with the native Galileo
storage format.

At runtime, plugin capabilities are examined and a mapping of file extensions
to plugins is created. Since file extensions are not always used or inaccurate,
plugins also implement an interface method that can examine the headers of
input files and determine whether or not the file can be interpreted by the
plugin. Users can also choose to invoke a particular plugin directly during a
storage operation if they are dealing with files of a specific known type.

The metadata conversion interface is simple: plugins are given an arbitrary
array of bytes to interpret, and using this information a Galileo metadata object
is produced by the plugin. This Galileo-formatted metadata is returned to the

10

system, and the file can then be dispersed and stored across the network as
usual. Since the input file contents are not being modified in any way, there is
no data loss involved in this process. In this case “conversion” simply refers to
reading an input file and creating additional information about the file that can
be understood by the system.

3.2. NetCDF
One data storage format used particularly often in atmospheric sciences is

the Network Common Data Format (NetCDF) [11]. NetCDF was developed
at the University Corporation for Atmospheric Research (UCAR) primarily for
massive meteorological datasets, and now provides a machine-independent in-
terface that is relevant for storing multitudes of different data types. NetCDF
files are self-describing, multi-dimensional arrays and can be read and written
through rich software libraries supported by UCAR.

NetCDF files can be composed of ASCII text and binary data and contain
three properties: dimensions, variables, and attributes. Dimensions are par-
ticularly relevant to Galileo as they are used to describe application-specific
properties such as time, elevation, or spatial position. Variables represent the
core data of a NetCDF file, and are represented by multi-dimensional arrays of
homogeneous values. Attributes provide extended metadata that describes the
variables in the file to aid in processing and analysis.

A wide range of software applications support NetCDF, partially due to its
simplicity and relative ease of use. Due to the large install base of NetCDF users,
it is the first external format Galileo supports. Our NetCDF plugin utilizes
the Unidata NetCDF Java Library, which provides a rich interface for reading
NetCDF files as well as several other observational data formats. In fact, the
latest version of the library supports Hierarchical Data Format 5 (HDF5) [14],
as well as a number of other formats including BUFR, CINRAD, NEXRAD-3,
UniversalRadarFormat, GRIB, and OPeNDAP. Support for these formats make
Galileo a useful across a wide array of scientific disciplines.

Since NetCDF does not impose a particular schema on its users, there is no
guarantee that information such as latitude, longitude, or elevation are stored
using the same NetCDF variable names. This issue is resolved by utilizing a set
of naming conventions that users adhere to. One such convention is the Climate
and Forecast (CF) metadata standards, which were developed by a number of
international organizations. Our NetCDF plugin supports a simple text-based
system for describing particular conventions and mapping their variables to
Galileo metadata attributes. Support for a number of conventions is included
with the plugin, and users can create their own mappings quickly with a simple
text editor.

4. Information Retrieval: Datasets

Galileo’s information retrieval process is different from traditional databases
or key-value stores. Instead of matching user-submitted queries against the data

11

Spatial Root

9X DJ F0 F2

2011 2012 2011 2011 2011 2012

Jan Nov Dec Jan Mar Mar Dec

1 2 27 10 2 22 12 109X DJ 9X F2 F0 9X 9X F2

Temporal Root

2011 2012

Jan Mar Nov Dec

1 2 12 22 27 10

Figure 2: Two different views of the same in-memory graph. Circles represent temporal
objects, squares represent spatial objects, and diamonds represent feature information.

available in the system and returning the raw data, Galileo streams metadata of
the matching blocks back to the requestor incrementally and our client-side API
transparently collates these metadata blocks into a traversable dataset graph.
This dataset is a subset of Galileo’s in-memory metadata graph, and describes
the attributes of the blocks that match a query. This allows applications to
determine how many result blocks are available and what their various attributes
contain without needing to read any data from the disk. Once a dataset has
been obtained, applications can have blocks transferred directly to them or
further fine-tune the dataset by traversing through it or selecting more specific
portions of the graph. Client applications can use this information to deploy
computations on storage nodes that hold data relevant to the computation.

4.1. Traversing a Dataset
Dataset graphs can be re-oriented and traversed by the user. For instance,

some applications may place a higher importance on temporal information and
decide to use it as the root of the graph, which is where traversals begin. On
the other hand, there may be applications or users that wish to select a specific
geographic region and then traverse through the temporal data within that
region, so the graph would be re-oriented with spatial information as the root.
Figure 2 illustrates the reorientation process on a simple example graph. User-
defined features and devices are also part of the dataset, so applications will
know what kind of data is available without reading it first. This makes it
possible to request all data from a particular type of sensor within a certain
spatial region, or to request all readings from a specific date range. The graph
can also be re-oriented mid-traversal.

Allowing the metadata graph to be oriented in different ways based on access
patterns also creates a number of possibilities for employing machine learning
techniques to predict future usage and orient the graph accordingly for efficient
traversals. This capability also makes it possible to react to large fluctuations in
traffic; if Galileo is running as a backend storage platform for a website, it could
reorient its index to cope with a large influx of traffic requesting a particular
range or type of data.

12

5. Distributed Computation API

Galileo is tightly integrated with the Granules [2] cloud runtime, which sup-
ports expressing computations using the MapReduce paradigm or as directed,
cyclic graphs. In this case, a computation simply refers to a distributed, exe-
cutable task that is deployed and run across a cluster of machines. These com-
putations could include operations such as data analysis, pre-processing, trans-
formation, and visualization. Galileo runs within the Granules computation
framework as well, underscoring the fact that computations can be fully fledged
distributed applications. Since these operations often involve large datasets, we
provide an integrated API to assist developers in deploying computations that
operate on data stored in the Galileo file system.

To facilitate launching computations on particular subsets of data stored
in Galileo, the system allows users to launch Granules computations using a
Galileo dataset as one of its parameters. The client-side API accepts a dataset
graph returned from a Galileo query as its input, and then launches specified
computations on the nodes that host data relevant to the computation. In a
cloud-based setting, this architecture ensures that the penalties incurred from IO
latencies are as low as possible. More sophisticated user-specified task placement
is also possible for situations where a problem requires a more specific execution
pattern.

In general, once a computation has launched on a node it begins reading
its input data. In the case of a MapReduce computation, processing done in
the map phase will often be passed on to a reduce phase where results are
collected. Once collected, results can be written directly back into the Galileo
file system to be dispersed across the cluster and replicated. For visualization
or other client-based activities, the results can also be returned to the original
client that started the query and computation process. The Galileo API can
be invoked at any time during a Granules computation’s lifecycle, meaning that
subsequent stages of execution can continue to be placed near their relevant data
blocks and partial computation progress can be stored in Galileo at user-defined
intervals, if necessary.

5.1. Usage Scenarios
Since Granules provides support for computations that are represented as di-

rected, cyclic graphs, there are several applications beyond the standard MapRe-
duce framework that can also benefit from Galileo. Allowing cycles and long-
running computations provides users with an avenue for continuously processing
observational data from a range of sources. These data items often require pre-
processing before storage, which can be accomplished by launching a Granules
computation on incoming data streams and then storing the results in Galileo.
The Microsoft Dryad project [21] is a prime example of a graph-based com-
putation framework, which gives users flexibility in determining data flow and
dependencies during processing. Its graph-based approach allows for a number
of interesting applications, such as a distributed SQL query engine.

13

Workflow systems are commonly used in the sciences to model computations
and their dependencies. These systems, such as Kepler [22] and Pegasus [23]
frequently involve executing complex programs on input datasets. Structurally,
these computations are graph-like, and require a particular sequence of events
to unfold during their execution. In general, a workflow involves querying large
databases of collected observations and then having results streamed from a
central database server to the clients that request it. Galileo can provide similar
functionality for scientific workflow users while pushing computations directly
to their data, thus speeding up the entire workflow process.

6. Client-Side Visualization

One common use case for scientific data stored in a distributed file system like
Galileo is real-time visualization. These visualizations could include biological,
medical, or meteorological data and can provide insights to researchers in these
fields. Another related area includes Geographic Information Systems, (GIS)
which can involve visualizing organization-specific data with an object-oriented
approach. GIS systems are often powered by a database backend which is used to
provide detailed information about the objects in the system. Common uses of
GIS include military planning, municipal utility management, and cartography.

Galileo includes a client-side visualization API that integrates with its query
and dataset workflow. This functionality is comparable to technologies such as
Google’s Fusion Tables [24]. Fusion Tables’ primary focus is on making data
access and visualization simple and efficient for users by abstracting away the
underlying database and focusing on the useful actions that users may wish to
carry out on their data. Much like Fusion Tables, Galileo supports importing
data from a variety of sources through its data format API. Once data has been
imported into the system, it can be queried and filtered before being passed on to
the visualization API. Our current implementation can export data to Keyhole
Markup Language, (KML) enabling visualization in products such as Google
Earth. This functionality could also be implemented as a web service that could
be queried from Google Earth or other client-side applications dynamically.

Specific regions and attributes can be selected using Galileo’s query system,
and in some cases simply reading metadata provides enough information to
begin visualization. If the specific data items required for visualization cannot be
accessed using simple queries, results from an initial query can be passed through
one or more MapReduce phases and output to clients. By streaming results
to clients, Galileo provides an excellent interface for incrementally updating a
visual representation of data in real time. The API also makes it possible to
export data directly for use in graphics or plotting software.

Another important aspect of visualization is time series information. The
metadata stored in Galileo includes a timestamp that could represent an actual
calendar date, or versioning metadata could be incremented each time new data
is recorded in a region. This information can be streamed from the system
incrementally to provide real-time video-based visualization. For continuously-
updating visualizations, Galileo provides a callback functionality that monitors

14

when new data is added to the system that matches active queries. When new
relevant data has entered the system, clients are notified and can update their
visual representation.

Our current visualization functionality is implemented as a Granules MapRe-
duce computation through the Galileo Computation API. When users submit a
query the resulting metadata is streamed back to the client, which then auto-
matically launches visualization computations. Data is parsed in the Map phase
and passed on to the Reduce phase where it is collated and written to one or
more files that contain the processed data. In the case of KML output, these
objects include geographic properties and shape information. The output from
this component can also be passed on to a plotting program for visualization in
a number of graphical formats.

7. Benchmarks

To test the capabilities of Galileo’s storage system, we ran benchmarks on
a 48-node Xeon-based cluster of servers with a gigabit Ethernet interconnect.
Each server in the cluster was equipped with 12GB of RAM and a 300-gigabyte,
15,000 RPM hard disk formatted with the ext4 file system. The benchmarks
were run on the OpenJDK Java Runtime Environment, version 1.6.0 22.

One billion (1,000,000,000) random data blocks were generated for the exper-
iments and dispersed across the 48 machines, each containing 1,000 simulated
sensor readings and accompanying metadata. Readings had a feature set that
included pressure, temperature, and humidity. This configuration resulted in
blocks that consumed 4,000 bytes of disk space each and metadata files that were
approximately 120 bytes each. Random temporal ranges were chosen within the
years of 2002-2011, and random spatial locations for the data were constrained
to the continental United States. In the interest of testing the system with the
biggest dataset possible, replication was disabled on the storage nodes to con-
serve disk space. The total size of the billion-block dataset was approximately
8TB.

To simulate source “sensor arrays” that stream data into the system, ma-
chines outside the cluster were used to generate the random blocks and stream
them into the system across the network. We also generated “realistic” data by
having subsequent blocks share some characteristics with previously generated
blocks. For example, one block may be generated with metadata for July 1st at
3:00 and the next block would contain information about readings from July 1st
at 4:00. Both the random and realistic datasets were used in our benchmarks.

7.1. Storage
Data blocks enter the system as a stream of bytes. Once the data is received,

the metadata portion of the block is de-serialized so it can be read and indexed
in the in-memory graph, and then the data is written to disk. Table 1 contains
timing information for each part of the process in a scenario where a 10,000-
block burst of data is streamed into the system.

15

Table 1: Per-Block Mean Storage Time: 10,000 Blocks

Operation Mean Time (ms) Standard Deviation (ms)

De-serialization 0.0298933 0.0283722

Indexing 0.0186978 0.0129819

Writing to Disk 0.133983 0.0425601

In these tests, the majority of the time storing a block is spent writing to disk.
In cases where files much larger than 4kB are stored, the overhead incurred by
de-serialization and indexing should be even more insignificant when compared
to write times.

Our storage scheme involves creating several filesystem-level objects. As
a block enters the system, its metadata and content are stored separately on
disk, which creates two files and therefore consumes two inodes on the ext4
file system. In addition, directories are also created for the on-disk hierarchy
that resembles the in-memory graph. Table 2 contains a summary of disk space
usage (using the number of 1024-byte blocks consumed) and inode utilization
as more blocks are added to the system.

Table 2: Disk Usage

Number of Blocks 1-K Disk Blocks Used Inodes Used

1,000,000 9,020,432 2,069,110

10,000,000 88,009,576 21,217,563

20,000,000 166,358,044 40,239,375

7.2. Recovery
In the event of a system crash, power loss, or scheduled reboot, Galileo

must recover its state from disk after being restarted. Recovery first involves
reading the system journal, which contains enough edge information to restore
the system graph that is used to create datasets. Table 3 outlines recovery times
for a single node after a system failure for three scenarios involving different
number of stored blocks.

7.3. Retrieval
For our initial query tests, 100 million random blocks were submitted and

stored in the system in the manner discussed earlier. Then we queried for
all pressure readings generated in July of 2011 within a spatial range roughly
covering the state of Colorado.

16

Table 3: Recovery Times

Blocks Stored at a Node Graph Recovery (sec)

1,000,000 3.062

10,000,000 28.91

20,000,000 65.18

Table 4 summarizes the results of the query. It includes timing information
for creating a dataset from memory, creating a dataset from disk, (simulating
post-failure conditions) and also for transferring raw data blocks across the
network to a client (“downloading” the dataset contents).

Table 4: Small Dataset Query Results

Result Type First Result (ms) Last Result (ms)

Dataset (in-memory metadata) 60.76 668.42

Dataset (metadata from disk) 84.81 1309.12

Full Block Download 542.96 5769.21

The query returned 105,556 blocks, which results in a dataset of about 10
megabytes and roughly 400 megabytes of raw block data.

Our next query benchmark involved the entire billion-block dataset. We
created six different query types to test various access patterns:

1. No Match: This is the case where none of the blocks in the system match
the query.

2. One Match: This is a specially designed query where only a single block
(of 109 blocks) matches the query.

3. Standard Query: The query requests blocks for a particular feature over
a given geospatial location at a specific time (specified using year, month,
day, hour).

4. Temporal Range: Returns all blocks with the desired feature for a given
geospatial area that fall between a specified start and end time range.

5. Spatial Range: Blocks that fall within coarser or finer grained ranges of a
specified geospatial bounding box. Our tests include querying for blocks
within the entire continental United States, Colorado, and the northeast
quarter of Colorado.

6. Exhaustive feature search: Within a given year, locate all measurements of
a specific feature regardless of the corresponding geospatial location. This
query evaluation requires an exhaustive search of the year’s subgraph.

17

0 10 20 30 40 50 60
Time (sec)

0

5000

10000

15000

20000

25000

30000

35000

T
h
ro

u
g
h
p
u
t

(B
lo

ck
s/

se
c)

System Storage Throughput

Random Data
Realistic Data

Figure 3: Cumulative storage throughput over 60 seconds

Timing data for each query type is outlined in Table 5. This includes the
time to return the dataset’s metadata components, the size of the dataset, how
long the system spent creating the dataset (which requires traversing the in-
memory graph) and also how long it took to download the block information
for each dataset. Each data point represents the result of running queries 100
times to ensure stable results were collected; we also report the corresponding
standard deviations.

7.4. Storage Throughput
To further test the storage capabilities of Galileo, we also performed a cumu-

lative storage throughput test. Data blocks were streamed into the system from
five separate sources outside the cluster and stored on disks that were initially
empty. We sampled the number of blocks being stored for a 60 second window
at each node, and then the readings were summed to determine the cumulative
storage rate. Results from this benchmark are depicted in Figure 3.

These results show that our realistic data simulation does yield higher per-
formance than completely random data. This trend is largely due to disk write
access patterns; in the case of random data there will generally be no common-
ality in destination directory between subsequent blocks, whereas the realistic
dataset produced less variance in destination directory. For the realistic scenario
we were able to achieve a sustained cumulative throughput of 28,269 blocks per
second.

18

T
a
b

le
5
:

Q
u

er
y

R
es

u
lt

s
fo

r
1

B
il

li
o
n

B
lo

ck
s:

E
a
ch

D
a
ta

P
o
in

t
is

th
e

R
es

u
lt

o
f

R
ep

ea
ti

n
g

th
e

E
x
p

er
im

en
t

1
0
0

T
im

es

Q
u
e
r
y

F
ir

st
R

e
su

lt
F
ir

st
R

e
su

lt
L
a
st

R
e
su

lt
L
a
st

R
e
su

lt
D

a
ta

se
t

S
iz

e
D

a
ta

se
t

C
r
e
a
ti

o
n

D
o
w

n
lo

a
d

D
o
w

n
lo

a
d

(m
s)

S
D

(m
s)

(m
s)

S
D

(m
s)

(b
lo

c
k
s)

C
r
e
a
ti

o
n

S
D

(m
s)

T
im

e
(m

s)
S
D

(m
s)

N
o

M
a
tc

h
4
2
.0

9
0
.6

7
4
7
.0

5
1
.7

2
0

0
.0

1
0
.0

0
4

N
/
A

N
/
A

O
n

e
M

a
tc

h
4
2
.9

6
1
.0

7
5
0
.3

9
4
.2

9
1

0
.0

1
0
.0

0
8

5
0
.4

7
4
.2

2

S
ta

n
d

a
rd

4
4
.1

0
5
.2

6
5
5
.5

7
9
.1

1
1
,4

1
1

0
.0

2
0
.0

1
2
4
1
.4

5
6
9
.0

5

Q
u

er
y

T
em

p
o
ra

l
4
7
.5

4
5
.4

0
5
8
8
.8

0
1
7
.1

2
9
8
,5

3
5

0
.2

9
0
.5

7
9
,1

4
2
.3

6
1
1
9
.9

2

R
a
n

g
e

S
p

a
ti

a
l

R
a
n

g
e

4
8
.0

7
1
4
.9

9
2
6
1
.8

1
2
6
.5

0
3
1
,4

1
3

0
.0

5
0
.0

1
1
,8

4
5
.6

7
4
2
.9

7

(U
S

)

S
p

a
ti

a
l

R
a
n

g
e

4
3
.0

8
0
.4

5
5
7
.7

3
8
.9

2
1
,6

4
3

0
.0

1
0
.0

1
2
5
2
.0

3
4
1
.6

3

(C
O

)

S
p

a
ti

a
l

R
a
n

g
e

4
2
.8

1
0
.5

2
5
7
.2

3
2
.4

5
3
9
8

0
.0

1
0
.0

1
6
2
.1

3
9
.5

0

(N
E

C
O

)

E
x
h

a
u

st
iv

e
5
3
.9

7
2
.8

4
6
4
,0

6
9
.3

0
4
4
4
.4

2
8
,2

3
0
,6

1
2

3
.6

6
0
.1

7
4
5
9
,2

9
7
.5

2
1
6
9
.3

3

F
ea

tu
re

S
ea

rc
h

19

7.5. Launching Computations
To test the latencies involved with launching a computation through the

Granules runtime, we ran 100 iterations of a demo application that queried the
system and then launched a computation on its resultant metadata graph. In
this benchmark, all blocks in the continental United States that were created on
February 1st, 2001 at 12:22 am were queried, which returned 164,852 matching
blocks. The computation that was launched read corresponding data blocks
from disk, performed a SHA-1 checksum on the blocks to ensure their integrity,
and then returned the hashes to the client application. The steps taken in this
experiment were as follows:

1. Submit a query to the system
2. Wait for query results to be streamed back to the client
3. Collate results into a complete metadata graph
4. Launch the computation on the graph
5. Wait for all checksum results

Table 6 details the results of this experiment; the entire process took about
3.6 seconds to complete, with roughly 90 milliseconds spent performing the com-
putation on average. Untimed code paths represented about 14.71 milliseconds
of the overall time, and about 647.72 MB total data was read from disks across
all machines in the system.

Table 6: Computation Launch Benchmark: 100 runs

Operation Mean Time (ms) Standard Deviation (ms)

First Query Result 257.206 20.2707

Last Query Result 3506.57 64.8951

Computation Time 89.9173 11.0152

Total Time 3611.2 60.5

7.6. Metadata Conversion
One key feature that ensures Galileo can be used for a variety of problems is

its format support. In this experiment, we benchmarked our NetCDF file format
plugin to determine how much overhead was incurred by converting metadata
on the client side before storing it in the system. Data was submitted to the
system from outside the network, read by the format conversion plugin, and
then the data and its accompanying metadata were stored in the system as
usual.

Dataset 1 is an example NetCDF file provided by UCAR from the Commu-
nity Climate System Model (CCSM). Dataset 2 is another NetCDF example

20

with humidity readings. Datasets 3 and 4 are output from the Weather Re-
search and Forecasting (WRF) Model [25], which is a next-generation mesoscale
numerical weather prediction system designed to serve both operational forecast-
ing and atmospheric research needs. The WRF model provides a 3-dimensional
variational data assimilation. To generate the time-variant dataset for a longer
time period, we repeatedly executed the WRF model every hour for the area
under consideration. Each of the model run includes the resultant sub-dataset
associated with the internal time steps. The datasets are encoded as NetCDF
format and follow the CF convention.

Table 7: Metadata Conversion: 1,000 Runs

Dataset Size (MB) Features Mean Time (ms) SD (ms)

1 59.0 5 0.3343 0.3773

2 2.7 12 0.5269 0.3421

3 18.0 121 2.8810 0.5187

4 1608.55 124 2.9473 0.3024

We can conclude from these test results, shown in Table 7, that file size does
not greatly influence the amount of time the system spends reading metadata;
rather, the amount of features being read from the file affects conversion time
the most. This property results in a tradeoff for Galileo users depending on
whether they need fast storage times or richer query support. This also means
that the particular NetCDF storage convention being used will have an affect
on conversion times.

7.7. Visualization
To evaluate the effectiveness of our client-side visualization API, we ran

benchmarks on a query that requested blocks on a specific day from a spatial
area that spanned the entire continental United States. The query resulted in
3,478 matching blocks. The benchmark was run 100 times. Table 8 contains
the amount of time elapsed as the dataset is streamed back to the client; this
feature allows multi-threaded applications to begin updating their graphical
display before all data has been received.

Table 9 provides a summary of the visualization results, including the time
elapsed before the first result is returned, the total time, and the time taken to
write the file to disk in Keyhole Markup Language (KML). This process could
also be implemented as a web service, in which case the file write times provide
an estimate of transfer times over a fast network connection.

7.8. HDFS
While we have demonstrated that Galileo is a viable storage platform for

a number of use cases, it is also beneficial to compare its performance with

21

Table 8: Time elapsed as data is streamed incrementally back to a client for visualization

Percentage Complete Total Time Elapsed (ms) SD (ms)

25 110.345 5.4683

50 130.462 14.1453

75 150.948 20.35

100 179.318 55.8448

Table 9: Visualization benchmark results

Operation Time (ms) Standard Deviation (ms)

Processing First Result 90.8379 2.5547

Processing Last Result 179.318 55.8448

Writing KML 28.5625 3.8344

other distributed file systems. For this comparison, we choose the de facto
standard open-source MapReduce implementation, Hadoop, and its distributed
file system, HDFS. We used Hadoop and HDFS release 1.0 on the same 48-node
cluster we tested Galileo on and leveraged the Hadoop Java API for file system
access.

Since HDFS does not provide the same indexing and query capabilities as
Galileo, we ported several Galileo APIs to run on HDFS, including the in-
memory graph and native Galileo data types. Graph-based indexing was done
on the client side to avoid making massive changes to the underlying Hadoop
architecture. We stored blocks generated from our “realistic” dataset in both
systems. Table 10 summarizes read and write performance of HDFS and Galileo.

The performance profiles found in our benchmarks highlight how the two
systems diverge in their design and intended use cases. In Galileo, where target
usages involve large numbers of small files being stored and retrieved, perfor-
mance suffers somewhat when reading or writing a single block at a time. On
the other hand, Galileo excels when dealing with larger quantities of files. The
difference in single-block performance on Galileo is largely due to the fact that a
query must be executed before the location of the desired data is found, whereas
in HDFS the query operation was done on the client side and then the file was
requested from HDFS directly. In addition, Galileo is an event-based system,
meaning nodes must explicitly notify clients when operations have completed
rather than simply closing a connection. Both of these factors contribute to the
overhead incurred when dealing with a single file, but these penalties become
much less significant when dealing with large quantities of files.

It has been well-documented that HDFS is most efficient when dealing with

22

large files, [26, 27, 28, 29] which also helps explain the performance disparity
between the two systems. Liu et al. [26] circumvented this limitation by com-
bining many small files into larger, indexed files before storing them in HDFS.
Version 0.18.0 of Hadoop also introduced HAR (Hadoop Archive) files, which
provide a means to store smaller files as indexed archives. These techniques
could improve the performance of HDFS in our tests, but it is clear that dealing
with this particular use case was not one of its original goals.

There are also a few architectural differences between Galileo and HDFS that
impact performance. In HDFS, the Namenode handles indexing and storage
operations and represents a single point of the failure in the system. In Galileo,
clients directly contact nodes that each retain their own index. The single index
on the Namenode in HDFS makes it difficult to store a large number of files due
to memory constraints; with today’s modern hardware storing billions of files
would not be possible in HDFS [29]. Like Galileo, HDFS spreads its on-disk
files across a number of subdirectories, but they are not grouped together based
on metadata for more efficient access patterns.

Ultimately, the performance differences seen in these benchmarks emphasize
that the use cases Galileo targets are much different than those targeted by
Hadoop and HDFS. These results do not represent a weakness in HDFS but
rather underscore a difference in objective. It is clear that in our case, designing
a specialized system can provide significant performance benefits over using a
more general solution.

7.9. Graph Reorientation
Allowing the in-memory metadata graph to be reoriented by users or au-

tomatically by the system at runtime provides a powerful way to adaptively
improve the performance of the system. For this benchmark, we recorded the
time it takes to completely reconstruct the metadata graph and use time, space,
or feature information as the starting point for traversals. Table 11 contains
timing information for this benchmark.

The results from this experiment show that reorientating the graph on-the-
fly at runtime on the storage nodes is certainly a viable option to increase
performance. The graph API can also be used locally by clients to reorient query
results to better suit their processing needs. Exact timing for these operations
will vary depending on the data stored in the system; in this benchmark, the
temporally-oriented graph resulted in fewer object creations due to the resulting
graph having fewer vertices than the spatial and feature graphs.

8. Related Work

Hadoop [30] and its accompanying file system, HDFS [18] share some com-
mon objectives with Galileo. Hadoop is an implementation of the MapReduce
framework, and HDFS can be used to store and retrieve results from computa-
tions orchestrated by Hadoop. A primary difference between HDFS and Galileo
is the role of metadata in the two systems; HDFS is designed for more general-
purpose storage needs, and cannot perform the indexing optimizations Galileo’s

23

T
a
b

le
1
0
:

W
ri

te
P

er
fo

rm
a
n

ce
:

G
a
li
le

o
a
n

d
H

D
F

S

O
p
e
r
a
ti

o
n

G
a
li
le

o
(m

s)
H

D
F
S

(m
s)

S
D

:
G

a
li
le

o
(m

s)
S
D

:
H

D
F
S

(m
s)

G
a
li
le

o
B

lo
c
k
s/

S
e
c

H
D

F
S

B
lo

c
k
s/

S
e
c

R
ea

d
1

b
lo

ck
4
9
.2

6
2
.2

8
0
8

3
.9

2
0
.5

1
7
2

2
0
.3

0
4
3
8
.4

4
2
6

R
ea

d
1
0
0

b
lo

ck
s

5
2
.1

0
1
6
5
.3

8
1

3
.8

9
1
2
.4

2
1
,9

1
9
.3

8
6
0
4
.6

6
4
3

R
ea

d
2
0
0

b
lo

ck
s

5
7
.6

1
3
0
6
.3

7
9

7
.7

2
2
1
.4

7
3
,4

7
1
.6

1
6
5
2
.7

8
6
2

R
ea

d
4
0
0

b
lo

ck
s

6
3
.2

1
6
0
3
.6

3
4

9
.1

8
3
0
.0

7
6
,3

2
8
.1

1
6
6
2
.6

5
3
1

R
ea

d
8
0
0

b
lo

ck
s

1
2
2
.6

8
1
,2

0
8
.5

2
8
.6

0
4
6
.8

7
6
,5

2
1
.0

3
6
6
1
.9

7
7
6

R
ea

d
1
6
0
0

b
lo

ck
s

2
5
0
.1

2
2
,4

0
4
.7

3
9
.8

0
6
6
.5

9
6
,3

9
6
.9

2
6
6
5
.3

6
3
6

W
ri

te
1

b
lo

ck
5
1
.6

2
2
2
.1

9
7
.9

0
4
3
.5

5
1
9
.3

7
4
5
.0

5

W
ri

te
1
0
0

b
lo

ck
s

7
1
.8

0
1
,7

3
8
.6

1
1
2
.2

7
2
7
7
.1

9
1
3
9
2
.7

5
5
7
.5

1

W
ri

te
2
0
0

b
lo

ck
s

1
2
0
.3

9
3
,4

9
1
.3

5
1
2
.9

5
3
6
9
.7

1
6
6
1
.2

6
5
7
.2

8

W
ri

te
4
0
0

b
lo

ck
s

1
9
1
.2

2
6
,0

4
7
.6

1
1
4
.1

0
6
7
3
.8

7
2
0
9
1
.8

3
6
6
.1

4

W
ri

te
8
0
0

b
lo

ck
s

3
3
5
.8

0
1
1
,9

3
9
.9

1
4
.0

5
7
5
4
.9

9
2
3
8
2
.3

7
6
7
.0

0

W
ri

te
1
6
0
0

b
lo

ck
s

6
1
2
.2

7
2
3
,9

9
6
.9

2
1
.3

2
1
,3

1
8
.6

8
2
6
1
3
.2

2
6
6
.6

7

24

Table 11: Metadata Graph Reorientation Benchmark

Graph Root Time (ms) Standard Deviation (ms)

Temporal 2914.28 20.041

Spatial 3722.69 23.237

Feature 3641.99 19.066

geospatial metadata makes possible. HDFS is also tuned for a relatively small
number of large files rather than a large number of small files as in Galileo. In
addition, the Granules runtime allows computations to build state over time,
which contrasts with Hadoop’s run-once semantics.

The Hadoop and HDFS combination has been used specifically for geospatial
data [31, 32]. Akdogan et al. found that the MapReduce paradigm is effective for
a number of geospatial operations and scales linearly as nodes are added to the
system [31]. Their implementation uses an index based on Voronoi diagrams,
which helps speed up operations on geospatial areas, but does not include a
temporal component.

SciDB [10, 9] also shares many characteristics with Galileo. It is a science-
oriented database management system (DBMS) which deals with multi-dimensional
arrays of data in a shared nothing architecture. SciDB has modular support for
data processing and querying facilities, allowing users to write their own ex-
tensions to run within SciDB. This makes writing powerful, application-specific
queries possible. Conversely, Galileo places computational responsibilities out-
side the system by utilizing the Granules [2, 33] framework for processing in-
formation, but the two are tightly integrated. Another key difference between
the two systems is metadata handling. In SciDB, metadata and information
about nodes in the system are indexed in a centralized system catalog which
is backed by the PostgreSQL Object-Relational Database Management Sys-
tem (ORDBMS) [34]. Galileo distributes metadata and index information across
all the nodes in the system.

PostGIS [35] provides an alternative approach to storing data with geospatial
attributes: instead of being designed as a standalone system, it is an extension
that runs on the PostgreSQL ORDBMS [34]. PostGIS includes geospatial data
types and queries that coexist with traditional database functionality. The
geospatial queries allow some processing work to be offloaded to the database
itself. PostGIS is an ideal system for users with information that fits the tabular
database storage model well, but in general multi-dimensional arrays are often
a better fit for many forms of scientific data, as discovered in a panel held by
the SciDB creators [9]. Scaling PostGIS may also be more difficult, as scaling
options frequently involve replicating the database to other servers or splitting
data manually between multiple servers, complicating the application logic used
to interact with the database.

25

BigTable [15] is a database-like storage platform that maps row, column,
and time values to byte arrays. In BigTable, data is stored in lexicographic
order by row keys. Rows with consecutive keys are grouped into tablets, which
are distributed across machines to provide load balancing. Since multiple ver-
sions of data can be present in the database at a given time, timestamps are
used to distinguish between different versions. BigTable stores its data on the
Google File System [4], which handles the splitting and distribution of files.
While BigTable has been used for Google Earth, queries that are explicitly
geospatial are not supported by the system.

Cassandra [19] was created by Facebook for dealing with massive amounts
of textual data in the form of user message inboxes. Unlike other distributed
data stores that focus on read performance, Cassandra is heavily optimized for
write-heavy workloads. This feature is provided by doing extensive journaling
and flushing large amounts of buffered data to the disk while performing large,
sequential writes. Cassandra is similar to BigTable [15] in its map-based data
model and Dynamo [5] in its network organization. In Cassandra, node addition
and removal is a more involved process than in Galileo and may require data
migration. Cassandra is also not designed for geospatial queries and generally
is deployed across hundreds of machines rather than thousands.

PAST [36] is a peer-to-peer storage network based on the Pastry [17] dis-
tributed object location and routing substrate. PAST is DHT-based and uses
a consistent hashing algorithm to distribute files evenly across all the storage
nodes in the system, but facilities for data center or rack locality-based place-
ment are not provided. Each node maintains a routing table so it can forward
requests towards their destination, which means that file requests can be sub-
mitted from any node participating in the network. A caching mechanism is
employed to speed up queries; if a file is being requested often, nodes will cache
a local copy until its popularity drops. To cope with load balancing issues, PAST
provides an innovative feature that allows nodes to maintain “pointers” to files
in the system. These pointers act as a logical location for a file while referring
to the file’s actual physical location. This way the properties of the DHT can be
maintained while still being able to relocate files in the system. Unlike Galileo,
PAST does not have an indexing or query mechanism, so retrieval requires an
exact file name.

SciMATE [37] also supports scientific data formats with an extensible plugin
API. The system operates on data in-place rather than requiring it be imported
before processing, and provides extensions to the standard MapReduce API
to help facilitate shuffling large amounts of key-value pairs. In SciMATE, for-
eign data formats are read and interpreted by the system, and then a uniform
interface is presented to programmers wishing to process the data.

Another system that deals with the storage of many small files was developed
by Thain and Moretti [38] in the Chirp distributed grid file system [39]. Instead
of simply combining a number of small files into larger files as done in many
existing systems, this work focuses striking a balance between the strengths of
FTP and NFS to provide better performance for small files in a distributed
setting.

26

9. Conclusions and Future Work

9.1. Conclusions
A shared-nothing architecture allows incremental addition of nodes into the

storage network with a proportional improvement in system throughputs. Effi-
cient evaluation of queries is possible by:

1. Accounting for spatio-temporal relationships in the distributed storage of
observational data streams.

2. Separating metadata from content.
3. Maintaining an efficient representation of the metadata graph in memory.
4. Distributed, concurrent evaluation of queries.

Continuous streaming of partial results to a query enables us to achieve
faster response times and provide real-time visualization support. Returning
only the metadata associated with the content in the query response allows
selective downloads and quick estimates for the total size of the dataset and
expected download times. Two query evaluation features in our system enable
fine-tuning of queries: fast turnarounds for queries with non-matching data and
support for range-queries over the spatial and temporal dimensions.

The use of journaling at individual storage nodes allow us to make (and
complete) complex structural changes to on-disk data despite failures that may
take place at the node. Journaling also reduces recovery times after a failure.
Replication of content allows us to sustain failures and data corruptions while
satisfying queries that match data held in affected blocks.

We provide rich support for reading data from other storage formats through
our flexible plugin framework. Our experience with assimilating NetCDF helped
refine our plugin architecture and we expect that this will help as we proceed
with supporting other observational data formats. NetCDF is one of the most
popular observational data formats and we expect that this should allow us to
leverage translators that are available for NetCDF. This plugin functionality is
used to provide metadata information to the system so it can understand and
reason about the data it is storing; our indexing strategy can be dynamically
reconfigured at runtime to suit a number of usage patterns and reduce latency.
The indexing scheme also provides a flexible means for users to traverse subsets
of the data in the system and then execute distributed computations using the
datasets directly as input parameters. Our visualization API facilitates novel
analysis and research pursuits on the data stored in the system as well.

Finally, our benchmarks demonstrate the feasibility of designing a scalable
storage system from commodity nodes. We also show that our specialized ap-
proach can outperform a general distributed storage solution in a number of
situations.

9.2. Future Work
While exact-match and range-based queries are useful for a number of ap-

plications, we plan to continue to add functionality to the query system. This

27

may involve implementing support for an existing query language or creating a
simple language that interacts with our dataset format directly. Another pri-
mary focus of our future work lies in contacting only a subset of the nodes in the
system while processing a query, which will greatly improve Galileo’s scalability
and responsiveness.

A possible improvement to the on-disk storage format would involve com-
bining multiple blocks, or possibly even entire directory structures, into single
indexed blocks. This approach will reduce inode consumption and may allow
for faster disk access patterns; often queries will involve blocks that are spatially
or temporally similar, so combining the related blocks into a single file would
reduce the number of file open and close operations. Another option may be
to combine metadata files to improve recovery times and dataset generation.
We also may experiment with other file systems that support dynamic inode
allocation, but we do not plan on making any specific file system a prerequisite
for using Galileo.

The PAST [36] peer-to-peer storage system provides an innovative pointer
feature that could benefit Galileo as well. When nodes are added or removed
from the system, pointers can be created so that data does not have to be fully
migrated between nodes immediately for the system to stay operational. Data
could also be migrated on-demand; when a query requests data that is refer-
enced by a pointer, the relevant blocks could be transferred to their new parent
storage node on the fly. This feature should provide tremendous performance
and availability benefits.

Finally, the authors of SciDB determined that one common complaint among
scientific users was that they spent a large amount of time waiting for data to
be stored in a system before they could begin their research [10]. This problem
was solved in SciDB by allowing in situ access to data, where the system can
apply computations to datasets that haven’t been previously entered into the
system. For this reason, we plan to allow the Galileo computation API to be
used on files stored on local file systems as well.

References

[1] M. Malensek, S. Pallickara, S. Pallickara, Galileo: A framework for dis-
tributed storage of high-throughput data streams, in: Utility and Cloud
Computing (UCC), 2011 Fourth IEEE International Conference on, pp. 17
–24.

[2] S. Pallickara, J. Ekanayake, G. Fox, Granules: A lightweight, streaming
runtime for cloud computing with support, for map-reduce, in: Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE International Con-
ference on, IEEE, pp. 1–10.

[3] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, Communications of the ACM 51 (2008) 107–113.

28

[4] S. Ghemawat, H. Gobioff, S. Leung, The google file system, in: ACM
SIGOPS Operating Systems Review, volume 37, ACM, pp. 29–43.

[5] D. Hastorun, M. Jampani, G. Kakulapati, A. Pilchin, S. Sivasubramanian,
P. Vosshall, W. Vogels, Dynamo: amazons highly available key-value store,
in: In Proc. SOSP, Citeseer.

[6] K. Ericson, S. Pallickara, Adaptive heterogeneous language support within
a cloud runtime, Future Generation Computer Systems (2011).

[7] K. Ericson, S. Pallickara, C. Anderson, Analyzing electroencephalograms
using cloud computing techniques, in: Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on,
IEEE, pp. 185–192.

[8] K. Ericson, S. Pallickara, C. Anderson, Handwriting recognition using a
cloud runtime, Colorado Celebration of Women in Computing (2010).

[9] P. Cudré-Mauroux, H. Kimura, K. Lim, J. Rogers, R. Simakov, E. Soroush,
P. Velikhov, D. Wang, M. Balazinska, J. Becla, et al., A demonstration of
scidb: a science-oriented dbms, Proceedings of the VLDB Endowment 2
(2009) 1534–1537.

[10] P. Brown, Overview of scidb: large scale array storage, processing and anal-
ysis, in: Proceedings of the 2010 international conference on Management
of data, ACM, pp. 963–968.

[11] R. Rew, G. Davis, Netcdf: an interface for scientific data access, Computer
Graphics and Applications, IEEE 10 (1990) 76–82.

[12] D. Wells, E. Greisen, R. Harten, Fits-a flexible image transport system,
Astronomy and Astrophysics Supplement Series 44 (1981) 363.

[13] W. Contributors, Geohash, Wikipedia.org (2011).

[14] Q. Koziol, R. Matzke, Hdf5–a new generation of hdf: Reference manual and
user guide, National Center for Supercomputing Applications, Champaign,
Illinois, USA, http://hdf. ncsa. uiuc. edu/nra/HDF5 (1998).

[15] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, R. Gruber, Bigtable: A distributed storage system
for structured data, ACM Transactions on Computer Systems (TOCS) 26
(2008) 4.

[16] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, ACM SIG-
COMM Computer Communication Review 31 (2001) 149–160.

[17] A. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems, in: Middleware 2001,
Springer, pp. 329–350.

29

[18] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file
system, in: Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on, Ieee, pp. 1–10.

[19] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage
system, ACM SIGOPS Operating Systems Review 44 (2010) 35–40.

[20] mongoDB Developers, mongodb manual, http://www.mongodb.org/
(2011).

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed
data-parallel programs from sequential building blocks, ACM SIGOPS
Operating Systems Review 41 (2007) 59–72.

[22] J. Wang, D. Crawl, I. Altintas, Kepler+ hadoop: a general architecture
facilitating data-intensive applications in scientific workflow systems, in:
Proceedings of the 4th Workshop on Workflows in Support of Large-Scale
Science, ACM, p. 12.

[23] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. Berriman, J. Good, et al., Pegasus: A framework for mapping
complex scientific workflows onto distributed systems, Scientific Program-
ming 13 (2005) 219–237.

[24] H. Gonzalez, A. Halevy, C. Jensen, A. Langen, J. Madhavan, R. Shapley,
W. Shen, J. Goldberg-Kidon, Google fusion tables: web-centered data
management and collaboration, in: Proceedings of the 2010 international
conference on Management of data, ACM, pp. 1061–1066.

[25] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock,
W. Wang, The weather research and forecast model: Software architecture
and performance, in: Proceedings of the 11th ECMWF Workshop on the
Use of High Performance Computing In Meteorology, volume 25, World
Scientific, p. 29.

[26] X. Liu, J. Han, Y. Zhong, C. Han, X. He, Implementing webgis on hadoop:
A case study of improving small file i/o performance on hdfs, in: Clus-
ter Computing and Workshops, 2009. CLUSTER’09. IEEE International
Conference on, IEEE, pp. 1–8.

[27] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, Y. Li, A novel approach to
improving the efficiency of storing and accessing small files on hadoop: a
case study by powerpoint files, in: Services Computing (SCC), 2010 IEEE
International Conference on, IEEE, pp. 65–72.

[28] T. White, Hadoop: The definitive guide, Yahoo Press, 2010.

[29] T. White, The small files problem,
http://www.cloudera.com/blog/2009/02/the-small-files-problem/ (2009).

30

[30] A. Bialecki, M. Cafarella, D. Cutting, O. OMALLEY, Hadoop: a frame-
work for running applications on large clusters built of commodity hard-
ware, Wiki at http://lucene. apache. org/hadoop (2005).

[31] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, C. Shahabi, Voronoi-
based geospatial query processing with mapreduce, in: Cloud Comput-
ing Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, IEEE, pp. 9–16.

[32] Y. Wang, S. Wang, Research and implementation on spatial data storage
and operation based on hadoop platform, in: Geoscience and Remote Sens-
ing (IITA-GRS), 2010 Second IITA International Conference on, volume 2,
pp. 275 –278.

[33] S. Pallickara, J. Ekanayake, G. Fox, An overview of the granules runtime
for cloud computing, in: eScience, 2008. eScience’08. IEEE Fourth Inter-
national Conference on, IEEE, pp. 412–413.

[34] P. G. D. Group, Postgresql, http://www.postgresql.org/ (2011).

[35] P. Ramsey, Postgis manual, http://postgis.refractions.net/ (2011).

[36] A. Rowstron, P. Druschel, Storage management and caching in past, a
large-scale, persistent peer-to-peer storage utility, in: ACM SIGOPS Op-
erating Systems Review, volume 35, ACM, pp. 188–201.

[37] Y. Wang, W. Jiang, G. Agrawal, Scimate: A novel mapreduce-like frame-
work for multiple scientific data formats (2012).

[38] D. Thain, C. Moretti, Efficient access to many samall files in a filesystem
for grid computing, in: Proceedings of the 8th IEEE/ACM International
Conference on Grid Computing, IEEE Computer Society, pp. 243–250.

[39] D. Thain, C. Moretti, J. Hemmes, Chirp: a practical global filesystem for
cluster and grid computing, Journal of Grid Computing 7 (2009) 51–72.

31

